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Abstract

This dissertation is about structure identification and optimal control of large-scale
networks of dynamical systems. It contains four parts. In Part I, we focus on identifi-
cation of controller architectures that strike a balance between the performance of the
system and the sparsity of the controller. This is achieved by solving a parameterized
family of sparsity-promoting optimal control problems whose solution traces the trade-
off curve that starts at the centralized controller and ends at the sparse controller of
interest.

Part II is devoted to the design of sparse communication graphs for consensus net-
works. This class of problems is commonly seen in distributed estimation and control.
We show that the sparsity-promoting control problem can be formulated as a semidefi-
nite program whose globally optimal solution can be computed efficiently.

In Part III, we consider optimal localized control of vehicular formations with near-
est neighbor interactions. We identify a class of convex problems by restricting the
controller to symmetric feedback gains. For the design of non-symmetric gains, we solve
a parameterized family of problems whose solution gradually changes from the spatially
uniform gain to the optimal non-symmetric gain. We investigate the performance of
localized controllers in large formations and show that the best performance is achieved
with non-symmetric and spatially-varying controllers.

Finally, in Part IV, we consider the leader selection problem in consensus networks, in
which leaders have access to their own state in addition to relative information exchange
with neighbors. We are interested in selecting an a priori specified number of nodes as
leaders such that the steady-state variance of the deviation from consensus is minimized.
For this combinatorial optimization problem, we develop efficient algorithms to compute
lower and upper bounds on the global optimal value.
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Chapter 1

Introduction

Large-scale networks of dynamical systems are becoming increasingly important in sci-
ence and technology [1–4]. These systems arise in a variety of applications ranging from
economics, social networks, power systems, and robotics. Network science has emerged
as an interdisciplinary field that draws from diverse disciplines including graph theory,
matrix theory, dynamical systems, optimization, and statistical mechanics. Without a
doubt, technological advancements form the main impetus for the rapid development of
network science, with the advent of Internet, World Wide Web, and networking services
such as Facebook and Twitter. On the engineering side, networks of dynamical systems
have found wide applications in sensor networks, formations of automated vehicles, and
space-borne optical interferometry, just to name a few.

In modeling, analysis, and control of networks of dynamical systems, it is of funda-
mental importance to understand the interplay between network structure and underly-
ing dynamical properties. Network topology dictates information patterns of intercon-
nected subsystems. These constraints on the flow of information between subsystems
impose performance limitations in the control of networked systems. An important is-
sue in the control design for networked systems is the selection of information exchange
network in the distributed controller. There is a trade-off between the achievable perfor-
mance and the communication and computation cost. The best possible performance is
attained if all controllers can communicate with each other, and as a whole decide on the
control actions to be applied to each subsystem. However, this comes at the expense of
excessive communication and computation. The other extreme is when every controller
acts in isolation, and applies control actions to its corresponding subsystem based on
the subsystem’s output measurements. This fully decentralized scenario places minimal
communication and computation requirement on the controller, but it may come at the
expense of poor performance. A desired scenario, and a reasonable middle ground, is
the localized information exchange in the distributed controller; see Figure 1.1 for an
illustration of different controller architectures.

1
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Figure 1.1: Distributed controllers with centralized, localized, and decentralized archi-
tectures.

1.1 Main topics of the dissertation

1.1.1 Structured state feedback synthesis and sparsity-promoting op-
timal control

Design of distributed controllers with structural constraints is known to be a difficult
problem. Research efforts have focused on identifying classes of distributed control
problems that are tractable [5–18]. For spatially invariant cone- and funnel-causal sys-
tems, the design of quadratically optimal controllers can be cast into a convex problem
if the information in the controller propagates at least as fast as in the plant [7, 11]. A
similar but more general algebraic characterization of the constraint set was introduced
and convexity was established under the condition of quadratic invariance in [12]. Since
these convex formulations are expressed in terms of the impulse response parameters,
they do not lend themselves easily to state-space characterization. In [16], a state-space
realization of optimal distributed controllers that satisfy cone-causality property was
provided and methods for the design of sub-optimal controllers were developed. In [10]
it was shown that the design of distributed controllers for systems with lower triangu-
lar structure is more amenable to convex analysis. Furthermore, explicit state-space
formulae have been obtained for two-player linear-quadratic regulator problem [15,18].

Design of structured state feedback gains

In the context of state feedback synthesis, localized architectures can be expressed in
the form of sparsity constraints. For example, consider the mass-spring system with N
masses shown in Fig. 1.2. Suppose that the control input ui(t) ∈ R at the ith mass is
determined by a linear combination of the states of the ith mass and the two neighboring
masses

ui(t) = −Fi−1 xi−1(t) − Fi xi(t) − Fi+1 xi+1(t),

where the state xi(t) ∈ R2 consists of the position and velocity of the ith mass and
Fi ∈ R1×2 is the state feedback gain. The vector of control inputs can be expressed as

u(t) = −F x(t),
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Figure 1.2: Mass-spring system on a line.

where the structured state feedback gain F belongs to the set of block tridiagonal ma-
trices of size RN×2N with block size R1×2.

For systems on general graphs, sparsity patterns of the feedback gain matrix F can
be more complex. Let the subspace S encapsulate these structural constraints on F
and let J be a quadratic performance index with the feedback gain F . The structured
optimal control problem can then be formulated as

minimize
F

J(F )

subject to F ∈ S.
(1.1)

In what follows, we focus on the H2 norm of the closed-loop system (see Chapter 2).
Both the structural constraint F ∈ S and the H2 performance J are easy to deal with
when they are considered separately. In particular, the structural constraint F ∈ S
forms a linear subspace which is a convex set of the state feedback gain F , and the
closed-loop H2 norm J permits a convex formulation with an appropriate change of
variables (e.g., see [19]). However, challenges arise when these convex characterizations
are expressed in terms of different sets of optimization variables.

To illustrate this, consider the structured stabilizing feedback problem for the matrix
pair (A,B), i.e., we seek an F ∈ S such that A − BF is Hurwitz (under the assump-
tion that such a stabilizing gain exists). The closed-loop stability is equivalent to the
solvability of the inequality

(A − BF )X + X(A − BF )T ≺ 0 (1.2)

with a positive definite matrix X = XT � 0. A change of variables

Y = FX

converts (1.2) into a linear matrix inequality (LMI)

[
A B

] [ X
Y

]
+
[
X Y T

] [ AT

BT

]
≺ 0,

which is convex in X and Y . However, imposing structural constraint F ∈ S leads to

F = Y X−1 ∈ S,

which is a nonconvex constraint on X and Y .
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One simple but restrictive condition that retrieves convexity is to require that X be
a diagonal matrix [20]. In that case, the structural constraint F ∈ S is equivalent to
Y ∈ S. Alternative characterizations of closed-loop stability have been obtained and
several LMI-based algorithms have been developed; e.g., see [21–26].

Alternatively, we employ an augmented Lagrangian approach for the structured
H2 problem (1.1) (see Chapter 4). This approach alleviates the difficulty of finding
a structured stabilizing gain by solving a sequence of unstructured problems whose
solution gradually converges to the structured optimal H2 controller. In addition, we
utilize the sensitivity interpretation of the Lagrange multiplier to identify relaxations of
structural constraints that are effective in improving the H2 performance.

Sparsity-promoting optimal control

In situations in which it is difficult to a priori assign the structural constraint set S, it
is useful to distinguish between different sparsity structures. Since the achievable per-
formance depends on the constraint set S, it is important to identify sparsity structures
that strike a balance between the performance of the system and the sparsity of the
controller. One approach is to minimize the H2 norm J subject to an upper bound on
the number of nonzero elements of F . This problem can be expressed as

minimize
F

J(F )

subject to card (F ) ≤ k,
(1.3)

where k is a pre-specified positive integer and card(·) is the cardinality function that
counts the number of nonzero elements of a matrix. One approach is to check all possible
sparsity patterns with cardinality less than k and to solve problem (1.1) for each sparsity
pattern with a fixed structural constraint set S. However, the computational cost of
such an exhaustive search grows exponentially with the problem size (e.g., for F ∈ R5×10

and k = 5 the number of possible sparsity structures is approximately 2× 106).
Instead, we minimize the weighted sum of the cost function J and the cardinality

function of F
minimize

F
J(F ) + γ card (F ) (1.4)

where γ ≥ 0 is the problem parameter. As γ varies over [0,∞), the solution to (1.4)
traces a trade-off curve between the performance J and the cardinality of F ; see Fig. 1.3
for an illustration. For γ = 0, the unique global solution to the H2 problem can be
obtained from the positive definite solution to the algebraic Riccati equation [27]. This
optimal solution usually leads to a centralized controller with a dense feedback gain
matrix F . By gradually increasing γ, the optimal feedback gain follows a solution path
from the centralized gain to the sparse gain of interest, until the desired balance between
the performance of the system and the sparsity of the controller is achieved.

