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Abstract: Traditionally, mobility in ad hoc networks was considered
a necessary evil that hinders node communication. However, it has
recently been recognized that mobility can be turned into a useful ally,
by making nodes carry data between disconnected parts. Yet, this model
of routing requires new theoretical tools to analyse its performance. A
mobility-assisted or encounter-based protocol forwards data only when
appropriate relays encounter each other. To be able to evaluate the
performance of mobility-assisted routing schemes, it is necessary to know
the statistics of various quantities related to node encounters.

In this paper, we present an analytical methodology to calculate a
number of useful encounter-related statistics for a general class of mo-
bility models. We apply our methodology to derive accurate closed form
expressions for popular mobility models like Random Direction, as well
as for a more sophisticated mobility model that better captures behav-
iors observed in real traces. Finally, we show how these results can be
used to analyze the performance of mobility-assisted routing schemes or
other processes based on node encounters. We demonstrate that deriva-
tive results concerning the delay of various routing schemes are very
accurate, under all mobility models examined.

1 Introduction

Traditionally, ad hoc networks have been viewed as a connected graph over
which end-to-end routing paths need to be established. This view, albeit success-
fully applied in wired networks, does not always hold in wireless environments.
Wireless signals are subject to multi-path propagation, fading, and interference
making links unstable and lossy. Additionally, frequent node mobility (e.g. as in
vehicular ad hoc networks—VANETs (1)) significantly reduces the time a “good”
link exists, and constantly changes the network connectivity graph. As a result,
wireless connectivity is volatile and usually intermittent, as nodes move in and out
of range from access points or from each other, and as signal quality fluctuates.

What is more, there has been a growing interest in the past few years in wireless
applications that can operate over networks that are disconnected for some or most
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of the time. Sensor networks can significantly increase their lifetime by powering
down nodes often, or by using very low power radios (2; 3). Tactical networks
may also choose to operate in an intermittent fashion for LPI/LPD reasons (low
probability of interception and low probability of detection) (4). Finally, operation
over disconnected networks may be desirable for economic reasons, as for example in
the case of low-cost Internet provision in remote or developing communities (5; 6; 7),
or to extend and sometimes bypass access point connectivity to the Internet (8;
9; 10). These new networks are often referred to collectively as Delay Tolerant
Networks (DTN (11)).

To overcome the lack of end-to-end connectivity common in DTNs, encounter-
based or mobility-assisted protocols have been proposed, where messages get carried
by mobile nodes between disconnected parts of the network (12; 11). Nodes carry
a set of messages, possibly for long periods of time, until they encounter another
node to which they can forward messages. During this encounter or contact they
exchange messages according to a specific protocol, and continue their trip until a
new contact occurs (13; 14; 15; 16).

Since messages can be forwarded only during such a contact, the statistics of
node encounters are of particular importance. First, the time until a new encounter
(i.e. forwarding opportunity) occurs is an important component (if not the dom-
inant one) of the queueing delay of a message that is carried by that node, and
thus of the end-to-end delivery delay, as well. Thus, one needs to know the statis-
tics of the arrival process of such contacts in order to analyze the behavior of any
encounter-based protocol. Second, when such a contact occurs, it is usually of lim-
ited duration. Whether or not all messages in the queue that need to be forwarded
will get a chance to, depends on how long this encounter will last. Also, if more
than one node compete for the shared channel, the probability that an encounter
is “lost” due to contention and interference depends on this duration as well.

Inter-contact times and contact durations have been the focus of investigation
for some recent trace-based studies (17; 18; 19). Nevertheless, the debate regarding
whether these statistics follow a power-law (17) or have an exponential tail (19)
is ongoing. Further, when it comes to synthetic, “random” mobility models, only
few of the mobility properties that are relevant to node contacts have been studied.
To enable a complete analytical treatment of various encounter-based schemes, a
number of statistical properties regarding encounter times and encounter durations
need to be derived, which largely depend on the mobility model in hand.

With this in mind, in this paper we first present the mobility properties that
are necessary to analyze the performance of encounter-based protocols. We then
provide a methodology to analyze the statistics of these properties for epoch-based
mobility models, that is, for models according to which a node’s movement consists
of a sequence of “atomic trips” in the network. This includes simple, popular models
like the Random Direction (20) and Random Waypoint (21) mobility, but also some
more sophisticated models, like the Community-based model of (22; 23), which have
been shown to better capture the behaviors observed in traces. (In (24) we studied
the same mobility properties for a random walk on a lattice.) The reason we focus
on such epoch-based mobility models is twofold: first, they are easier to analyze and
demonstrate the basic methodology for deriving encounter-related properties, and
second, synthetic epoch-based models like the Community-based can successfully
capture real-life mobility properties (23; 19).
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Finally, we demonstrate how our various encounter time results can be readily
used in a general analytical framework for mobility-assisted routing, using the delay
of epidemic routing (13) as a case study. By simply “plugging in” the respective
encounter-related quantities into generic expressions about the performance of dif-
ferent algorithms (e.g. derived using Markov Chains (25; 26), fluid models (14),
etc.), we show that derivative results based on these expressions are very accurate,
under various mobility models. As a final note, even though the focus of this paper
is on mobility-assisted routing, the analytical methods and expressions derived here
could be applicable to other processes that are based on node encounters, like virus
spread through wireless devices (27) or the reception of broadcast channels (28).

In the next section we introduce our problem setting, the various encounter-
related quantities we’re interested at, and the methodology to derive them. Then,
in Section 3 we derive accurate closed form expression for these quantities for sim-
ple “epoch-based” mobility models, a popular class of synthetic mobility models.
Further, to show how our methodology can be extended for more sophisticated
mobility models, in Section 4 we derive analytically the same encounter-related
properties for a more realistic mobility model, as well. Section 5 incorporates the
various expressions into a general analytical framework that can be used to pre-
dict the performance of mobility-assisted routing under various mobility models.
Finally, Section 6 discusses some related work and Section 7 concludes the paper.

2 Encounter-Related Statistics for Epoch-based Mobility Models

In this section we look at what mobility properties are relevant to encounter-
based protocols, with our focus on encounter-based (or mobility-assisted) routing.
In encounter-based protocols, most events of interest (e.g. forwarding) occur only
when two nodes are in contact. Consequently, we argue that the following statistical
properties of contacts must be available, under a given mobility model, in order to
analyze the performance of a protocol in this setting.

Hitting and Meeting Times: The first quantities of interest are hitting and
meeting times, and their expected values. The expected meeting time under a given
mobility model is essentially the time until a new contact occurs between two chosen
nodes A and B (if we start looking at them at a random point in time), and thus
the expected time until these nodes can “interact”. (The hitting time corresponds
to the case where one of the nodes is static.) Furthermore, if we are interested
instead in the next contact between A and a subset of nodes in the network (this
is commonly the case, as for example in the “time until any of x relays encounters
the destination of a message”), then we would like to find the minimum of a set
of meeting times (between A and each of the nodes in the subset). To be able to
calculate this, we need the hitting/meeting time distribution, as well, or at least
the distribution’s tail.

We give a formal definition of the hitting and the meeting time here. Xi(t)
denotes the position in the network of mobile node i at time t, Xi the position of
a static node i, and K the transmission range of a node.

Definition 2.1 (Hitting Time). Let a node i move according to mobility model
“mm”, and start from its stationary distribution at time 0. Let j be a static node
with uniformly chosen Xj, then the hitting time (Tmm) is defined as the time it takes
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node i to first come within range of node j, that is Tmm = min
t

{t : ‖Xi(t)−Xj‖ ≤
K}.

Definition 2.2 (Meeting Time). Let nodes i and j move according to a mobility
model “mm” and start from their stationary distribution at time 0. The meeting
time (Mmm) between the two nodes is defined as the time it takes them to first come
within range of each other, that is Mmm = min

t
{t : ‖Xi(t) − Xj(t)‖ ≤ K}.

Contact Duration and Inter-Meeting Time: Knowing the hitting and
meeting times allows one to calculate the delay of various mobility-assisted schemes
under ideal conditions of infinite bandwidth and buffer space (29; 22; 26). Although
this might be a useful approximation for low traffic scenarios or low-resource pro-
tocols (16), it is inaccurate when resources are rather limited, e.g. in sparse sensor
networks for wildlife tracking (2), or when the protocols utilize a lot of resources,
e.g. when epidemic protocols are used which lead to a lot of contention and overuse
the available resources (13; 30; 31).

In such a scenario, forwarding opportunities can be lost due to: (i) lack of
buffer space at the next hop; message gets dropped, (ii) limited bandwidth; there
is not enough time to forward all messages in the queue while the two nodes are
in range (contact duration), (iii) MAC contention; more than one nodes within
range are trying to access the media at the same time, (iv) interference; ongoing
communications in the surrounding area contribute to the noise level. If the network
is not very sparse, traffic loads are high, or nodes tend to concentrate in some
locations (infostations, cafeteria, etc.), one or more of the above events may often
occur, even in the context of DTNs. Thus, even if a node comes in contact with a
potential relay or even the destination, it might not be able to transfer the packet
during that encounter.

To be able to analyze situations that include contention, one needs to calculate:
(i) the average time two nodes have to exchange data during an encounter (contact
time), and (ii) the next time that these two nodes will have another opportunity
to exchange data (inter-meeting time), if the current one is “lost” due to lack
of bandwidth, buffer space, or a collisiona. Contact and inter-meeting times are
formally defined as follows:

Definition 2.3 (Contact Time). Let nodes i and j move according to a mobility
model “mm”. The nodes are initially out of range, and assume they come within
range of each other at time 0. The contact time τmm is defined as the time they
remain in contact with each other before moving out of the range of each other, that
is τmm = min

t
{t − 1 : ‖Xi(t) − Xj(t)‖ > K}.

Definition 2.4 (Inter-meeting Time). Let nodes i and j move according to a mo-
bility model “mm”. Let the nodes start from within range of each other at time
0 and then move out of the range of each other at time t1, that is t1 = mint{t :
‖Xi(t) − Xj(t)‖ > K}. The inter-meeting time (M+

mm) of the two nodes is defined

aIt is important to note that inter-meeting and meeting times are not the same quantity and
do not generally follow the same statistics, even though they are sometimes used inter-changeably.
It happens that for some mobility models, including one model we treat here, the expected values
for these quantities are approximately equal, under some assumptions. Yet, in other important
cases, they follow very different statistics (e.g. Random Walk on a lattice (32; 19)).
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as the time it takes them to first come within range of each other again, that is
M+

mm = min
t>t1

{t − t1 : ‖Xi(t) − Xj(t)‖ ≤ K}. (Note that τmm defined in Defini-

tion 2.3 is the same as t1 − 1.)

2.1 Assumptions and Notation

Here, we will analyze these statistics for a particular class of mobility models,
namely “epoch-based” mobility models. These include, for example, the popular
Random Waypoint (RWP) (21) and Random Direction (RD) (20) models. We first
look into Random Direction mobility, as a representative simple epoch-based model,
in order to describe our methodology. The same methodology can be applied, with
few changes, to derive closed form expressions for Random Waypoint mobility on
a rectangle or on a torus (33). Then, we look into a more realistic Community-
based mobility model (22; 23) that introduces the concept of “communities” to
capture some characteristics often observed in real traces. We will show how our
methodology can be applied to this model also to derive the respective statistics.

We introduce next some useful definitions and notation and state the assump-
tions we’ll be making throughout the remaining of the paper. Table 1 summarizes
our notation.

(a) All nodes exist in area U of size ‖U‖ = N , and have a transmission range
equal to K. The position of node i at time t is denoted as Xi(t) or Xi if it is
static.

(b) All the mobility models we deal with are epoch-based ; An epoch is a given
period of time during which a node moves towards the same direction and
with the same speed; Each node’s trajectory is a sequence of epochs.

(c) The length L of an epoch, measured as the distance between the starting and
finishing points of it, is a random variable with expected value L = O(

√
N).

(The assumption that L = O(
√

N) ensures fast mixing of the corresponding
process and simplifies analysis as it will become clear in the proof of Theorem
3.1. For the RWP model this assumption is satisfied by definition. The
assumption is also inline with the spirit of the RD model since it has been
introduced as a close alternative to RWP. Last, note that when L is small then
an epoch-based mobility model behaves similarly to a random walk model,
whose properties we have studied in (15).)

(d) The speed v of a node during an epoch is randomly chosen from [vmin, vmax],
with vmin > 0, vmax < ∞ and average speed v.

(e) At the end of each epoch a node pauses for a random amount of time chosen
from [0, Tmax], with average pause time T stop.

(f) The expected duration of an epoch (without the pause time) is denoted as
T = E[L

v ].

(g) Let
→
v i denote the velocity of node i and vmm = ‖→vi−

→
vj‖ be the mean relative

speed between two nodes i and j when both are moving according to mobility
model mm. Then we define the normalized relative speed v̂mm as v̂mm = vmm

v .
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Table 1 Notation

Tmm hitting time under “mm”

Mmm meeting time under “mm”
M+

mm inter-meeting time under “mm”

τmm contact time under “mm”

N size of network area
K transmission range

L expected epoch length

v average node speed

T stop average pause time after an epoch

T expected epoch duration

v̂mm normalized relative speed under “mm”
EX expectation of any other random variable X

Remark: Before we proceed, note that we are primarily interested in easy-to-use
analytical formulas rather than exact results. With this in mind, we make a num-
ber of assumptions and approximations to keep the analysis tractable and simple.
During the derivation of each of the results we state the conditions under which the
approximations hold. Furthermore, we compare our results against simulations to
show that the error introduced by these approximations is always small for scenarios
of interest.

3 Encounter Statistics for Random Direction

Although the Random Waypoint model was the first epoch-based model to be
proposed, it was quickly recognized that it results in a non-uniform stationary node
distribution. This is not only in discord with the common assumption of uniformity
made in many studies, but also complicates the analysis. To overcome this, the
Random Direction model, which induces a uniform stationary node distribution,
has been proposed (20). The following gives a formal description of the Random
Direction mobility model:

Definition 3.1 (Random Direction). In the Random Direction (RD) model each
node moves as follows: (i) choose a direction θ uniformly in [0, 2π); (ii) choose a
speed according to assumption (d); (iii) choose a duration T of movement from an

exponential distribution with average L
v ; (iv) move towards θ with the chosen speed

for T time units; b (v) after T time units pause according to assumption (e) and
go to step (i).

The following two Theorems calculate the expected hitting and meeting times
for the Random Direction model.

Hitting Time (Random Direction): Hitting times are useful when some of the
nodes (including the destination) are static (see for example (3) or (12)). Also the
meeting time generally depends on the hitting time. Our methodology is based

bIf the boundary is reached, the node either reflects back or re-enters from the opposite side of
the network (torus).
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on calculating the expected number of epochs until a static or mobile destination,
respectively, is encountered.

Theorem 3.1. The expected hitting time ETrd for the Random Direction model is
given by:

(1) ETrd =

(

N

2KL

)(

L

v
+ T stop

)

.

Proof. Let a node A perform RD movement, starting from its stationary distribu-
tion. A’s movement consists of a sequence of randomly and independently chosen
epochs. Let further a second node B be static with uniformly chosen position, and
let us calculate the probability that node A encounters node B during a given epoch
i of length Li. This epoch will “cover” an area of size 2KLi. If B lies anywhere
within this area, then A “hits” B during this specific epoch. Furthermore, it is
easy to see by the definition of the RD model, that the specific area of the network
an epoch will cover is uniformly distributed around the whole network. Hence, the
probability pi of an epoch of length Li hitting B is equal to pi = 2KLi

N .
Let us now denote as Nhit the number of epochs until A hits B, and P (Nhit > n)

the probability that B has not been encountered after n epochs. Let further Ei,
i = 1 . . . n denote the event that A doesn’t hit B at the ith epoch given that
the length of the epoch equals li, and fL(l1, l2, . . . , ln) denote the joint probability
density function of the lengths of these first n epochs. Then:

P (Nhit > n) =

∫

· · ·
∫

P (E1) · · ·P (En|E1 . . . En)fL(l1, . . . , ln)dl1. . .dln.

Although consecutive epochs are not independent (the end of one epoch is the
beginning of the next one), their lengths are i.i.d. and we can use the statistics of
one epoch to describe all epochs. Further, while in general Ei is not independent
of Ej , j < i (to see this, consider very small epoch lengths, in which case RD
resembles a random walk where the probability that epoch i covers the same area
as epoch j is high), we have assumed that the epoch lengths are large, specifically
O(

√
N), such that the process mixes very fast (similar to RWP where the mixing

time is exactly one epoch). Hence, Ei’s are (approximately) independent (a similar
argument has been made for RWP in (34)) and

P (Nhit > n) =

(
∫
(

1 − 2Kl

N

)

fL(l)dl

)n

=

(

1 − 2KL

N

)n

.

Consequently, the number of epochs needed till A hits B is geometrically distributed
with average N

2KL
. Finally, the expected duration of each epoch is equal T + T stop

(see assumptions (e),(f)), where T = L
v in the case of RD.

Remark: One might argue that counting epochs to calculate hitting times may
not capture intra-epoch behavior. However, as can be inferred from the proof of
Theorem 3.1, if K ≪

√
N then the probability of an epoch to hit the destination

is small (order of 1/
√

N), it takes a large (order of
√

N) number of epochs to hit
the destination, and the relative error introduced is at most 1√

N
.

Meeting Time: We now turn our attention to the case where both nodes are
moving.
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Theorem 3.2. The probability distribution of the meeting time Mrd for the Random
Direction model has an approximately exponential tail and expected value

(2) EMrd =
ETrd

pmv̂rd + 2(1 − pm)
,

where v̂rd is the normalized relative speed for RD, and pm = T
T+T stop

is the proba-

bility that a node is moving at any time.