A challenging aspect of the optimal control problem (1.4) arises from the fact that
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Figure 1.3: As γ increases, the cost function J increases and the feedback gain matrix
F becomes sparser.

both the H2 norm J and the cardinality function are nonconvex functions of F . We
employ convex relaxations of the cardinality function such as the `1 norm

g(F ) =
∑
i, j

|Fij |

and the weighted `1 norm

g(F ) =
∑
i, j

Wij |Fij |, Wij ≥ 0,

which can be more aggressive than the `1 norm in promoting sparsity. Furthermore, we
also identify a class of distributed systems in consensus networks whose H2 performance
permits convex formulations (see Chapter 6).

To solve (1.4) and its convex relaxations for each fixed γ, we use the alternating
direction method of multipliers. This method alternates between promoting the sparsity
of the controller and optimizing the performance of the system, which allows us to exploit
the structure of the corresponding objective functions. We demonstrate the effectiveness
of this approach using several examples in Chapter 2. In addition, the Matlab source
codes can be found at

www.ece.umn.edu/∼mihailo/software/lqrsp/

http://www.ece.umn.edu/~mihailo/software/lqrsp/index.html
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1.1.2 Sparsity-promoting optimal control for consensus networks

Reaching consensus in a decentralized fashion is an important problem in network sci-
ence [4]. This problem is often encountered in social networks where a group of individu-
als is trying to agree on a certain issue [28,29]. The related load balancing problem (i.e.,
to distribute computational load evenly over a network of processors) has been studied
extensively in computer science [30–32]. Recently, consensus problems have received
considerable attention in the context of distributed control [33–36].

Consider a network with N nodes in which each node updates its scalar state using
a weighted sum of the differences between its own state and the states of other nodes

ẋi(t) = −
∑
j 6= i

Fij (xi(t) − xj(t)), i = 1, . . . , N.

For undirected networks (see Chapter 6), we have

Fij = Fji, i 6= j.

Under the assumption that the network is connected, all node values will converge to
the average of the initial conditions

lim
t→∞

xi(t) =
1

N

N∑
i= 1

xi(0), i = 1, . . . , N.

In a number of applications, it is desired to maintain consensus in the presence of
uncertainty, e.g., introduced by modeling errors, measurement noise, or communica-
tion failures [4, 32, 37]. This motivates the study of robustness of stochastically forced
consensus networks

ẋi(t) = −
∑
j 6= i

Fij (xi(t) − xj(t)) + di(t), i = 1, . . . , N,

where di(t) ∈ R is the disturbance at node i. Under the influence of disturbances, the
network will not reach a consensus value; each node will fluctuate around the average
of node values.

We use the steady-state variance of the deviation from average to quantify the
performance of stochastically forced consensus networks. We show that the steady-
state variance can be expressed as

J(F ) =
1

2
trace

(
Q(F + 11T /N)−1

)
,

where Q = QT � 0 is an appropriately-chosen weight matrix and 1 ∈ RN is the vector of
all ones. This result facilitates semidefinite programming (SDP) formulations for both
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the structured optimal control problem (1.1) and the sparsity-promoting problem with
the (weighted) `1 norm as the penalty function. In particular, we show that

minimize
F

J(F ) + γ
∑
i, j

Wij |Fij |

can be cast as the following SDP (see Chapter 6 for details)

minimize
X,Y, F

1

2
trace (X) + γ

∑
i, j

Yij

subject to

[
X Q1/2

Q1/2 F + 11T /N

]
� 0

F 1 = 0
−Y ≤ W ◦ F ≤ Y.

Thus, it can be solved efficiently using standard SDP solvers.

1.1.3 Optimal localized control of vehicular formations

A system of N identical vehicles moving along a straight line is shown in Fig. 1.4a.
All vehicles are equipped with ranging devices that allow them to measure relative
distances with respect to their immediate neighbors. The objective is to design an
optimal controller that uses only local information (i.e., relative distances between the
neighboring vehicles) to keep each vehicle at its global position on a grid of regularly
spaced points moving with a constant velocity.

Recent work in this area has focused on fundamental performance limitations of
both centralized and decentralized controllers for large-scale formations [38–40]. For
centralized linear quadratic optimal control formulations based on penalizing relative
position errors, it was shown in [39] that stabilizability and detectability deteriorate
as formation size increases. In [40], it was shown that merge and split maneuvers
can exhibit poor convergence rates even upon inclusion of absolute position errors in
cost functionals. In [38], it was shown that sensitivity of spacing errors to disturbances
increases with the number of vehicles for formations with localized symmetric controllers
that utilize relative position errors between neighboring vehicles.

The design of localized controllers can be formulated as the structured H2 prob-
lem (1.1). For symmetric feedback gains shown in Fig. 1.4a, we show that the optimal
symmetric localized controller K can be obtained by solving the following SDP

minimize
X,K

1

2
trace (X + K)

subject to K � 0, K ∈ SK ,
[

K Q1/2

Q1/2 X

]
� 0,
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(a)

(b)

Figure 1.4: Formation of vehicles with nearest neighbors interactions: (a) symmetric
gains and (b) non-symmetric gains.

where SK imposes linear equality constraints on K; see Chapter 9 for details.
For non-symmetric feedback gains shown in Fig. 1.4b, we solve a parameterized

family of problems that ranges between an easily solvable problem and the problem of
interest. In particular, we consider the parameterized weight matrix in the structured
H2 problem

Q(ε) = Q0 + ε (Qd − Q0)

where Q0 is an appropriately-selected initial weight, Qd is the desired weight, and
ε ∈ [0, 1] is the homotopy parameter. Note that Q = Q0 for ε = 0, and Q = Qd for
ε = 1.

The homotopy-based Newton’s method consists of three steps: (i) For ε = 0, we
find the initial weight Q0 with respect to which a spatially uniform gain F0 is inversely
optimal . This is equivalent to solving the structured optimal problem analytically with
the performance weight Q0. (ii) For 0 < ε � 1, we employ perturbation analysis to
determine the first few terms in the expansion

F (ε) = F0 +

∞∑
n= 1

εnFn.

(iii) We gradually increase ε and use the structured optimal gain obtained for the previ-
ous value of ε to initialize the next round of Newton iterations. This process is repeated
until the desired value ε = 1 is reached; see Fig. 1.5.

We study the performance of the optimal symmetric and non-symmetric gains by ex-
amining the dependence on the formation size of global and local performance measures
and the control effort. The global performance measure quantifies the resemblance of
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Figure 1.5: Normalized optimal forward gain profile changes from an almost sinusoidal
shape at ε = 10−4 to an almost piecewise linear shape at ε = 1 for a formation with
N = 50 vehicles.

the formation to a rigid lattice, while the local performance measure quantifies relative
position errors between neighboring vehicles. Our results demonstrate that the best per-
formance is achieved with the optimal localized controller that is both non-symmetric
and spatially-varying.

1.1.4 Algorithms for leader selection in consensus networks

We consider consensus networks with two groups of nodes. Ordinary nodes, the so-
called followers, form their control actions using relative information exchange with
their neighbors; while special nodes, the so-called leaders, in addition to relative infor-
mation from their neighbors also have access to their own states. This setting arises,
for example, in the control of vehicular formations where all vehicles are equipped with
ranging devices that provide relative distances from their neighbors, and the leaders
additionally have GPS devices that provide their global position information.

Suppose that we want to equip a number of vehicles with GPS devices to keep all
vehicles in the formation in their desired positions under the influence of noise. More
precisely, we are interested in assigning an a priori specified number of nodes as leaders
to minimize the steady-state variance of the deviation from consensus of the network.

For undirected networks in which all nodes including leaders are subject to stochastic
disturbances, we show that the noise-corrupted leader selection problem has a convex
objective function. In spite of this, the combinatorial nature of Boolean constraints
(a node is either a leader or it is not) makes determination of the global minimum
challenging for large networks. Instead, we focus on developing efficient algorithms
to compute lower and upper bounds on the globally optimal value. We demonstrate
that the developed algorithms significantly outperform simple degree-based-heuristics
approach and they sometimes achieve tight bounds on global optimally value for small
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networks.
We also consider the noise-free leader selection problem in which leaders are as-

sumed to be immune to noise and they follow their desired trajectories at all times.
This idealized setting has recently be studied by several authors; e.g., see [41, 42]. For
connected networks with at least one leader, it was shown in [41] that adding leaders
always improves performance. In view of this, the one-at-a-time greedy algorithm was
proposed in [41] for the noise-free leader selection problem. It was shown in [42] that the
variance of deviation from consensus is a supermodular function of the set of noise-free
leaders. This implies that the performance improvement by adding additional lead-
ers is diminishing as the number of leaders increases. Furthermore, the supermodular
optimization framework is then employed to show that the greedy algorithm provides
selection of leaders that is within a provable bound from globally optimal solution [42].

In contrast to the above references, we use convex optimization to select noise-free
leaders. We first provide an explicit expression for the objective function to identify
the source of nonconvexity and to suggest an LMI-based convex relaxation. We then
relax the hard Boolean constraint on the number of leaders with a soft constraint by
augmenting the objective function with the `1 norm of the optimization variables. The `1
norm provides a means for obtaining a sparse solution whose nonzero elements identify
the leaders. The developed algorithm produces a trade-off curve between the number
of noise-free leaders and the variance of the deviation from consensus by solving a
parameterized family of convex optimization problems.

1.2 Organization of the dissertation

This dissertation consists of four parts and an appendix. Each part centers on one
of the four topics described above. At the end of each part, we summarize the main
contributions and discuss future research directions.

Part I is devoted to sparsity-promoting optimal control problem, and it contains
four chapters. In Chapter 2, we consider the design of sparse and block sparse feedback
gains that minimize variance amplification of distributed systems. In Chapter 3, we
demonstrate that the alternating direction method of multipliers (ADMM) is well-suited
to sparsity-promoting optimal control. In Chapter 4, we employ augmented Lagrangian
method to design structured feedback gains with a priori assigned sparsity patterns. In
Chapter 5, we summarize the main contributions of Part I, and discuss extensions and
future research directions.

Part II examines sparsity-promoting optimal control for consensus networks. Build-
ing upon the framework developed in Part I, we employ tools from convex optimization
and algebraic graph theory to further exploit the structure of optimal control problems.
In Chapter 6, we show that both sparsity-promoting and structured optimal control
problems can be cast as semidefinite programs. Therefore, the globally optimal con-
trollers can be computed efficiently; for simple networks, even analytical expressions can
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be obtained. In Chapter 7, we use a graph-theoretic representation of the feedback gain
matrix to develop efficient customized algorithms and to establish asymptotic scaling
trends of performance measures in large networks. In Chapter 8, we conclude Part II
and outline possible extensions.

Part III considers optimal control of vehicular formations and performance limita-
tions in large formations. In Chapter 9, we design optimal localized feedback gains for
one-dimensional formations with nearest neighbor interactions. In Chapter 10, we ex-
amine how performance of the optimally-controlled vehicular formation scales with the
number of vehicles. In Chapter 11, we summarize Part III and discuss open research
problems.

Part IV addresses the problem of selecting an a priori assigned number of leaders to
most effectively improve the robustness of consensus networks, where leaders have access
to global reference information. In Chapter 12, we consider the noise-corrupted leader
selection problem. For this combinatorial optimization problem, we obtain efficiently
computable lower and upper bounds on the globally optimal value. In Chapter 13, we
consider the noise-free leader selection problem, provide its connections to the noise-
corrupted leader selection problem, and develop a soft-constraint method based on the
sparsity-promoting optimal control framework developed in Part I. In Chapter 14, we
conclude Part IV with remarks on applications in real-world networks and on future
research directions.

Appendix A deals with least-squares approximation of structured covariances. We
formulate the structured covariance least-squares problem and develop efficient uncon-
strained maximization methods for the corresponding dual problem.

1.3 Contributions of the dissertation

The contributions of the dissertation are summarized as follows.

Part I

Design of optimal sparse feedback gains. We design sparse and block sparse
feedback gains that minimize the variance amplification of distributed systems. Our
approach consists of two steps. First, we identify sparsity patterns of feedback gains by
incorporating sparsity-promoting penalty functions into the optimal control problem,
where the added terms penalize the number of communication links in the distributed
controller. Second, we optimize state feedback gains subject to structural constraints de-
termined by the identified sparsity patterns. This polishing step improves the quadratic
performance of the distributed controller. In the first step, we identify sparsity structure
of feedback gains using the alternating direction method of multipliers. This method
alternates between promoting sparsity of the controller and optimizing performance
of the system, which allows us to exploit the structure of the corresponding objective
functions. In particular, we take advantage of the separability of the sparsity-promoting
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penalty functions to decompose the minimization problem into sub-problems that can
be solved analytically.

Design of structured optimal state feedback gains. We consider the design
of optimal state feedback gains subject to structural constraints on the distributed con-
trollers. These constraints are in the form of sparsity requirements for the feedback
matrix, implying that each controller has access to information from only a limited
number of subsystems. The minimizer of this constrained optimal control problem is
sought using the augmented Lagrangian method. Notably, this approach does not re-
quire a stabilizing structured gain to initialize the optimization algorithm. Motivated by
the structure of the necessary conditions for optimality of the augmented Lagrangian,
we develop an alternating descent method to determine the structured optimal gain.
We also utilize the sensitivity interpretation of the Lagrange multiplier to identify re-
laxations of structural constraints that are effective in improving the H2 performance.

Part II

Identification of sparse communication graphs in consensus networks. We
consider the design of distributed controller architectures for undirected networks of
single-integrators. In the presence of stochastic disturbances, we identify communica-
tion topologies that balance the variance amplification of the network with the number
of communication links. This is achieved by solving a parameterized family of sparsity-
promoting optimal control problems whose solution traces the optimal trade-off curve
that starts at the centralized controller and ends at the controller with sparse com-
munication links. We show that the optimal control problem can be formulated as a
semidefinite program whose global solution can be computed efficiently.

Design of communication graphs for consensus networks. We obtain several
expressions for the H2 norm in terms of edge weights of the identified communication
graph. We show that the H2 performance is a convex function over the convex set of
stabilizing feedback gains. For several simple graphs, we derive explicit formulae for
the solution to the structured H2 problem and provide asymptotic scalings of local and
global performance measures with respect to the network size.

Part III

Optimal control of vehicular formations with nearest neighbor interac-
tions. We consider the design of optimal localized feedback gains for one-dimensional
formations in which vehicles only use information from their immediate neighbors. The
control objective is to enhance coherence of the formation by making it behave like a
rigid lattice. For the single-integrator model with symmetric gains, we establish convex-
ity, implying that the globally optimal controller can be computed efficiently. We also
identify a class of convex problems for double-integrators by restricting the controller
to symmetric position and uniform diagonal velocity gains.
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To obtain the optimal non-symmetric gains for both the single- and the double-
integrator models, we solve a parameterized family of optimal control problems ranging
from an easily solvable problem to the problem of interest as the underlying parameter
increases. When this parameter is kept small, we employ perturbation analysis to decou-
ple the matrix equations that result from the optimality conditions, thereby rendering
the unique optimal feedback gain. This solution is used to initialize a homotopy-based
Newton’s method to find the optimal localized gain.

Performance of vehicular formations with nearest neighbor interactions.
We investigate the performance of the optimal localized controllers by examining how
the coherence of large-scale stochastically forced formations scales with the number of
vehicles. We provide a spatially uniform non-symmetric controller that outperforms
the optimal spatially varying symmetric controller in the scaling trend of macroscopic
performance measure. This result indicates that departure from symmetric gains can
improve coherence of large-scale formations and that the controller structure may play
a more important role than the optimal selection of feedback gains. Our results show
that the localized controller that achieves the best performance is both non-symmetric
and spatially-varying.

Part IV

Algorithms for noise-corrupted leader selection. We establish convexity of the
objective function in the noise-corrupted leader selection problem. Based on this result,
we introduce a convex relaxation of Boolean constraints to obtain a lower bound on the
globally optimal value. We provide semidefinite formulation of the convex relaxation and
develop an efficient customized interior point method. We also use a simple but efficient
greedy algorithm and the alternating direction method of multipliers to compute upper
bounds on the globally optimal value. We exploit the structure of low-rank modifications
to significantly reduce the computational complexity.

Algorithms for noise-free leader selection. We provide an explicit expression
for the objective function to identify the source of nonconvexity and to suggest an
LMI-based convex relaxation. We then relax the Boolean constraint on the number of
leaders with a soft constraint by augmenting the objective function with the `1 norm of
the optimization variables. The `1 norm provides a means for obtaining a sparse solution
whose nonzero elements identify the leaders. The developed algorithm produces a trade-
off curve between the number of noise-free leaders and the variance of the deviation from
consensus by solving a parameterized family of convex optimization problems.

Appendix A

Least-squares approximation of structured covariances. We consider the op-
timal least-squares approximation of structured covariances. State covariances of linear
systems satisfy certain constraints imposed by the underlying dynamics. These con-
straints dictate a particular structure of state covariances. However, sample covariances
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almost always fail to have the required structure. The renewed interest in using state
covariances for estimating the power spectra of inputs gives rise to the approximation
problem. We formulate the structured covariance least-squares problem and convert the
Lyapunov-type matrix linear constraint into an equivalent set of trace constraints. Ef-
ficient unconstrained maximization methods capable of solving the corresponding dual
problem are developed.



Part I

Sparsity-promoting optimal
control

15



Chapter 2

Optimal sparse feedback synthesis

We consider the design of sparse and block sparse feedback gains that minimize variance
amplification of distributed systems. The design procedure consists of two steps: the
structure identification step and the polishing step. In the identification step, we search
for sparsity patterns S that strike a balance between the variance amplification (i.e.,
the H2 norm) of the system and the sparsity of the controller. In the polishing step,
we improve the H2 performance by solving the structured H2 problem with controllers
restricted to the identified sparsity patterns S.