Proof. Let us first assume again that only one of the two nodes, let A, performs RD
movement, while the second one, let B, is static. We will re-calculate the expected
hitting time of Theorem 3.1 in a slightly different manner. Let’s assume that node
A performs RD movement in discrete steps of unit size, and let pm denote the
probability that A is moving at any of these steps. Then, with probability pm

any given step covers on average a new area of size 2Kv, and with probability
1− pm it stands still and covers no new area. Thus, on average, each node step has
an independent probability of finding (“hitting”) the destination equal to pm2Kv

N ,
where to claim independence we are using as before that the average length of each
epoch is proportional to the network dimension to ensure fast mixing. This implies
a geometric distribution for the total number of unit steps until the destination is
found with an expected value equal to

ET ′
rd =

N

pm2Kv
.

Note that this method of calculating the hitting time is equivalent to that of Tho-
erem 3.1, i.e. ET ′

rd = ETrd.
c Furthermore, because the duration of the time unit

is much smaller than the expected hitting time (for K ≪ N) the distribution of the
hitting can be approximated by an exponential in continuous time.

Now, to calculate the meeting time, we need to take into account that both A
and B move concurrently. Specifically, we will assume that node B is fixed, but
node A is moving at each step with a speed vector equal to the relative speed between
A and B. (This compound movement can be shown to be statistically equivalent
for our purposes to the original case, by defining an appropriate martingale and
using a similar argument as in (32): Ch.3 – Proposition 3.)

It is known that, for generic random walks on graphs, the meeting time between
two walks is 1

2 the respective hitting time of a single walk on the same graph (32).
This holds, because the relative movement of the nodes at consecutive steps are
independent of each other. However, in the RD model a node keeps moving in the
same direction for the duration of an epoch. The relative movement at consecutive
steps is not independent, so the denominator is expected to be smaller than 2. We
thus need to calculate the expected relative speed ‖→

vA − →
vB‖ between A and B.

Due to the uniform choice of direction at every epoch, and the toroidal structure
of the network, we can assume without loss of generality that the direction of

→
vA

is fixed. In other words,
→
vA = (vA, 0) and

→
vB = (vB cos θ, vB sin θ). If we assume,

for simplicity, that
→
vA =

→
vB = v, this gives us

‖→
vA − →

vB‖ =
v

2π

∫ 2π

0

√

(1 + cos θ)2 + sin2(θ)dθ,

cOne can see this by replacing pm with its value T

T+T stop
, which then gives the expected

hitting time in the familiar form of N

2KL

“

L
v

+ T stop

”

.
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Figure 1 Comparison of theoretical and simulations results for the expected hitting
and meeting times under the Random Direction model.

which is equal to 1.27v. (A little more calculus gives the general case for random

speeds.) Thus, the normalized relative speed for this RD model is v̂rd = ‖→
vA− →

vB‖
v =

1.27.
v̂rdv is the relative speed between the nodes when both nodes are moving, which

occurs with probability p2
m. However, with probability 2pm(1−pm) only one of the

node moves with relative speed v, and with probability (1−pm)2 none of the nodes
is moving. Consequently, the expected number of steps until the two walks meet
equals

EMrd =
N

2K(p2
mv̂rdv + 2pm(1 − pm)v)

=
ET ′

rd

pmv̂rd + 2(1 − pm)
.

Figure 1 compares analytical and simulation results for the expected hitting and
meeting times, under the Random Direction model, as the transmission range (Tx)
increases. (Note that in this and all other plots throughout the paper we normalize
the average speed to v = 1.) It is evident that analytical and simulation results are
a close match.

Inter-meeting time: The next theorem finds the expected inter meeting time for
the Random Direction mobility model.

Theorem 3.3. The expected inter meeting time EM+
rd for the Random Direction

model is approximately equal to EMrd.

Proof. Let us approximate the Random Direction movement by a discrete time
Markov Chain in which a state represents the location of the node (at the end of
the epoch). When a node A starts from within range of another node B, these two
nodes are coupled (35). The mixing time, that is the time until A reaches again the
stationary distribution, can be bounded in terms of the second largest eigenvalue in
magnitude of the transition matrix of this Markov Chain (36; 37). This implies that
mixing occurs within c = O(1) number of epochs. Further, each epoch is of length
O(

√
N), which implies that the mixing time is also O(

√
N). The additional time

it takes for the two nodes to meet after getting mixed is equal to one meeting time
which is O(N) (Eq. 2). Consequently, as N becomes large, the total intermeeting
time (mixing+meeting) converges to the meeting time. Thus, EM+

rd = EMrd and
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the tail of the inter-meeting time is equal to the tail of the meeting time (approx.
exponential).

The only step missing is to show that the probability that the two nodes meet
within the constant number of time epochs (denoted by c) is always less than

1−
(

1 − max
{

2Kv̂rdvp2
m

N , 4Kvpm(1−pm)
N

})c

where pm is the probability that a node

is moving at any time. This probability is negligible because K << N .

Contact Duration: We finish this section by deriving the expected contact time
for the Random Direction model.

When two nodes come within range of each other, one of the following is true:
(a) Both the nodes are moving or (b) Only one of the nodes is moving and the
other is paused. Let E[τ1

rd] denote the expected contact time given both nodes
were moving when they came within range of each other and let E[τ2

rd] denote the
expected contact time given only one of the nodes was moving when they came
within range. We derive their values in the Appendix and assume for the rest of
this discussion that they are known.

Theorem 3.4. The expected contact time Eτrd for the Random Direction model is
given by

Eτrd =
p2

m

p2
m + 2pm(1 − pm)

E[τ1
rd] +

2pm(1 − pm)

p2
m + 2pm(1 − pm)

E[τ2
rd],

where pm = T
T+T stop

is the the probability that a node is moving at any time.

Proof. The probability that both nodes are moving is equal to p2
m. The probability

that only one of the nodes is moving is equal to 2pm(1 − pm). For two nodes to
come within range from out of range, at least one of the nodes has to be moving.
Hence, to find Eτrd, we have to condition over the fact that at least one of the two
nodes is moving. Applying the law of total probability gives the result.

Accuracy of the Analysis: We compare analytical and simulation results for the
expected contact time (Figure 2(a)) and the distribution of the meeting time and
inter meeting time of the Random Direction model for some sample values (Figures
2(b) and 2(c)). Despite some approximations we made during the derivations, it is
evident that there is a good match for both the expected contact time values, and
the geometric/exponential tail for the meeting and inter-meeting times. Note that it
is the number of epochs to hit/meet which are geometrically distributed (Theorems
3.1 and 3.2), hence the distributions of hitting, meeting and inter-meeting times
will be geometric/exponential when they are much larger than one epoch time.
This explains the deviation from the exponential distribution for smaller values of
meeting and inter-meeting times in Figures 2(b) and 2(c).

4 Encounter Statistics for Community-based Mobility

So far we have dealt with simple epoch-based mobility models, like the Random
Direction model. Despite their usefulness in theoretical analysis these models have
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Figure 2 Random Direction Mobility Model: (a) Comparison of the theoretical

and simulation results for the expected contact time for parameters N = 100 × 100, T =
300, v = 1, T stop = 50. (b) Meeting time distribution with parameters N = 300×300, K =

30, T = 160, v = 1, T stop = 150. (c) Inter-meeting time distribution with parameters

N = 300 × 300, K = 30, T = 160, v = 1, T stop = 150.

been found to often be unrealistic. Specifically, various collected traces (38; 10) con-
sistently confirm that real life mobility exhibits location preference and considerable
heterogeneity in behavior, not captured by popular models like Random Direction
and Random Walk. To capture these characteristics, a number of synthetic mobility
models have been proposed based on real traces (39; 40; 23).

One of these models, the “Community-based Mobility Model” (22; 23), is still
epoch-based in nature, but introduces the concept of communities (and time-
dependency) to better capture real life mobility characteristics. In its simplest
version, the model consists of two states only, a “local” state where the node moves
inside a small community, representing a location of high preference (e.g. office),
and a “roaming” state where the node may go anywhere in the network. This can
be modeled by a simple two-state Markov Chain.

Definition 4.1 (Community-based Model). Nodes move inside the network as
follows:

• each node i has a local community Ci of size ‖Ci‖ = c2N, c ∈ (0, 1]; a node’s
movement consists of a sequence of local and roaming epochs.

• a local epoch is a Random Direction movementd restricted inside area Ci

with average epoch length Lc equal to the expected distance between two points
uniformly chosen in Ci.

• a roaming epoch is a Random Direction movement in the entire network
with expected length L.

• (local state L) if the previous epoch of node i was a local one, the next epoch

is a local one with probability p
(i)
l , or a roaming epoch with probability 1−p

(i)
l .

• (roaming state R) if the previous epoch of node i was a roaming one, the next

epoch is a roaming one with probability p
(i)
r , or a local one with probability

1 − p
(i)
r .

dNote that each node could also perform Random Waypoint movement or some other i.i.d.
movement in each epoch, instead of Random Direction.
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The locality of movement is captured by the existence of a community inside
which each node spends a configurable amount of its time. Further, each node may

have different p
(i)
r and p

(i)
l parameters modeling a large range of different mobility

characteristics per node. Finally, different nodes may have communities of different
sizes, or may have more than one community. These together allow for a large
range of node heterogeneity to be captured. The realism of this model has been
further confirmed in (23), where a somewhat “richer” version of the model (multi-
tiered communities and time-dependent behavior) has been shown to closely match
existing traces. However, to simplify our exposition, we will focus here on the
“vanila” version of the model described above.

Lemma 4.1 calculates some useful probabilities, and follows easily from elemen-
tary probability theory.

Lemma 4.1. Let us denote as π
(i)
l and π

(i)
r the probability that a given epoch of node

i is a local or a roaming one, respectively. Let us further denote the probability that,

at any time, the node is: (a) moving in local epoch as p
(i)
ml, (b) moving in roaming

epoch as p
(i)
mr, (c) pausing after a local epoch as p

(i)
pl , (d) pausing after a roaming

epoch as p
(i)
pr . Then:

π
(i)
l

=
1 − p

(i)
r

2 − p
(i)
l

− p
(i)
r

, π
(i)
r =

1−p
(i)
l

2−p
(i)
l

−p
(i)
r

p
(i)
ml

=
π

(i)
l

Lc
v

π
(i)
l

T l + π
(i)
r T r

, p
(i)
mr =

π
(i)
r

L
v

π
(i)
l

T l + π
(i)
r T r

, p
(i)
pl

=
π
(i)
l

T
l
stop

π
(i)
l

T l+π
(i)
r T r

, p
(i)
pr =

π
(i)
r T stop

π
(i)
l

T l+π
(i)
r T r

.

Table 2 summarizes some additional notation related to the community model.
We will focus here on the case where each node i has its own community Ci, but

all nodes have the same mobility characteristics, that is, p
(i)
l = pl and p

(i)
r = pr,

∀i (i.e. drop the (i) from all probabilities). The heterogeneous case is only a
straightforward extension of this, see (22).

Hitting Time: Let’s assume that a node A with community CA moves according
to the Community-based model, until it encounters a node B that is static with uni-
formly chosen position. If B’s position is outside CA, then A can only encounter B
during a roaming epoch. Otherwise, if B lies inside CA, A is expected to encounter
B much faster, since it tends to move preferentially inside CA. The following two
Lemmas calculate the expected hitting time for each of these two subcases.

Lemma 4.2. The expected hitting time ET
(out)
comm until a node A, moving accord-

ing to the Community model, encounters a static node B, who lies outside A’s
community, is given by:

(3) ET (out)
comm = ETrd +

1 − pr

1 − pl

N

2KL
T l.

Proof. Let Nl and Nr denote the number of times A visits the local state (L) and
roaming state (R), respectively, before it finds B. Furthermore, let Nhit = Nl + Nr

denote the total number of epochs of any kind. Then, according to the law of large
numbers, when Nhit → ∞, Nl → πlNhit and Nr → πrNhit.
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Table 2 Additional Notation for Section 4

Ci community of node i: ‖Ci‖ = c2N, c ∈ (0, 1]

pl probability that next epoch is local,
given that previous epoch was local

pr probability that next epoch is roaming,
given that previous epoch was roaming

πl probability that a given epoch is a local one
πr probability that a given epoch is a roaming one

pmr probability that a node is in roaming state and moving

pml probability that a node is in local state and moving
ppr probability that a node is in roaming state and pausing

ppl probability that a node is in local state and pausing

Lc expected length of local epoch

T
l

stop expected pause time for a local epoch

T l expected local epoch duration (Lc/v + T
l

stop)

T r expected roaming epoch duration (L/v + T stop)

Since B does not lie inside A’s community, B can only be encountered while
A is in the roaming state.e The expected number of roaming epochs needed until

such a destination is met was found in Theorem 3.1, to be equal to 2KL
N . This

implies that A visits state R ENr = 2KL
N number of times before it meets B. The

sum of the duration of these epochs is equal to ETrd. Additionally, according to
the previous argument based on the law of large numbers, A also visits state L on
average

ENl =
πl

πr
ENr =

1 − pr

1 − pl
ENr

times, before it meets B (given that A starts from its stationary distribution). The

average time spent at state L, each time it is visited, is equal to Lc

v +T
l

stop. Putting
everything together gives us Eq.(3).

Otherwise, if B lies inside CA, A is expected to encounter B much faster, since it
tends to move preferentially inside CA. Lemma 4.3 calculates the expected hitting
time for this case.

Lemma 4.3. The expected hitting time ET
(in)
comm until a node A, moving according

to the Community model, encounters a static node B, who lies inside A’s commu-
nity, is given by:

(4) ET (in)
comm ≃ 1

1 −
[

(1 − pl
hit)

πl(1 − pr
hit)

πr

] (πlT l + πrT r),

where pr
hit = 2KL

N and pl
hit =

pr
hit

c .

eRecall that we have assumed that the transmission range K of nodes is much smaller than
the total network area N , and thus the probability that B is near the edge of CA and thus can
be encountered even while A is inside its community goes to 0 as N → ∞.
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Proof. Let us count the number of steps in the Markov chain corresponding to the
community model until B is found. Let further Nl and Nr denote again the number
of local and roaming epochs elapsed, respectively, before B is encountered, and let
Nhit = Nl + Nr denote the total number of epochs. Finally, let P (Nl, Nr) denote
the probability that at least Nl local and Nr roaming epochs elapse before B is
found. Then, P (Nl, Nr) = (1 − pl

hit)
Nl(1 − pr

hit)
Nr . According to the law of large

numbers, when Nhit → ∞, Nl → πlNhit and Nr → πrNhit. Consequently, for large
n

P (Nhit > n) = (1 − pl
hit)

πln(1 − pr
hit)

πrn.

This implies that the probability distribution of the total number of epochs Nhit

(local or roaming) has a geometric tail with parameter

phit = 1 −
[

(1 − pl
hit)

πl(1 − pr
hit)

πr
]

.

Hence, when the average number of epochs necessary to find B is not too small,
we can approximate the pdf of the total epochs with a geometric distribution with
the above parameter phit. For this to occur we require that the transmission range
is much smaller than the network dimensions, which is the case indeed in most
situations of interest (i.e. when mobility is required to deliver a message). In this
case, the expected number of epochs until B is encountered ENhit is equal to 1

phit
.

Finally, each of these epochs is a local one with probability πl or a roaming one
with probability πr, and with duration T l and T r, respectively.

We can now go ahead and calculate the hitting time for the case where the
destination’s position is uniformly chosen over the entire network area.

Theorem 4.1. The expected hitting time ETcomm under the Community-based
Mobility Model is given by:

(5) ETcomm = (1 − c2)ET (out)
comm + c2ET (in)

comm.

Proof. With probability ‖U‖−c2‖U‖
‖U‖ = 1− c2 B’s position is outside A’s community

CA. In that case, B can only be encountered during a roaming phase, and the

expected time until this occurs is given is ET
(out)
comm (Lemma 4.2). Similarly, with

probability c2 B lies inside CA, in which case the expected hitting time is given by
Lemma 4.3.

Meeting Time: The proof for the community meeting time follows in a similar
manner as that of Theorem 3.2. Thus, we only state the final result in Theorem 4.2.
The main difference is that here we need to consider two cases: (i) non-overlapped
communities, which refers to the case where the communities of the two nodes
under study are disjoint, and (ii) overlapped communities, which refers to the case
where the communities of the two nodes are the same. (We ignore partial overlap
to simplify analysis.) Finally, we take a weighted average over the two cases as we
did for the community hitting time.

Theorem 4.2. The probability distribution of the meeting time Mcomm under the
Community-based mobility model can be approximated by the weighted sum of two
exponential distributions, with expected value:
(6) EMcomm = (1 − c2)EM (out)

comm + c2EM (in)
comm.
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Figure 3 Hitting Times under the Community-based RD model for small (left) and
large (right) communities.

where,

EM
(out)
comm =

»

2Kv

N

“

v̂rd((pmr + pml)
2 − p

2
ml) + (2pmr(ppr + ppl)) + (2pmlppr)

”

–−1

EM
(in)
comm =

"

2Kv

N

 

v̂rdp2
ml

c2
+

2pmlppl

c2
+ v̂rd

“

(pmr + pml)
2 − p

2
ml

”

+ 2pmr(ppr + ppl) + 2pmlppr

!#−1

are the expected meeting time for nodes with non-overlapping and overlapping com-
munities, respectively.

As a special case, in some real-life situations each node tends to move most of
the time in a very small area that is different for each node (e.g. at home), and
that could be entirely covered by the node’s antenna, while the network might be
much larger (e.g. a city-wide wireless Metropolitan Area Network). In this case,
the probability distribution for the meeting time can be again approximated by a
single exponential, simplifying some derivative results.

Corollary 4.1 (Small Community). When the community size of nodes is much

smaller than the network area (‖Ci‖ ≪ N), the meeting time EM
(small)
comm under the

Community-based Random Direction model is exponentially distributed with mean
value:

(7) EM (small)
comm =

ETrd + 1−pr

1−pl

N
2KL

T
l

stop

pc
mv̂rd + 2(1 − pc

m)
,

where pc
m = (1−pl)L/v

(1−pr)T
l

stop+(1−pl)T r

.

Proof. Equation (7) follows easily from Equations (3), (5), and (6) by replacing

c ≈ 0 and T l ≈ T
l

stop.

Inter-meeting Time: To calculate the inter-meeting times, we condition on the
two subcases of overlapping and non-overlapping communities. We first look at the
simpler case of non-overlapping communities.