In the first step, we formulate the sparsity-promoting optimal control problem by
augmenting the H2 performance with penalty functions that promote sparsity of the
controller. We consider several penalty functions that induce elementwise or blockwise
sparsity structures of the state feedback gain. In the absence of sparsity-promoting
terms, we recover the standard H2 problem whose solution leads to centralized con-
trollers. As we increase the emphasis on the sparsity of controllers, the solution to the
optimal control problem traces a trade-off curve between the H2 performance of the sys-
tem and the sparsity of the controller. In the second step, we fix the sparsity structure
identified in the first step and search for the structured feedback gain that optimizes the
H2 performance. This polishing step improves the H2 performance of the distributed
controller.

This chapter is organized as follows. In Section 2.1, we formulate the sparsity-
promoting optimal control problem. In Section 2.2, we consider several penalty functions
that promote sparsity or block sparsity. In Section 2.3, we describe the design procedure
of the optimal sparse synthesis. In Section 2.4, we use several examples to illustrate the
utility of the developed sparsity-promoting framework.

16
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2.1 Sparsity-promoting optimal control problem

Consider the following control problem

ẋ = Ax + B1 d + B2 u

z = C x + Du (2.1)

u = −F x,

where d and u are the disturbance and control inputs, z is the performance output,

C =
[
Q1/2 0

]T
and D =

[
0 R1/2

]T
with standard assumptions that Q = QT ≥ 0,

R = RT > 0, (A,B2) is stabilizable, and (A,Q1/2) is detectable. The matrix F is the
state feedback gain and the closed-loop system is given by

ẋ = (A − B2F )x + B1 d

z =

[
Q1/2

−R1/2F

]
x.

(2.2)

We are interested in identifying sparsity patterns of F that strike a balance between
the number of nonzero elements of F and the H2 norm of the system from d to z. Let
us consider the following optimization problem

minimize J(F ) + γ card (F ) (2.3)

where
card (F ) := number of nonzero elements of F . (2.4)

The H2 norm is defined as

J(F ) =

{
trace

(
BT

1 P (F )B1

)
, F stabilizing

∞, otherwise
(2.5)

where the matrix P (F ) denotes the closed-loop observability Gramian

P (F ) =

∫ ∞
0

e(A−B2F )T t (Q+ F TRF ) e(A−B2F )t dt

and it can be computed by solving the Lyapunov equation

(A−B2F )T P + P (A−B2F ) = −
(
Q+ F TRF

)
. (2.6)

In the absence of the sparsity-promoting term card(F ), the optimal control prob-
lem (2.3) becomes the standard H2 problem whose solution results in centralized con-
trollers with dense feedback matrices. By incorporating the sparsity-promoting term
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card(F ) in (2.3), we promote sparsity of the feedback gain. The scalar γ ≥ 0 character-
izes our emphasis on the sparsity of F ; a larger γ encourages a sparser F . By gradually
increasing γ, the optimal feedback gain traces a solution path from the centralized gain
to the sparse gain of interest, until the desired balance between the H2 performance of
the system and the sparsity of the controller is achieved.

2.2 Sparsity-promoting penalty functions

Problem (2.3) is a combinatorial optimization problem whose solution usually requires
an intractable combinatorial search. In optimization problems where sparsity is de-
sired, the cardinality function is typically replaced by the `1 norm of the optimization
variable [43, Chapter 6],

g(F ) =
∑
i, j

|Fij |. (2.7)

The widespread use of the `1 norm as a proxy for cardinality minimization can be at-
tributed to its effectiveness in recovering sparse signals subject to measurement noise [44].
The `1 norm has been widely used in statistics for model selection [45], in signal process-
ing for sparse signal representation [46], and in image processing for noise removal [47];
see [48] for a brief survey.

Recently, a weighted `1 norm was used to enhance sparsity in signal recovery [48],

g(F ) =
∑
i, j

Wij |Fij | (2.8)

where weights Wij ∈ R are positive numbers. The weighted `1 norm tries to bridge
the difference between the `1 norm and the cardinality function. In contrast to the
cardinality function that assigns the same cost to any nonzero element, the `1 norm
penalizes more heavily the elements of larger magnitudes. The positive weights can be
chosen to counteract this magnitude dependence of the `1 norm. For example, if the
weights Wij are chosen to be inversely proportional to the magnitude of Fij ,

Wij =

{
1/|Fij |, Fij 6= 0,

1/ε, Fij = 0, 0 < ε � 1,
(2.9)

then the weighted `1 norm of F and the cardinality function of F coincide∑
i, j

Wij |Fij | = card (F ) .

The above scheme (2.9), however, cannot be implemented because the weights de-
pend on the unknown feedback gains. A reweighted algorithm that solves a sequence of
weighted `1 optimization problems in which the weights are determined by the solution
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(a) (b) (c)

Figure 2.1: The solution F ? of the constrained problem (2.10) is the intersection of the
constraint set C = {F | J(F ) ≤ σ} and the smallest sub-level set of g that touches C.
The penalty function g is (a) the `1 norm; (b) the weighted `1 norm with appropriate
weights; and (c) the nonconvex function such as the sum-of-logs (2.11).

of the weighted `1 problem in the previous iteration was proposed in [48].
Both the `1 norm and its weighted version are convex relaxations of the cardinality

function. On the other hand, we also consider nonconvex alternatives that could be more
aggressive in promoting sparsity. Suppose that we wish to find the sparsest feedback
gain that provides a given level of H2 performance σ > 0,

minimize card (F )

subject to J(F ) ≤ σ.

Approximating card (F ) with a penalty function g(F ) yields

minimize g(F )

subject to J(F ) ≤ σ.
(2.10)

Solution to (2.10) is the intersection of the constraint set C = {F | J(F ) ≤ σ} and the
smallest sub-level set of g that touches C; see Fig. 2.1. In contrast to the `1 norm whose
sub-level sets are determined by the convex `1 ball, the sub-level sets of the nonconvex
function (e.g., the `p norm with 0 < p < 1) have a star-like shape. The sum-of-logs
function

g(F ) =
∑
i, j

log

(
1 +

|Fij |
ε

)
, 0 < ε � 1 (2.11)

is another example of a nonconvex function with similar geometry of sub-level sets.
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Remark 1. Design of feedback gains that have block sparse structure can be achieved
by promoting sparsity at the level of submatrices instead of at the level of individual
elements. Let the feedback gain F be partitioned into submatrices Fij ∈ Rmi×nj that
need not have the same size. The cardinality function, the weighted `1 norm, and the
sum-of-logs can be generalized to matrix blocks by replacing the absolute value of Fij
in (2.4), (2.8) and (2.11) by the Frobenius norm ‖ · ‖F of Fij, i.e.,

∑
i, j

card (‖Fij‖F ) ,
∑
i, j

Wij‖Fij‖F ,
∑
i, j

log

(
1 +

‖Fij‖F
ε

)
.

The use of the Frobenius norm ‖Fij‖F does not promote sparsity within the Fij block;
it instead promotes sparsity at the level of submatrices.

2.3 Design of sparse feedback gains

The sparsity-promoting feedback design makes use of the above discussed penalty func-
tions. In order to obtain state feedback gains that strike a balance between the quadratic
performance and the sparsity of the controller, we consider the following optimal control
problem

minimize J(F ) + γ g(F ) (SP)

where J is the closed-loop H2 norm and g is a sparsity-promoting penalty function, e.g.,
given by the cardinality function (2.4), the `1 norm (2.7), the weighted `1 norm (2.8), or
the sum-of-logs (2.11). When the cardinality function in (2.4) is replaced by (2.7), (2.8),
or (2.11), (SP) can be viewed as a relaxation of the combinatorial problem (2.3), ob-
tained by approximating the cardinality function with corresponding penalty functions
g.

As the parameter γ varies over [0,+∞), the solution of (SP) traces the trade-off
curve between the H2 performance and the sparsity of the feedback gain. For γ = 0,
(SP) becomes the standard LQR problem whose solution is given by the centralized
gain

Fc = R−1BT
2 P,

where P is the unique positive definite solution of the algebraic Riccati equation

ATP + PA + Q − PB2R
−1BT

2 P = 0. (2.12)

We then slightly increase γ and employ an iterative algorithm – the alternating direction
method of multipliers (ADMM) – initialized by the optimal feedback matrix at the
previous γ. The solution of (SP) becomes sparser as γ increases. After a desired level
of sparsity is achieved, we fix the sparsity structure S and find the optimal structured
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Figure 2.2: Mass-spring system on a line.

feedback gain by solving the structured H2 problem

minimize J(F )
subject to F ∈ S. (2.13)

In Chapter 3, we develop effective algorithms that solve the sparsity-promoting optimal
control problem (SP) and the structured H2 problem (2.13).

2.4 Examples

We next use three examples to illustrate the utility of the approach described in Sec-
tion 2.3. The identified sparsity structures result in localized controllers in all three
cases. Additional information about these examples, along with Matlab source codes,
can be found at

www.ece.umn.edu/∼mihailo/software/lqrsp/

2.4.1 Mass-spring system

For a mass-spring system with N masses shown in Fig. 2.2, let pi be the dis-
placement of the ith mass from its reference position and let the state variables be
x1 := [ p1 · · · pN ]T and x2 := [ ṗ1 · · · ṗN ]T . For simplicity we consider unit masses and
spring constants.1 The state-space representation is then given by (2.1) with

A =

[
O I
T O

]
, B1 = B2 =

[
O
I

]
,

where T is an N ×N symmetric tridiagonal matrix with −2 on its main diagonal and 1
on its first sub- and super-diagonal, and I and O are N ×N identity and zero matrices.
The state performance weight Q is the identity matrix and the control performance
weight is R = 10I.

1Note that our method can be used to design controllers for arbitrary values of these parameters.

http://www.ece.umn.edu/~mihailo/software/lqrsp/index.html
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(a) γ = 10−4 (b) γ = 0.0105

Figure 2.3: Sparsity patterns of F ? = [F ?p F ?v ] ∈ R50×100 for the mass-spring system
obtained using weighted `1 norm to promote sparsity. As γ increases, the number of
nonzero sub- and super-diagonals of F ?p and F ?v decreases.

γ 0.01 0.04 0.10

card (F ?)/card (Fc) 9.4% 5.8% 2.0%

(J(F ?) − J(Fc))/J(Fc) 0.8% 2.3% 7.8%

Table 2.1: Sparsity vs. performance for mass-spring system. Using 2% of nonzero
elements, the H2 performance of F ? is only 7.8% worse than the performance of the
centralized gain Fc.

We use the weighted `1 norm as the sparsity-promoting penalty function. We set
the weights Wij using scheme (2.9) with the feedback gain being the solution F ? of (SP)
at the previous value of γ. This places larger weight on smaller feedback gains; thus,
they are more likely to be dropped in the next round of sparsity-promoting problem.

The optimal feedback gain at γ = 0 is computed from the solution of the algebraic
Riccati equation (2.12). As γ increases, the number of nonzero sub- and super-diagonals
of both optimal position gain F ?p and optimal velocity gain F ?v decreases; see Fig. 2.3.
Eventually, both F ?p and F ?v become diagonal matrices. It is noteworthy that diagonals
of both position and velocity feedback gains are nearly constant except for masses that
are close to the boundary; see Fig. 2.4.

After sparsity structures of controllers are identified by solving (SP), we fix sparsity
patterns and solve the structured H2 problem (2.13) to obtain the optimal structured
controllers. Comparing the sparsity level and the performance of these controllers to
those of the centralized controller Fc, we see that using only a fraction of nonzero
elements, the sparse feedback gain F ? achieves an H2 performance that is comparable
to the performance of Fc; see Fig. 2.5. In particular, using about 2% of nonzero elements,
the H2 performance of F ? is only about 8% worse than that of Fc; see Table 2.1.
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(a) (b)

Figure 2.4: (a) The diagonal of F ?p and (b) the diagonal of F ?v for different values of γ:
10−4 (◦), 0.0281 (+), and 0.1 (∗). The diagonals of the centralized position and velocity
gains are almost identical to (◦) for γ = 10−4.

(a) card (F ?)/card (Fc) (b) (J(F ?) − J(Fc))/J(Fc)

Figure 2.5: (a) The sparsity level and (b) the performance loss of F ? compared to the
centralized gain Fc.
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γ 12.6 26.8 68.7

card (F ?)/card (Fc) 8.3% 4.9% 2.4%

(J(F ?) − J(Fc))/J(Fc) 27.8% 43.3% 55.6%

Table 2.2: Sparsity vs. performance for the spatially distributed example. Using 8.3%
of nonzero elements, H2 performance of F ? is only 27.8% worse than performance of
the centralized gain Fc.

2.4.2 A random network with unstable dynamics

Let N = 100 nodes be randomly distributed with a uniform distribution in a square
region of 10× 10 units. Each node is a linear system coupled with other nodes through
the dynamics [13]

ẋi = Aii xi +

N∑
j 6= i

Aij xj + B1ii di + B2ii ui, i = 1, . . . , N.

Here, (·)ij denotes the ijth block of a matrix and

Aii =

[
1 1
1 2

]
, B1ii = B2ii =

[
0
1

]
, Aij =

1

eα(i,j)

[
1 0
0 1

]
, for i 6= j.

The coupling between two systems i and j is determined by the Euclidean distance
α(i, j) between them. The performance weights Q and R are set to identity matrices.

We use the weighted `1 norm as the penalty function with the weights determined
by (2.9). As γ increases, the communication architecture of distributed controllers
becomes sparser. Furthermore, the underlying communication graphs gradually attain a
localized communication architecture; see Fig. 2.6. Note that, using about 8% of nonzero
elements of Fc, H2 performance of F ? is only about 28% worse than performance of the
centralized gain Fc; see Table 2.2. Figure 2.7 shows the optimal trade-off curve between
the H2 performance and the feedback gain sparsity.

We note that the truncation of the centralized controller could result in a non-
stabilizing feedback matrix. In contrast, our approach gradually modifies the feedback
gain and increases the number of zero elements. Such an approach plays an important
role in preserving the closed-loop stability. For example, keeping the largest 36.9%
entries of Fc and setting the remaining entries of Fc to zero yields a non-stabilizing
feedback gain. In comparison, using 35.6% nonzero elements of Fc the optimal feedback
gain achieves H2 performance within 1.5% worse than that of Fc.
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(a) γ = 12.6 (b) γ = 26.8

(c) γ = 68.7

Figure 2.6: The localized communication graphs of distributed controllers obtained by
solving (SP) for different values of γ. The communication structure becomes sparser as
γ increases. Note that the communication graph does not have to be connected since
the subsystems are (i) dynamically coupled to each other and (ii) allowed to measure
their own states.
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Figure 2.7: The optimal trade-off curve between the H2 performance loss and the spar-
sity level of F ? compared to the centralized gain Fc for the spatially distributed example.

2.4.3 Block sparsity: An example from bio-chemical reaction

Consider a network of N = 5 systems coupled through the following dynamics

ẋi = Aii xi −
1

2

N∑
j= 1

(i− j) (xi − xj) + B1ii di + B2ii ui,

where

Aii =

 −1 0 −3
3 −1 0
0 3 −1

 , B1ii =

 3 0 0
0 3 0
0 0 3

 , B2ii =

 3
0
0

 .
The performance weights Q and R are set to identity matrices. Systems of this form
arise in bio-chemical reactions with a cyclic negative feedback [49].

We use the weighted sum of Frobenius norms as the sparsity-promoting penalty
function and we set the weights Wij to be inversely proportional to the Frobenius norm
of the solution F ?ij to (SP) at the previous value of γ, i.e., Wij = 1/(‖F ?ij‖F + ε) with

ε = 10−3. As γ increases, the number of nonzero blocks in the feedback gain F decreases.
Figure 2.8 shows sparsity patterns of feedback gains resulting from solving (SP) with
sparse and block sparse penalty functions. Setting γ to values that yield the same
number of nonzero elements in these feedback gains results in the block sparse feedback
gain with a smaller number of nonzero blocks. In particular, the first two rows of the
block sparse feedback gain in Fig. 2.8a are identically equal to zero (indicated by blank
space). This means that the subsystems 1 and 2 do not need to be actuated. Thus, the
communication graph determined by the block sparse feedback gain has fewer links; cf.
Figs. 2.9a and 2.9b.
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(a) (b)

Figure 2.8: The sparse feedback gains obtained by solving (SP) (a) using the weighted
sum of Frobenius norms with γ = 3.6 and (b) using the weighted `1 norm (2.8) with
γ = 1.3. Here, F ∈ R5×15 is partitioned into 25 blocks Fij ∈ R1×3. Both feedback gains
have the same number of nonzero elements (indicated by dots) and closeH2 performance
(less than 1% difference), but different number of nonzero blocks (indicated by boxes).

(a) (b)

Figure 2.9: Communication graphs of (a) the block sparse feedback gain in Fig. 2.8a
and (b) the sparse feedback gain in Fig. 2.8b (red color highlights the additional links).
An arrow pointing from node i to node j indicates that node i uses state measurement
from node j.



Chapter 3

Identification of sparsity patterns
via alternating direction method
of multipliers

In this chapter, we demonstrate that the alternating direction method of multipli-
ers (ADMM) provides an effective tool for sparsity-promoting optimal control. This
method alternates between promoting the sparsity of the feedback gain matrix and op-
timizing the performance of the system. The advantage of this alternating mechanism
is threefold. First, it provides a flexible framework for incorporating different penalty
functions introduced in Section 2.2. Second, it allows us to exploit the separable struc-
ture of sparsity-promoting penalty functions and to decompose optimization problems
into sub-problems that can be solved analytically. Finally, it facilitates the use of a
simple descent algorithm for the H2 optimization, in which the descent direction can be
formed by solving two Lyapunov equations and one Sylvester equation.

This chapter is organized as follows. In Section 3.1, we introduce the ADMM al-
gorithm and discuss the advantage of its alternating mechanism in sparsity-promoting
optimal control. In Section 3.2, by exploiting the separable structure of penalty func-
tions, we decompose the corresponding optimization problem into sub-problems and
provide the analytical solutions. In Section 3.3, we develop an efficient descent method
for the optimization of the H2 performance. Finally, in Section 3.4, we solve the struc-
tured H2 problem using Newton’s method in conjunction with the conjugate gradient
scheme.