Lemma 4.4. The expected inter-meeting time for nodes with non-overlapped com-

munities is EM
+(out)
comm = EM

(out)
comm.
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Proof. Since both nodes are moving according to the Random Direction mobility
model, the location distribution will converge to the stationary distribution within
a few time epochs (as discussed in Theorem 3.3). Further, the Markov Chain which
describes the transition of nodes between local and roaming states can be shown
to converge to within ǫ of its stationary distribution within

max

(

log
“

1−pl
ǫ(2−pl−pr)

”

2−pl−pr
,

log
“

1−pr
ǫ(2−pl−pr)

”

2−pl−pr

)

time units (we bound the mixing time in terms

of the second largest eigenvalue of the transition matrix (36; 37)). Thus, it takes
only a constant number of epochs until two nodes that just met reach again their
stationary distribution, and we can show that the probability that the two nodes
meet during this time is negligible if K ≪ N (similar to Theorem 3.3). After this,
the additional time it takes for them to meet is equal to one meeting time.

When the communities of the two nodes overlap, then the situation becomes
slightly more complicated. Specifically, if the two nodes meet within their commu-
nity, there is a high probability that they will meet again quite fast.

Lemma 4.5. The expected inter-meeting time for nodes with overlapping commu-
nities is

(8) EM
+(in)
comm = p

+
1 E[M+

1 ] + p
+
2 E[M+

2 ] + (1 − p
+
1 − p

+
2 )EM

(in)
comm,

where (i) p+
1 is the probability that when the two nodes met, both were in their local

states and only one of the nodes was moving, and E[M+
1 ] is the expected inter-

meeting time for this case, (iii) p+
2 is the probability that when the two nodes met,

both were in their local states and moving, and E[M+
2 ] is the expected inter-meeting

time for this latter case.

The expressions for p+
1 , E[M+

1 ], p+
2 and E[M+

2 ] are contained in the proof of the
lemma which is presented in Appendix B.

We next state the value of the expected inter-meeting time, EM+
comm, in terms

of EM
+(out)
comm and EM

+(in)
comm in the following theorem.

Theorem 4.3. The expected inter-meeting time of the Community-based mobility
model is

(9) EM+
comm = (1 − c2)EM+(out)

comm + c2EM+(in)
comm.

Proof. The proof is similar to Theorem 4.1.

Contact Duration: The expected contact time is also derived after conditioning

on the two subcases of overlapping and non-overlapping communities. Let Eτ
(out)
comm

and Eτ
(in)
comm denote the expected contact time for nodes with non-overlapped and

overlapped communities respectively. Appendix C discusses how to derive their val-
ues. The following theorem states the value of the expected contact time, Eτcomm,
and is derived in a manner similar to the derivation of Theorem 4.1.

Theorem 4.4. Eτcomm = (1 − c2)Eτ
(out)
comm + c2Eτ

(in)
comm.

Accuracy of the Analysis: Figure 3 compares analytical and simulation results
for the expected hitting time under the Community-based mobility model, for small
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Figure 4 Simulation and analytical results for the Community-based mobility model.
(a) Meeting time. (b) Inter-meeting time. Network parameters: N = 500 × 500, L =

150, c = 0.1, pl = 0.9, pr = 0.5, v = 1.0, T stop = T
l

stop = 0.

and large communities (for the large community case all pause times are zero and
pl = 0.9, pr = 0.5). Figures 4(a) and 4(b) compare the analytical and simulation
results for the expected meeting and inter-meeting times under the Community-
based mobility model. As can be seen, theory matches simulations quite closely.

5 Delay of Mobility-Assisted Routing

In this section, our goal is to demonstrate how the mobility properties we have
derived thus far can be readily used in various analytical expressions of interest
related to encounter-based protocols. As an example, we will show how our results
regarding the various encounter times fit into a general theoretical framework that
can be used to analyze the performance of mobility-assisted routing. Note that
the derived encounter-related expressions could also be useful for the calculation
of various other interesting results such as: capacity results (41), end-to-end delay
and resource usage results based on Markov Chains and Random Walk theory (25;
26; 15; 16), fluid models (14), wireless virus spread models (27), PeopleNet (9), etc.
By “plugging” our basic encounter-related results into more generic equations, we
derive similarly accurate performance results under a specific mobility model, in
closed form, without resorting to simulations or curve fitting.

Our focus here will be the delay of two well known mobility-assisted routing
algorithms: Direct Transmission and Epidemic Routing (29). We will first look
into a scenario with idealized conditions (infinite bandwidth and buffer space), and
derive upper and lower bounds for the delay. Then, we address a more realistic
situation, where nodes contend for access to limited resources like bandwidth.

We use a custom simulator described in (33) to get the simulation values we
compare our theoretical results to. The simulator avoids excessive interference
by implementing a scheduling scheme which prohibits simultaneous transmissions
within two hops of each other. It incorporates interference by adding the received
signal from other simultaneous transmissions (outside the scheduling area) and
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comparing the signal to interference ratio to the desired threshold. The simulator
allows the user to choose from different physical layer, mobility and traffic models.

5.1 Mobility-Assisted Routing under no Contention

We will first assume that all nodes have infinite buffer space, and the available
bandwidth per contact is much larger than the amount of data to be sent. These
assumptions are valid, when traffic is low, the network is sparse and the spatial
distribution of nodes does not have large peaks. In this case, the probability that
many nodes will try to access the same “wireless area” at the same time is small.
We can thus safely ignore contention or queueing and concentrate on the important
effect on delay of storing and carrying a message.

In Direct Transmission, since the source of a message holds on to it until it comes
within range of the destination itself (42; 29), its delay (under no contention) is
equal to the expected meeting time under the given mobility model, and is also an
upper bound on the delay of any other (non-adversarial) mobility-assisted routing
scheme (29). Epidemic Routing, on the other hand, has the minimum expected
delivery delay under the assumption of no contention, being equivalent with an
optimal “oracle-based” scheme that knows all future connectivity (6; 15). The
properties of the optimal algorithm have been widely studied (29; 26; 43; 25; 14).
The following Lemma gives the delay of the two routing schemes as a function
of the expected meeting time for a given mobility model, and thus it also gives
bounds for the expected delay of any mobility-assisted routing scheme, under a
given mobility model (proofs can be found in (29), and the lemma is reproduced
here for completeness).

Lemma 5.1. Let M nodes move according to a given mobility model with exponen-
tially distributed meeting times. Then, the expected message delivery time of any
routing algorithm EDmm under mobility model “mm” is

(10)
HM−1

(M − 1)
EMmm ≤ EDmm ≤ EMmm

where Hn is the nth Harmonic Number, i.e, Hn =
∑n

i=1
1
i = Θ(log n).

We can replace the values we calculated for the meeting times under different
mobility models in Equation (10) and derive closed-form expressions for the delays.
Note that these expressions hold for mobility models with exponential tails for the
meeting time distribution, and thus the epoch-based mobility models we have seen,
such as Random Direction or Community mobility with small communities. In
the case of large communities, Equation (10) has to be slightly modified. These
equations also hold for the case of random Walk mobility whose meeting time has
been derived in (29).

In Figure 5(a) we compare our analytical results, based on Lemma 5.1 and
the expressions derived in Sections 3 and 4, to simulation results, for the Ran-
dom Direction model. Figure 5(b) does the same for the Community-based model
with small communities and parameter values pl = 0.8, proam = 0.5, T stop = 0,

and T
l

stop = 150. For the non-contention case, we turned off all interference and
scheduling modules in the simulator, and route only a single message in each run.
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Figure 5 Upper and lower bounds on the delay of any mobility-assisted routing
scheme under Random Direction (a) and Community-based mobility (b).

As can be seen by both plots, our theoretical results for the optimal delay match
very closely with simulations results. This implies not only that our meeting time
expressions for different mobility models are accurate, but that derivative delay
expressions based on these meeting times, and pertaining to the delay of more com-
plicated mobility-assisted routing schemes are also accurate.

5.2 Mobility-Assisted Routing under Contention

The simple approach of Section 5.1 that takes into consideration only the ex-
pected meeting times fails to take into account contention for the shared channel, as
described in Section 2. This can produce too optimistic delay results for resource-
demanding protocols like epidemic routing (see (16) and Fig. 6(b)).

When contention occurs during the whole duration of a given contact, a “loss”
of a forwarding opportunity may occur. Such a loss can be modeled by a loss
probability, which is a function of contact duration, propagation environment, and
traffic load. Note that different routing protocols induce different load for the same
amount traffic, since they use different degrees of data replication. Hence, the loss
probability also depends on the routing protocol. (33) discusses how to find the
value of the loss probability in terms of these network parameters. f We will not
reproduce these result here, but instead discuss how to find the delay given this
loss probability. In the rest of this section we denote by ptxS the probability of a
successful transmission, and by 1 − ptxS the loss probability.

The two nodes will remain in contact with each other for one contact time. If
contention causes loss of every transmission opportunity in one contact time, then
the two nodes will move out of each other’s range without being able to exchange
the packet. As a result, they will have to wait for one inter-meeting time to be
able to meet each other again. Thus, when contention is significant, knowing the
statistics of these two properties in addition to meeting times is necessary and
sufficient to be able to analyze the delay of any mobility-assisted routing scheme.