3.1 Alternating direction method of multipliers

Recall the sparsity-promoting optimal control problem

minimize
F

J(F ) + γ g(F ) (3.1)

28
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where J is the closed-loop H2 norm (2.5) and g is a sparsity-promoting penalty function
in Section 2.2. This problem is equivalent to the following constrained optimization
problem

minimize
F,G

J(F ) + γ g(G)

subject to F − G = 0.
(3.2)

It might appear that we have complicated the problem by introducing an additional
variable G and an additional constraint F −G = 0. By doing this, however, we have in
fact simplified problem (3.1) by decoupling the objective function into two parts that
depend on two different variables. This decoupling allows us to exploit the separable
structure of g and the differentiability of J in the ADMM algorithm introduced next.

We begin by forming the augmented Lagrangian associated with the constrained
problem (3.2)

Lρ(F,G,Λ) = J(F ) + γ g(G) + trace
(
ΛT (F − G)

)
+
ρ

2
‖F − G‖2F ,

where Λ is the dual variable (i.e., the Lagrange multiplier), ρ is a positive scalar, and ‖·‖F
is the Frobenius norm. In order to find a minimizer of the constrained problem (3.2),
the ADMM algorithm uses a sequence of iterations

F k+1 := arg min
F

Lρ(F,Gk,Λk) (3.3a)

Gk+1 := arg min
G

Lρ(F k+1, G,Λk) (3.3b)

Λk+1 := Λk + ρ(F k+1 − Gk+1) (3.3c)

until the primal residue ‖F k+1 − Gk+1‖F and the dual residue ‖Gk+1 − Gk‖F are suf-
ficiently small. In contrast to the method of multipliers explained in [50], in which F
and G are minimized jointly ,

(F k+1, Gk+1) := arg min
F,G

Lρ(F,G,Λk),

ADMM consists of an F -minimization step (3.3a), a G-minimization step (3.3b), and a
dual variable Λ update step (3.3c). Thus, the optimal F and G are determined in an
alternating fashion, which motivates the name alternating direction. Note that the dual
variable update (3.3c) uses a step-size equal to ρ, which guarantees that one of the dual
feasibility conditions is satisfied in each ADMM iteration; see [50, Section 3.3].

ADMM brings two major benefits to the sparsity-promoting optimal control prob-
lem (3.1):

• Separability of g. The penalty function g is separable with respect to the indi-
vidual elements of the matrix. In contrast, the closed-loop H2 norm cannot be
decomposed into componentwise functions of the feedback gain. By separating g
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and J in the minimization of the augmented Lagrangian Lρ, we can decompose G-
minimization problem (3.3b) into sub-problems that only involve scalar variables.
This allows us to determine analytically the solution of (3.3b).

• Differentiability of J . The closed-loopH2 norm J is a differentiable function of the
feedback gain matrix. This is in sharp contrast to g which is a non-differentiable
function. By separating g and J in the minimization of the augmented Lagrangian
Lρ, we can utilize descent algorithms that rely on the differentiability of J to solve
the F -minimization problem (3.3a).

3.2 Separable solution to G-minimization problem

The completion of squares with respect to G in the augmented Lagrangian Lρ can be
used to show that (3.3b) is equivalent to

minimize
G

φ(G) = γ g(G) +
ρ

2
‖G − V k‖2F (3.4)

where V k = (1/ρ)Λk + F k+1. To simplify notation, we drop the superscript k in V k

throughout this section. Since both g and the square of the Frobenius norm can be
written as a summation of componentwise functions of a matrix, we can decompose (3.4)
into sub-problems expressed in terms of the individual elements of G. For example, if g
is the weighted `1 norm, then

φ(G) =
∑
i, j

(
γ Wij |Gij | +

ρ

2
(Gij − Vij)

2
)
.

This facilitates the conversion of (3.4) to minimization problems that only involve scalar
variables Gij . By doing so, the solution of (3.4) for different penalty functions g, in-
cluding the weighted `1 norm, the sum-of-logs function, and the cardinality function,
can be determined analytically .

3.2.1 Weighted `1 norm

In this case, problem (3.4) is decomposed into sub-problems

minimize
Gij

φij(Gij) = γ Wij |Gij | +
ρ

2
(Gij − Vij)

2 (3.5)

whose unique solution is given by the soft thresholding operator [50, Section 4.4.3]

G?ij =


(

1 − a

|Vij |

)
Vij , |Vij | > a

0, |Vij | ≤ a
(3.6)



31

(a) a = (γ/ρ)Wij (b) b =
√

2γ/ρ

Figure 3.1: (a) The soft thresholding operator (3.6); (b) the truncation operator (3.7).
The slope of the lines in both (a) and (b) is equal to one.

where a = (γ/ρ)Wij ; see Fig. 3.1a for an illustration. For a given Vij , G
?
ij is obtained

by moving Vij towards zero with the amount (γ/ρ)Wij . In particular, G?ij is set to zero
if |Vij | ≤ (γ/ρ)Wij , implying that a more aggressive scheme for driving G?ij to zero can
be obtained by increasing γ and Wij and by decreasing ρ.

3.2.2 Cardinality function

In this case, problem (3.4) is decomposed into sub-problems

minimize
Gij

φij(Gij) = γ card (Gij) +
ρ

2
(Gij − Vij)

2

whose unique solution is given by the truncation operator

G?ij =

{
Vij , |Vij | > b
0, |Vij | ≤ b

(3.7)

where b =
√

2γ/ρ; see Fig. 3.1b for an illustration. For a given Vij , G
?
ij is set to Vij if

|Vij | >
√

2γ/ρ and to zero if |Vij | ≤
√

2γ/ρ.

3.2.3 Sum-of-logs function

In this case, problem (3.4) is decomposed into sub-problems,

minimize
Gij

φij(Gij) = γ log

(
1 +

1

ε
|Gij |

)
+
ρ

2
(Gij − Vij)2 (3.8)
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(a) γ = 0.1 (b) γ = 1 (c) γ = 10

Figure 3.2: The operator (3.9) with {ρ = 100, ε = 0.1} for different values of γ. For
γ = 0.1, (3.9) resembles the soft thresholding operator (3.6) in Fig. 3.1a; for γ = 10, it
resembles the truncation operator (3.7) in Fig. 3.1b; for γ = 1, operator (3.9) bridges
the difference between the soft thresholding and truncation operators.

whose solution is given by

G?ij =


0, ∆ ≤ 0
0, ∆ > 0 and r+ ≤ 0
r+Vij , ∆ > 0 and r− ≤ 0 and 0 < r+ ≤ 1
G0, ∆ > 0 and 0 ≤ r± ≤ 1

(3.9)

where ∆ is the discriminant and r± is the solution of a quadratic equation of r (see
Section 3.2.4)

∆ = (|Vij |+ ε)2 − 4(γ/ρ)

r± =
1

2|Vij |

(
|Vij | − ε ±

√
∆
) (3.10)

and
G0 := arg min {φij(r+Vij), φij(0)}.

For fixed ρ and ε, (3.9) is determined by the value of γ; see Figs. 3.2a-3.2c. For small
γ, (3.9) resembles the soft thresholding operator (cf. Figs. 3.2a and 3.1a) and for large
γ, it resembles the truncation operator (cf. Figs. 3.2c and 3.1b). In other words, (3.9)
can be viewed as an intermediate step between the soft thresholding and the truncation
operators. The detailed derivation of (3.9)-(3.10) is given in Section 3.2.4.

Remark 2. In block sparse design, g is determined by∑
i, j

Wij‖Gij‖F ,
∑
i, j

card (‖Gij‖F ) ,
∑
i, j

log

(
1 +
‖Gij‖F

ε

)
,

and the minimizers of (3.4) are obtained by replacing the absolute value of Vij in (3.6),
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(3.7), and (3.10), respectively, with the Frobenius norm ‖ · ‖F of the corresponding block
submatrix Vij.

3.2.4 Derivation of (3.9)-(3.10)

The first step is to show that the minimizer of φij in (3.8) can be written as

G?ij = rVij , r ∈ [0, 1].

To see this, note that when Vij > 0, G?ij belongs to the interval [0, Vij ] since both

the logarithmic function log (1 + |Gij |/ε) and the quadratic function (Gij − Vij)2 are
monotonically increasing for Gij ≥ Vij and monotonically decreasing for Gij ≤ 0. A
similar arguments shows that G?ij belongs to [Vij , 0] when Vij < 0. Thus, minimizing
φij(Gij) is equivalent to minimizing

φij(r) = γ log

(
1 +
|Vij |r
ε

)
+
ρ

2
V 2
ij(r − 1)2

subject to the constraint 0 ≤ r ≤ 1. Thus, we have converted a nondifferentiable
unconstrained problem to a differentiable but constrained one.