We first analyze the performance of Direct Transmission under contention. Al-

fNote that this probability could also reflect other things too, for example, loss due to lack of
buffer space or the unwillingness of a node to further forward packets.
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though this scheme is somewhat “trivial” and not very likely to be used in a real
implementation, it is very useful to demonstrate how the various encounter statistics
all fit together, and will serve as the building block for more complex protocols.

Theorem 5.1. Let EDdt denote the expected delay and 1 − pdt
txS denote the loss

probability under direct transmission. Then,

EDdt = EMrd +
(1 − pdt

success)EM+
rd

pdt
success

≃ EMrd

pdt
success

,

where EMrd is the expected meeting time of the Random Direction mobility model

and pdt
success = 1−

(

1 − pdt
txS

)Eτrd is the probability that when two nodes come within
range of each other, they successfully exchange the packet before going out of each
other’s range (within the contact time τrd).

Proof. The expected time it takes for the source to meet the destination for the
first time is EMrd (the expected meeting time). Then, with probability 1 − pdt

txS ,
the source and the destination are unable to exchange the packet in one time slot,
where pdt

txS is given in (33). Since these nodes are within range of each other for

Eτrd number of time slots,
(

1 − pdt
txS

)Eτrd is the probability that the source fails to
deliver the packet to the destination when they came within range of each other.
(We are making an approximation here by replacing τrd by its expected value.)

Thus, pdt
success = 1 −

(

1 − pdt
txS

)Eτrd .
If the two nodes fail to exchange the packet when they were within range, then

they will have to wait for one inter-meeting time to come within range of each other
again. If they fail yet again, they will have to wait another inter-meeting time to
come within range. Thus, EDdt = EMrd+pdt

success

(

(1 − pdt
success)EM+

rd + 2(1 − pdt
success)

2

EM+
rd + . . .

)

= EMrd +
(1−pdt

success)EM+
rd

pdt
success

. Since EM+
rd = EMrd for the Random

Direction mobility model, EDdt evaluates to EMrd

pdt
success

.

We will now analyze the performance of epidemic routing with contention as-
suming Random Direction mobility.

Theorem 5.2. Let EDepid denote the expected delay of epidemic routing and 1 −
pepid

txS denote the induced loss probability. Then,

(11) EDepid =

M−1
∑

i=1

1

M − 1

i
∑

m=1

EMrd

m(M − m)pepid
success

,

where pepid
success = 1 −

(

1 − pepid
txS

)Eτrd

.

Proof. To find the expected end-to-end delay, we first find the expected time it
takes for the number of nodes having a copy of the packet to increase from m to
m + 1. The expected time it takes for one of the m nodes having a copy of the
packet to encounter one of the other M − m nodes is equal to EMrd

m(M−m) . Similar

to the Direct Transmission case, each “encounter” fails with probability pepid
success =

1 −
(

1 − pepid
txS

)Eτrd

, where pepid
txS is given in (33). Since both meeting and inter-

meeting times have exponential tails, the expected time it takes for the number
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Figure 6 Simulation and analytical results for the expected delay of (a) Direct Trans-

mission. (b) Epidemic Routing. Network parameters: N = 150× 150, v = 1, L = 55, M =

50, T stop = 0.

of nodes having a copy of the packet to increase from m to m + 1 is equal to
EMrd

m(M−m)pepid
success

.

Finally, the probability that the destination is the ith node to receive a copy of
the packet is equal to 1

M−1 for 2 ≤ i ≤ M . The amount of time it takes for the ith

copy to be delivered is equal to
∑i

m=1
EMrd

m(M−m)pepid
success

. Applying the law of total

probability over the random variable i gives Eq.(11).

Figures 6(a) and 6(b) compare the analytical and simulation delay results for
different network densities for Direct Transmission and Epidemic routing respec-
tively. To generate contention in the network, instead of routing a single message
per run (used to generate results for Section 5.1), we use the Poisson arrival pro-
cess to generate traffic in our simulations. The channel model is assumed to be
Rayleigh-Rayleigh fading and Random Direction mobility is used to model node
mobility in the simulations. Its easy to see the analytical results closely match the
simulation results. Also, the analytical delay derived without incorporating con-
tention heavily underestimates the actual delay of Epidemic routing as flooding is
used to route packets in Epidemic routing.

6 Related Work

There has been a line of work pre-dating delay tolerant networks, which also
proposed the use of node mobility, but with the aim to overcome the limited capacity
problem of ad hoc networks (42; 44). A significant research thread has spawned
thereafter exploring the fundamental trade-offs between the capacity and the delay
of the original “2-hop” scheme and other similar algorithms (e.g. (41; 43; 45; 46)).
Nevertheless, most of these results are of asymptotic nature. Although asymptotic
results provide useful insight on the scalability of a given family of protocols, they
are more applicable to large dense wireless networks, which do not represent our
target applications.
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A large number of (mobility-assisted) routing protocols have been proposed for
DTN networks, some assuming known or enforced future connectivity (e.g. (12; 6)),
while others assuming random connectivity and making “opportunistic” forwarding
decisions (e.g (13; 15; 16; 14)). A detailed list of proposals can be found in (11)
or (47).

Following this, a significant amount of theoretical work has also recently emerged
in the context of intermittently connected networks or DTNs (26; 25; 43; 31; 29;
48; 14). These papers try to analyze the delay of epidemic routing (13) or other
mobility-assisted protocols, in networks that are not connected for the majority
of time. However, a lot of these works assume that the expected time between
encounters, the basic building component in most models, is just a parameter of the
mobility model that can be acquired from simulations or curve fitting (26; 43; 25).
Although this makes these results quite generic, at the same time it also reduces
the usefulness of analytical expressions, as a simulation must be run beforehand to
obtain some quantities necessary for the model.

Random Walk mobility is one of the mobility models, where hitting and meeting
times have been analyzed extensively (32; 29) and used to derive various perfor-
mance metrics for mobility-assisted routing protocols (29; 3). Further, various
statistical properties of the Random Waypoint and the Random Direction model
(e.g. node distribution (34), convergence (49; 50), etc.) have been studied. Nev-
ertheless, hitting and meeting times for these models have to our best knowledge
only been treated in (51). There, the authors use a similar methodology to the
one we use, but only derive upper and lower bounds on the meeting time between
two nodes performing Random Waypoint movement, and use it to calculate an
asymptotic result.

To fill this important gap, in this paper we analyzed the statistics of various im-
portant encounter-related quantities for a generic class of mobility models, namely
“epoch-based” models. In (22; 23) we had dealt with expectations for hitting and
meeting times for these models. Here, we extended this work by deriving the com-
plete probability distributions for these quantities, and also by calculating two other
important statistics, namely inter-meeting times and contact durations, which are
necessary to model contention (for limited bandwidth or buffer space).

7 Conclusions

In this paper, we have presented a methodology to analyze the encounter statis-
tics for some commonly used (“epoch-based”) mobility models. We have derived
accurate closed form solutions for all the respective hitting, meeting, inter-meeting,
and contact times for Random Direction mobility, a simple and popular epoch-
based model. Additionally, we have applied our methodology to derive similar
results for a more realistic mobility model that aims at capturing real-world mo-
bility characteristics more accurately than many existing models. Finally, we have
demonstrated how these results can be used in a more general framework to ana-
lyze the delay of different mobility-assisted routing schemes, that is, schemes that
require the node to carry a message for (potentially long) periods of time. Such
schemes have been recently recognized to be very helpful in improving the perfor-
mance of regular wireless networks or to enable data delivery in networks that are
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disconnected for the majority of time. We believe that this work can help in better
understanding the particular advantages and shortcomings of various protocols in
different settings, and can facilitate the design of new, improved schemes.
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A Contact Time for the Random Direction Mobility Model

We first derive a series of lemmas which constitute a general methodology for
finding the expected contact time for any mobility model. Then, we use this
methodology to derive the expected contact time for the Random Direction mobil-
ity model. This methodology will also be used in the derivation of the expected
contact times for the Community-based mobility model.

Lemma A.1. Let the two nodes be moving when they came within range of each
other. We label the two nodes as nodes 1 and 2. Let E[τ1

mm] denote the expected
contact time for these two nodes for the mobility model ’mm’. Then,

E[τ1
mm] = (1 − p1

mm)
4K

πv̂c
mmv

+ p1
mm

(

0.6366K

v̂c
mmv

+ p11
mmE[τadd1

mm ] + p12
mmE[τadd2

mm ]

)

where v̂c
mm is the normalized relative speed between the two nodes given that they

moved within range of each other in the current time slot,g p1
mm is the probability

that one of the two nodes pause while they are within range of each other, p11
mm

(p12
mm) is the probability that the paused node is node 1 (node 2), and E[τadd1

mm ]
(E[τadd2

mm ]) is the expected additional time the two nodes remain within range after
node 1 (node 2) pauses.

Proof. When both the nodes are moving when they come within range of each
other, either they move out of each other’s range before any of them pauses or one
of them pauses before they move out of range.

(a) They move out of each other’s range before pausing: Let one node be static
and let the other node move at a speed ~vi−~vj . This model is equivalent to the
model when both nodes are moving at speeds ~vi and ~vj respectively. We will
work with the former model during this proof as well as all the subsequent
proofs.

So, when these two nodes come within range of each other, the angle φ in
Figure 7 will be uniformly distributed within [0, π). It cannot be greater
than π as φ > π implies that the nodes were already in contact with each
other. They will remain in contact with each other while the first node travels
along the chord AB in Figure 7. The length of the chord AB is equal to

gv̂mm denotes the unconditioned normalized relative speed while v̂c
mm denotes the normalized

relative speed conditioned on the event that the two nodes under consideration moved within
range of each other in the current time slot. This event will rule out certain relative velocities,
and hence v̂mm and v̂c

mm will be different.
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Figure 7 The first node enters the transmission range of the second node at an angle
φ to the tangent at A and moves along the chord AB.

2Ksin(φ). E[distance for which the nodes remain in contact with each other]
= E[length of chord AB] =

∫ π

0
1
π 2Ksin(φ)dφ = 4K

π . The expected speed of
the moving node is equal to v̂c

mm (the normalized relative speed between the
two nodes given that they moved within range of each other in the current
time slot). Thus the expected time they remain in contact with each other is
approximately equal to 4K

v̂c
mmπv .

(b) One of the nodes pauses before they move out of each other’s range: We again
work with the model where one of the nodes is static and the other node is
moving at a speed ~vi−~vj . The moving node is equally likely to pause anywhere
on the chord AB in Figure 7 since the distribution of movement duration is
memoryless. Let the node stop at point C which is 0 ≤ x ≤ 2Ksin(φ) distance

away from A. Thus fX|Φ(x | φ) =

{ 1
2Ksin(φ) 0 ≤ x ≤ 2Ksin(φ)

0 otherwise
. Multi-

plying by fΦ(φ) and integrating over φ gives us fX(x). The expected distance
that the node travels before pausing can then be evaluated to 0.6366K. Thus,
the expected time the node travels before pausing is equal to 0.6366K

v̂c
mmv . After

the node pauses, the additional time the two nodes spent within range of each
other is equal to E[τadd1

mm ].

The values of p1
mm, p11

mm and p12
mm depend on the mobility model. Lemma A.4 finds

their value for the Random Direction mobility model.

In the previous lemma, we found the expected contact time given both nodes
were moving when they came within range of each other. The next lemma evaluates
the expected contact time when only one node was moving when they came within
range of each other.

When only one node is moving, either they will move out of each other’s range
before the paused node restarts again and the moving node pauses, or the moving
node pauses or the paused node restarts before they move out of each other’s range.
The derivation has to account for all the three scenarios.

Lemma A.2. Let only one of the nodes be moving when the two nodes came within
range of each other. Without loss of generality, we assume that node 1 is the moving



28 T. Spyropoulos and A. Jindal and K. Psounis

node while node 2 is the paused node. Let E[τ2
mm] denote the expected contact time

for these two nodes for the mobility model ’mm’. Then,

E[τ2
mm] = (1 − p2

mm)
4K

πv
+ p2

mm

(

0.6366K

v
+ p21

mmE[τadd3
mm ] + p22

mmE[τadd4
mm ]

)

where p2
mm is the probability that the paused node restarts again or the moving

node pauses before moving out of each other’s range, p21
mm is the probability that the

paused node restarts before the moving node pauses, and p22
mm is the probability that

the moving node pauses before the paused node restarts. E[τadd3
mm ] and E[τadd4

mm ] are
the expected additional times the two nodes remain within range after both of them
start moving and after both of them are paused respectively.

Proof. (a) Both nodes move out of the range of each other without any of them
changing state: The expected time they remain in contact is 4K

πv . The proof
goes along the same lines as in proof of Lemma A.1 (a). Except here, the
expected relative speed is v.

(b) The moving node pauses or the paused node starts moving before they move
out of each other’s range: The expected time before one of the nodes change
their state is 0.6366K

v . The proof goes along the same lines as in proof of
Lemma A.1 (b). Except here, the expected relative speed is v. The probability
that the moving node pauses before the paused node restarts is p21

mm and
E[τadd4

mm ] is the additional time the two nodes remain within range. The
probability that the moving node pauses before the paused node restarts is
p22

mm and E[τadd3
mm ] is the additional time the two nodes remain within range.

The values of p2
mm, p21

mm and p22
mm depend on the mobility model. Lemma A.4

finds their value for the Random Direction mobility model.

Next, we find the values of E[τadd1
mm ], E[τadd2

mm ], E[τadd3
mm ] and E[τadd4

mm ].

Lemma A.3. E[τadd1
mm ], E[τadd2

mm ], E[τadd3
mm ] and E[τadd4

mm ] are related to each other
through the following set of linear equations:

E[τadd1
mm ] = (1 − padd1

mm )
0.6366K

v
+ padd1

mm

„

4K

3πv
+ padd11

mm E[τadd3
mm ] + padd12

mm E[τadd4
mm ]

«

,(12)

where padd1
mm is the probability that one of the nodes change their state (either the

paused node starts moving or the moving node pauses) before they go out of the
range of each other, padd11

mm is the probability that the paused node (node 1) starts
moving before the moving node (node 2) pauses while padd12

mm is equal to 1 − padd11
mm .

E[τadd2
mm ] = (1 − padd2

mm )
0.6366K

v
+ padd2

mm

„

4K

3πv
+ padd21

mm E[τadd3
mm ] + padd22

mm E[τadd4
mm ]

«

,(13)

where padd2
mm is the probability that one of the nodes change their state (either the

paused node starts moving or the moving node pauses) before they go out of the
range of each other, padd21

mm is the probability that the paused node (node 2) starts
moving before the moving node (node 1) pauses while padd22

mm is equal to 1 − padd21
mm .

E[τadd3
mm ] = (1 − padd3

mm )
0.6366K

v̂c
mmv

+ padd3
mm

„

4K

3πv̂c
mmv

+ padd31
mm E[τadd1

mm ] + padd32
mm E[τadd2

mm ]

«

,(14)

where padd3
mm is the probability one of the nodes pause before moving out of each

other’s range, padd31
mm is the probability the node 1 pauses before node 2 and padd32

mm
is the probability that node 2 pauses before node 1.

E[τadd4
mm ] = T

stop
mm + padd4

mm

0.6366K

v̂c
mmv

+
“

1 − padd4
mm

” “

padd41
mm E[τadd2

mm ] + padd42
mm E[τadd1

mm ]
”

,(15)
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where T
stop

mm is the expected time both the two nodes remain paused, padd4
mm is the

probability that one of the two nodes change states to move out of each other’s
range (padd4

mm is needed for the community-based mobility model as nodes can move
from roaming to local state or vice versa), padd41

mm is the probability that node 2 starts
moving node 1 and padd42

mm is the probability that node 1 starts moving before node
2.

Proof. Each of the equations is derived in a manner similar to the derivation of
Lemma A.1.

The set of linear equations in Lemma A.3 can be solved to get E[τadd1
mm ], E[τadd2

mm ],
E[τadd3

mm ] and E[τadd4
mm ]. Lemmas A.1, A.2 and A.3 summarize the basic framework of

how to find the expected contact time for two nodes moving according to a mobility
model ’mm’. Now we discuss how to use these lemmas to find the expected contact
time for the Random Direction mobility model, Eτrd. Recall that Theorem 3.4
expresses Eτrd as a function of E[τ1

rd] and E[τ2
rd]. So, what we need to determine

are expressions for E[τ1
rd] and E[τ2

rd]. Lemmas A.1, A.2 and A.3 are used to derive
these two. Specifically, E[τ1

rd] corresponds to E[τ1
mm] which is derived in Lemma

A.1 and E[τ2
rd] corresponds to E[τ2

mm] which is derived in Lemma A.2. To complete
the derivation, in the next lemma, we derive the value of all the variables in Lemmas
A.1, A.2 and A.3 which depend on the mobility model for the Random Direction
mobility model.

Lemma A.4. (a) The normalized relative speed between the two nodes given that
they moved within range of each other in the current time slot, v̂c

rd, is given by,

v̂c
rd ≃

∫ K+2v

K

√

8(1 + cos(a))tan
(a

2

) al

2π(K + 1)vP (EA)
dl,

where a = cos−1
(

l2+2v2−2lv−K2

2v(l−v)

)

and P (EA) =
∫K+2v

K
al

2π(K+1)dl is the probability

of the event that the two nodes were out of each other’s range at time t − 1 and
were within each other’s range at time t.
(b) The value of the probabilities in Lemma A.1 which depend on the mobility model

are as follows: p1
rd ≃

∫ π

0
1
π

(

1 − e

„

−4Ksin(φ)

v̂c
rd

vT

«
)

dφ, p11
rd = p12

rd = 1
2 .

(c) The value of the probabilities in Lemma A.2 which depend on the mobility

model are as follows: p2
rd ≃

∫ π

0
1
π

(

1 − e
−2Ksin(φ)

v

„

1
T

+ 1
T stop

«
)

dφ, p21
rd = 1 − p22

rd =

1/T stop

1/T+1/Tstop
.