We will now examine the sign of ∂φij/∂r for r ∈ [0, 1]. Setting ∂φij/∂r = 0 yields a
quadratic equation (for Vij 6= 0)

|Vij |r2 + (ε− |Vij |)r +
γ

ρ|Vij |
− ε = 0. (3.11)

If the discriminant ∆ ≤ 0, then ∂φij/∂r ≥ 0 and φij is monotonically nondecreasing for
r ∈ [0, 1]; thus, the minimizer is r? = 0. Let ∆ > 0 and let r± be the solutions to the
quadratic equation (3.11). Then

r± =
1

2|Vij |

(
|Vij | − ε±

√
(|Vij |+ ε)2 − 4(γ/ρ)

)
.

Note that r± ≤ 1. This can be verified from

(|Vij |+ ε)2 − 4(γ/ρ) ≤ (|Vij |+ ε)2

|Vij | − ε±
√

(|Vij |+ ε)2 − 4(γ/ρ) ≤ 2|Vij |
r± ≤ 1.

Then the minimum of φij can be determined by checking the sign of ∂φij/∂r for r ∈ [0, 1].

1. If r± ≤ 0, then ∂φij/∂r > 0 for r ∈ [0, 1]. Thus, φij is monotonically increase over
[0, 1] and the minimizer is r? = 0.

2. If r− ≤ 0 and 0 < r+ ≤ 1, then ∂φij/∂r ≤ 0 for r ∈ [0, r+] and ∂φij/∂r > 0 for
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r ∈ (r+, 1]. In other words, φij is monotonically nonincreasing over [0, r+] and
monotonically increasing over (r+, 1]. Thus, the minimizer of φij for r ∈ [0, 1] is
r? = r+.

3. Finally, if 0 ≤ r± ≤ 1, then ∂φij/∂r ≥ 0 for r ∈ [0, r−), ∂φij/∂r ≤ 0 for r ∈
[r−, r+), and ∂φij/∂r ≥ 0 for r ∈ [r−, 1]. Therefore, r− is a local maximizer and
r+ is a local minimizer. Thus, the candidates for r? are either 0 or r+.

3.3 Anderson-Moore method for F -minimization problem

Anderson-Moore method is an iteratively descent algorithm originally proposed in [51]
for unstructured output feedback design. Its advantage lies in its fast convergence
(compared to the gradient descent method) and in its simple implementation (compared
to second-order method such as Newton’s method) [52, 53]. When applied to the F -
minimization problem (3.3a), this method alternates between solving two Lyapunov
equations and one Sylvester equation in each iteration.

By completing the squares with respect to F in the augmented Lagrangian Lρ, we
obtain the following equivalent problem to (3.3a)

minimize
F

ϕ(F ) = J(F ) +
ρ

2
‖F − Uk‖2F (3.12)

where Uk = Gk − (1/ρ)Λk. Setting

∇ϕ := ∇J + ρ(F − Uk) = 0

yields the necessary conditions for optimality

2
(
RF − BT

2 P
)
L + ρ(F − Uk) = 0 (NC-F)

(A − B2F )L + L (A − B2F )T = −B1B
T
1 (NC-L)

(A − B2F )T P + P (A − B2F ) = − (Q + F TRF ). (NC-P)

Note that (NC-F), (NC-L), and (NC-P) are coupled matrix equations for F , L, and P .
Here, the gradient of J is given by

∇J(F ) = 2
(
RF − BT

2 P
)
L,

which can be obtained by expanding J(F + F̃ ) around F for small F̃ and collecting
linear terms in F̃ .

Starting with a stabilizing feedback F , Anderson-Moore method solves the Lyapunov
equations (NC-L) and (NC-P), and then solves the Sylvester equation (NC-F) to obtain
a new feedback gain F̄ . In other words, it alternates between solving (NC-L) and (NC-
P) for L and P with F being fixed and solving (NC-F) for F with L and P being fixed.
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In Proposition 1, we show that the difference between two consecutive steps F̃ = F̄ −F
forms a descent direction of ϕ(F ). As a consequence, standard step-size rules can be
employed to determine s in F + sF̃ to guarantee the convergence to a stationary point
of ϕ. We summarize Anderson-Moore method in Algorithm 1.

Algorithm 1 Anderson-Moore method for F -minimization problem (3.3a) for the kth
ADMM iteration

Require: The initial condition F 0. For k ≥ 1, use the solution of (3.3a) from the
previous ADMM iteration; for k = 0, use the minimizer of (3.2) from the previous
γ value.

1: for i = 0, 1, . . . do
2: solve the Lyapunov equations (NC-L) and (NC-P) with F = F i to obtain Li and

P i;
3: solve the Sylvester equation (NC-F) with L = Li and P = P i to obtain F̄ i;
4: form F̃ i = F̄ i − F i and update F i+1 = F i + siF̃ i, with si determined by the

Armijo rule;
5: until ‖∇ϕ(F i)‖F < ε.
6: end for
7: Armijo rule [54, Section 1.2] for the step-size si:
8: let si = 1, α, β ∈ (0, 1)
9: repeat

10: si = βsi

11: until
ϕ(F i + siF̃ i) < ϕ(F i) + α si 〈∇ϕ(F i), F̃ i〉.

Proposition 1. The difference F̃ = F̄ − F in Anderson-Moore method (see step 4
in Algorithm 1) forms a descent direction of the objective function ϕ in (3.12), i.e.,
〈∇ϕ(F ), F̃ 〉 < 0. Moreover, 〈∇ϕ(F ), F̃ 〉 = 0 if and only if F is a stationary point of ϕ,
i.e., ∇ϕ(F ) = 0.

Proof. Since F̄ satisfies (NC-F), i.e., ∇ϕ(F + F̃ ) = 0, substituting F̄ = F + F̃ into
(NC-F) yields the condition for descent direction

2RF̃L + ρF̃ + ∇ϕ(F ) = 0, (3.13)

where
∇ϕ(F ) = 2(RF − BT

2 P )L + ρ(F − Uk).

Computing the inner product between ∇ϕ(F ) and F̃ yields

〈∇ϕ(F ), F̃ 〉 = − 2 〈RF̃L, F̃ 〉 − ρ 〈F̃ , F̃ 〉 ≤ 0, (3.14)

where −〈RF̃L, F̃ 〉 ≤ 0 follows from the positive definiteness of R and L. It remains to
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show that 〈∇ϕ(F ), F̃ 〉 = 0 is a necessary and sufficient condition for ∇ϕ(F ) = 0. The
necessary condition is immediate and the sufficient condition follows from the fact that
the equality in (3.14) implies F̃ = 0, which in conjunction with (3.13) yields ∇ϕ(F ) = 0.
This completes the proof.

3.4 Polishing step: Solving structured H2 problem

We next turn to theH2 problem subject to structural constraints on the feedback matrix

minimize
F

J(F )

subject to F ∈ S.
(3.15)

Here, we fix the sparsity patterns S identified using ADMM and then solve (3.15) to
obtain the optimal feedback gain that belongs to the subspace S. This polishing step,
which is commonly used in cardinality optimization [43, Section 6.3.2], can improve the
performance of sparse feedback gains resulting from the ADMM algorithm.

Since J is a smooth function that increases to infinity as one approaches the bound-
ary of the set of stabilizing gains, the decreasing sequence of {ϕ(F i)} in Anderson-Moore
method ensures that {F i} are stabilizing gains. Thus, the sparse feedback gains obtained
in the ADMM algorithm are stabilizing. This feature of ADMM facilitates the use of
Newton’s method to solve the structured H2 problem (3.15).

3.4.1 Newton’s method

Newton’s method is an iterative descent algorithm for finding local minima of optimiza-
tion problems [43]. Given an initial gain F 0, a decreasing sequence of the objective
function {J(F i)} is generated by updating F according to F i+1 = F i + si F̃ i. Here, F̃ i

is the Newton direction and si is the step-size. The Newton direction is the minimizer
of the second-order approximation of the objective function [43]

J(F + F̃ ) ≈ J(F ) + 〈∇J(F ), F̃ 〉 +
1

2
〈H(F, F̃ ), F̃ 〉, (3.16)

where the matrix H(F, F̃ ) depends linearly on F̃ .
To find ∇J for problem (3.15), we expand J(F + F̃ ) around F for the variation

F̃ ∈ S, and collect linear terms in F̃ to get

∇J(F ) = (2(RF −BT
2 P )L) ◦ IS .

Here, L and P are the solutions of Lyapunov equations (NC-L) and (NC-P). Symbol
◦ denotes the elementwise multiplication of two matrices and the matrix IS denotes
the structural identity of subspace S under elementwise multiplication. Specifically, the
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ijth entry of IS is given by

IS ij =

{
1, if Fij is a free variable

0, if Fij = 0 is required
(3.17)

implying that
F ◦ IS = F for F ∈ S.

To find H(F, F̃ ) in (3.16), we expand ∇J(F + F̃ ) around F for the variation F̃ ∈ S,
and collect linear terms in F̃ ,

H(F, F̃ ) =
(

2(RF̃ −BT
2 P̃ )L + 2(RF −BT

2 P )L̃
)
◦ IS (3.18a)

where L̃ and P̃ are solutions of the Lyapunov equations

(A−B2F )L̃ + L̃(A−B2F )T = B2F̃L + (B2F̃L)T , (3.18b)

(A−B2F )T P̃ + P̃ (A−B2F ) = (PB2 − F TR)F̃ + F̃ T (BT
2 P −RF ). (3.18c)

Note that H is a linear function of F̃ because both L̃ and P̃ linearly depend on F̃ , and
that both ∇J and H belong to S by construction.