(d) The value of the probabilities in Lemma A.3 which depend on the mobility model

are as follows: padd1
rd = prd

add2 ≃
∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(

1 − e

„

−x
v

„

1
T

+ 1
T stop

««
)

dxdφ,

padd3
rd ≃

∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(

1 − e(
−2x

1.27T v
)
)

dxdφ, padd4
rd = 0, padd11

rd = padd21
rd =

1/T stop

1/T+1/T stop
, and padd31

rd = padd32
rd = padd41

rd = padd42
rd = 1

2 .

(e) Finally, the expected time both the nodes remain paused, T
stop

rd is equal to
T stop

2 .
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Proof. (a) v̂c
rd is derived using elementary probability in a manner similar to the

derivation of v̂rd. Please refer to (52) for the complete derivation.
(b) p1

rd is the probability that one of the two moving nodes pause before they
move out of each other’s range. As the movement duration of both the nodes is

exponential with mean T , p1
rd given φ and ‖~vi − ~vj‖ is equal to 1 − e

− 2Ksin(φ)

T
2

‖~vi−~vj‖ .
To simplify exposition, we replace ‖~vi − ~vj‖ by its expected value. Hence, p1 ≃
∫ π

0
1
π

(

1 − e

„

− 4Ksin(φ)

vc
rd

vT

«
)

dφ which can be evaluated numerically. Since both the

nodes have the same movement duration distribution, the probability that node 1
pauses first is equal to the probability that node 2 pauses first, hence p11

rd = p12
rd = 1

2 .
(c) p2

rd can be derived in a manner similar to the derivation of p1
rd. The movement

duration is exponentially distributed with mean T while the pause duration is
exponentially distributed with mean T stop. Hence, the probability that the paused

node restarts before the moving node pauses, p21
rd, is equal to

1/T stop

1/T+1/Tstop
.

(d) padd1
rd is the probability that either the moving node pauses or the paused node

restarts before the two nodes move out of each other’s range. The distance to be
travelled to move out of each other’s range is equal to 2Ksin(φ), where φ is a
random variable uniformly distributed between 0 and π. Since both the movement
and pause distributions are uniform, the distance after which the nodes change
state (denote it by x) is uniformly distributed between 0 and 2Ksin(φ). Hence,

padd1
rd ≃

∫ π

0

∫ 2Ksin(φ)

0
1

2πKsin(φ)

(

1 − e

„

−x
v

„

1
T

+ 1
T stop

««
)

dxdφ. padd2
rd and padd3

rd can

be derived in a manner similar to the derivation of padd1
rd . Since there are no local

and roaming states in the Random Direction mobility model, padd4
rd = 0. Finally,

the movement and pause durations of both the nodes is exponential with means T

and T stop respectively, hence padd11
rd = padd21

rd =
1/T stop

1/T+1/T stop
, and padd31

rd = padd32
rd =

padd41
rd = padd42

rd = 1
2 .

(e) Since the pause duration of both the nodes is exponentially distributed with

mean T stop, the expected time both the nodes remain paused is equal to
T stop

2 .

B Proof of Lemma 4.5

If the nodes meet within their community, then they have a higher chance of
meeting again quickly because the communities are much smaller than the entire
network. The probability of the event that when the nodes met, they were in their
local states and only one of them was moving (denoted by p+

1 ) is evaluated using

Bayes’ Theorem to be equal to
4Kvpmlppl

c2Npm,in
where pm,in = 1/EM

(in)
comm. Similarly,

the probability of the event that when the nodes met, both of them were in their

local states and moving (denoted by p+
2 ) is derived to be equal to

2Kv̂rdvp2
ml

c2Npm,in
. Now

we find E[M+
1 ] and E[M+

2 ] which are the expected inter-meeting times associated
with the two cases. E[M+

1 ]: If both the nodes are in their local state but only one

of the nodes is moving, then only after T 1 =

(

v
Lc

+ 1

T
l

stop

)−1

time units, one of
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the nodes will change its state. With probability 1 −
(

1 − 2Kv
c2N

)T 1
, the two nodes

meet again within this time epoch, else one of the following three subcases occur:

(i) with probability vT 1

Lc
the moving node pauses first and let E[M+

3 ] denote the

additional time it takes the two nodes to meet again, (ii) with probability (1−pl)T 1

T
l

stop

the paused node starts moving first and remains in its local state, and it takes
E[M+

2 ] additional time units for them to meet again, and (iii) with probability
plT 1

T
l

stop

, the paused node starts moving first and moves into its roaming state and it

take will take EM
(in)
comm time units to meet again (as now one of the nodes is now

moving over the entire network and it will mix fast). Thus,

E[M+
1 ] = T 1 +

„

1 −
2Kv

c2N

«T1
 

vT 1

Lc

E[M+
3 ] +

(1 − pl)T 1

T
l

stop

E[M+
2 ] +

plT 1

T
l

stop

EM
(in)
comm

!

.(16)

E[M+
2 ]: Now, if both the nodes were moving in their local states, then they

will keep moving for Lc

2v time units before one of the nodes changes its state. With

probability 1 −
(

1 − 2Kv̂rdv
c2N

)

Lc
2v , the two nodes meet within this time epoch, else

one of the nodes pauses within its local state and it takes E[M+
1 ] additional time

units for them to meet again. Thus,

(17) E[M+
2 ] =

Lc

2v
+

„

1 −
2Kv̂rdv

c2N

«
Lc
2v

E[M+
1 ].

E[M+
3 ]: If both the nodes are paused in their local states, then they will remain

paused for
T

l

stop

2 time units. Once one of the nodes changes states, one of the
following two subcases can occur: (i) With probability pl, the node which starts

moving will move into the roaming state and it will take EM
(in)
comm time units for

them to meet again, else (ii) With probability 1− pl, the node which starts moving
will remain in its local state and it will take E[M+

1 ] additional time units for them
to meet again. Thus,

(18) E[M+
3 ] =

T
l

stop

2
+ plEM

(in)
comm + (1 − pl)E[M+

1 ].

Equations (16), (17) and (18) form a linear set of equations which can be easily
solved to find E[M+

1 ], E[M+
2 ] and E[M+

3 ].
Finally, when the nodes met, if at least one of the nodes was in its roaming state,

then the probability that the two nodes meet within one mixing time is negligible
and it will take one meeting time for them to meet again. Putting everything
togther yields the Lemma.

C Contact Time for the Community-based Mobility Model

In this appendix, we discuss how to derive the expressions for Eτ
(out)
comm (expected

contact time for nodes with non-overlapping communities) and Eτ
(in)
comm ((expected

contact time for nodes with overlapping communities). For ease of presentation,
we define the following sets of variables. (i) E[τ1

comm,rr] and E[τ2
comm,rr]: Expected
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contact time for two nodes in the roaming state when both nodes are moving
and when only one node is moving respectively. (ii) E[τ1

comm,rl] and E[τ2
comm,rl]:

Expected contact time for two nodes with one in the roaming state and other
in the local state and when both nodes are moving and when only one node is
moving respectively. (iii) E[τ1

comm,ll] and E[τ2
comm,ll]: Expected contact time for

two nodes in the local state when both nodes are moving and when only one node
is moving respectively. The framework introduced in Appendix A will be used to
derive expressions for these three sets of variables. The corresponding probabilities
will be derived in a manner similar to the derivation of Lemma A.4 because both
nodes are moving according to the Random Direction mobility model. The only
difference is that now nodes can change states at the end of a pause time (from
roaming to local and vice versa). The interested reader is referred to (52) for exact
expressions.

We now derive Eτ
(out)
comm and Eτ

(in)
comm in the following two lemmas. The proof of

both the lemmas follow directly by listing all the possible cases two nodes can be
in when they come within each other’s range, find the probability of each case, find
the expected contact time associated with each case and then combining everything
together using the law of total probability.

Lemma C.1. Eτ
(out)
comm = p1

outE[τ1
comm,rr] + p2

outE[τ2
comm,rr] + p3

outE[τ1
comm,rl] +

p4
outE[τ2

comm,rl] where p1
out =

2Kp2
mr v̂rdv

Npm,out
, p2

out =
4Kpmrpprv

Npm,out
, p3

out = 4Kpmrpmlv̂rdv
Npm,out

,

p4
out =

4K(pmrppl+pprpml)v
Npm,out

, and pm,out = 1/EM
(out)
comm.

Lemma C.2. Eτ
(in)
comm = p1

inE[τ1
comm,rr]+p2

inE[τ2
comm,rr]+p3

inE[τ1
comm,rl]+p4

inE[τ2
comm,rl]+

p5
inE[τ1

comm,ll] + p6
inE[τ2

comm,ll] where p1
in =

2Kp2
mr v̂rdv

Npm,in
, p2

in =
4Kpmrpprv

Npm,in
, p3

in =

4Kpmrpmlv̂rdv
Npm,in

, p4
in =

4K(pmrppl+pprpml)v
Npm,in

, p5
in =

2Kp2
mlv̂rdv

c2Npm,in
, p6

in =
4Kpmlpplv

Npm,in
, and

pm,in = 1/EM
(in)
comm.