3.4.2 Conjugate gradient method to compute Newton direction

Before we proceed, we set the following convention: henceforth, whenever we write
H(F̃ ) it means that L̃ and P̃ have been expressed in terms of F̃ using (3.18b), (3.18c)
and substituted into (3.18a), so that H(F̃ ) only depends on F̃ .

The conjugate gradient (CG) method is an iterative scheme for minimization of
(3.16), or equivalently, for minimization of the following quadratic form

Φ(F̃ ) :=
1

2
〈H(F̃ ), F̃ 〉 + 〈∇J, F̃ 〉.

Starting with F̃ 0 = 0, the CG method minimizes Φ(F̃ ) along the conjugate directions
∆k ∈ S that are mutually orthogonal with respect to the inner product 〈H(·), ·〉, that
is, 〈H(∆i),∆j〉 = 0 for i 6= j. As a consequence, the number of CG iterations to reach
the minimizer of Φ(F̃ ) is not larger than the number of unknown (nonzero) elements in
F̃ [55, Chapter 5]. Furthermore, the direction ∆k is generated from a linear combination
of the previous direction ∆k−1 and the gradient of Φ(F̃ k),

Πk := ∇Φ(F̃ k) = H(F̃ k) + ∇J.

Thus, there is no need to save the entire history of conjugate directions {∆k} to obtain
mutual orthogonality. This feature is appealing for large problems, as it saves on storage
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Algorithm 2 Computing Newton direction by conjugate gradient method

Require: the gradient direction ∇J
1: set F̃ 0 = 0, Π0 = ∇J, ∆0 = −∇J ,
2: for k = 0 to q do
3: (1) negative curvature test:
4: if 〈H(∆0),∆0〉 ≤ 0 then
5: return F̃ 1 = −∇J as the approximate Newton direction;
6: else if 〈H(∆k),∆k〉 ≤ 0 and k > 0 then
7: return F̃ k as the approximate Newton direction;
8: end if
9: (2) αk = −〈Πk,∆k〉/〈H(∆k),∆k〉;

10: (3) F̃ k+1 = F̃ k + αk ∆k, Πk+1 = Πk + αkH(∆k);
11: (4) βk+1 = 〈H(∆k),Πk+1〉/〈H(∆k),∆k〉;
12: (5) ∆k+1 = −Πk+1 + βk+1 ∆k;
13: until: The stopping criterion ‖Πk+1‖F < ε is reached.
14: end for

and computation.
We now summarize the CG method for computing the Newton direction in Algo-

rithm 2 and then briefly elaborate on the purpose of each step of the algorithm. Note
that the number of CG steps is no greater than the number of nonzero entries q en-
forced by the structure S. Consequently, the CG method is computationally efficient
when structure S is sparse.

Step (1), the negative curvature test checks whether given a direction ∆k, we have
〈H(∆k),∆k〉 ≤ 0. If this inequality holds then Φ(F̃ ) is not a convex function and
the minimization of Φ(F̃ ) is not well-defined, as the objective function can be driven
to minus infinity in the direction ∆k. In that case the algorithm is terminated while
ensuring that the latest update F̃ k is still a descent direction of J .

Step (2) chooses αk that minimizes Φ(F̃ k+α∆k) with respect to the scalar α (where
F̃ k and ∆k are fixed). In other words, αk is the exact, i.e., the optimal step-size in the
direction ∆k of minimizing Φ(F̃ k + α∆k).

Step (3) updates F̃ k+1 and the corresponding gradient Πk+1 for Φ(F̃ k+1)

Πk+1 = H(F̃ k + αk ∆k) + ∇J = Πk + αkH(∆k).

Note that H(∆k) is already computed in Step (2).
Steps (4) and (5) generate a new direction ∆k+1 that is orthogonal to ∆k, i.e.,

〈H(∆k),∆k+1〉 = 0. This is done by writing the new direction ∆k+1 as a linear combi-
nation of the negative gradient direction −Πk+1 and the previous direction ∆k, that is,
∆k+1 = −Πk+1 +βk+1 ∆k, and then finding βk+1 such that 〈H(∆k+1),∆k〉 = 0. In fact,
it can be shown [55] that, as a result, we have 〈H(∆i),∆k+1〉 = 0 and 〈Πi,Πk+1〉 = 0
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for i = 0, 1, . . . , k. Finally, the Algorithm 2 terminates either when the gradient Πk is
sufficiently small or when the negative curvature test is satisfied.



Chapter 4

Augmented Lagrangian approach
to structured feedback design

So far, we have identified sparsity patterns of the feedback gain matrix by solving
sparsity-promoting optimal control problem. In this chapter, we consider the structured
feedback design with a priori assigned sparsity patterns. We assume that the set of
stabilizing structured gains is not empty and we are interested in finding the structured
gain that minimize the H2 norm of the system.

We employ the augmented Lagrangian method that does not require knowledge of
a stabilizing structured gain to initialize the algorithm. Instead, a sequence of un-
structured minimization problems is solved and the resulting minimizers converge to
the optimal structured gain. Furthermore, we use sensitivity interpretation of the La-
grange multiplier to identify effective relaxations of sparsity constraints for improving
H2 performance.

This chapter is organized as follows. In Section 4.1, we recall the structured state
feedback problem and discuss the smoothness property of the H2 norm. In Section 4.2,
we introduce the augmented Lagrangian approach and utilize the sensitivity interpre-
tation of Lagrange multiplier to identify effective relaxations of sparsity patterns for
performance improvement. In Section 4.3, we adapt the Anderson-Moore method for
the minimization of the augmented Lagrangian. In Section 4.4, we illustrate the effec-
tiveness of the proposed approach via two examples.

4.1 Structured feedback design

Recall the structured optimal control problem

minimize J(F )

subject to F ∈ S,
(4.1)

40
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where J is the H2 norm defined in (2.5) and S is the prescribed sparsity structure that
the feedback gain F belongs to. Our objective is to find F ∈ S that minimizes the H2

norm J . Note that we do not require the knowledge of a stabilizing structured feedback
gain. This is in contrast to the structured H2 problem considered in Section 3.4 where
a stabilizing gain is provided by ADMM in the structure identification step.

The closed-loop H2 norm of a stabilizable and detectable system increases to infinity
as the least stable eigenvalue of Acl := A − B2F goes towards the imaginary axis.
Furthermore, J is a smooth function of F , since J is a linear function of the observability
Gramian P and since P is a product of the exponential and polynomial functions of
the feedback gain F . Therefore, the closed-loop H2 norm is a smooth function that
increases to infinity as one approaches the boundary of the set of stabilizing feedback
gains.

If a stabilizing F ∈ S is known, descent algorithms such as Newton’s method in
Section 3.4 can be employed to determine a local minimum of J . However, finding
a stabilizing structured gain is in general a challenging problem. To alleviate this
difficulty, we employ the augmented Lagrangian method (also referred to as the method
of multipliers), an algorithm closely related to ADMM. The augmented Lagrangian
method minimizes a sequence of unstructured problems such that the minimizers of
the unstructured problems converge to the minimizer of (4.1). Therefore, this method
does not require a stabilizing structured feedback gain to initialize the optimization
algorithm.

4.2 Augmented Lagrangian method

We begin by providing an algebraic characterization of the structural constraint F ∈
S. Recall the structural identity IS defined in (3.17). Let IcS := 1− IS denote the
structural identity of the complementary subspace Sc, where 1 is the matrix of all ones.
Then F ∈ S is equivalent to the condition that the elementwise multiplication of F and
IcS is zero

F ◦ IcS = 0.

Therefore, the structured H2 optimal control problem (4.1) can be rewritten as

minimize J(F ) = trace
(
BT

1 P (F )B1

)
subject to F ◦ IcS = 0

(SH2)

where P (F ) is the solution of (2.6).
The Lagrangian function for (SH2) is given by

L(F, V ) = J(F ) + trace
(
V T (F ◦ IcS)

)
.

From Lagrange duality theory [43,54,56], it follows that there exists a unique Lagrange
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multiplier V ? ∈ Sc such that the minimizer of L(F, V ?) with respect to F is a local
minimum of (SH2). The Lagrange dual approach minimizes L(F, V ) with respect to
unstructured F for a fixed V (the estimate of V ?), and then updates V such that it
converges to the Lagrange multiplier V ?. Consequently, as V converges to V ?, the
minimizer of L(F, V ) with respect to F converges to the minimizer of (SH2). This
Lagrange dual approach is useful for convex problems [43]; for nonconvex problems, it
relies on local convexity assumptions [56] that may not be satisfied in problem (SH2).

In what follows, a quadratic term is introduced to locally convexify the Lagrangian [54,
56] yielding the augmented Lagrangian for (SH2)

Lρ(F, V ) = J(F ) + trace
(
V T (F ◦ IcS)

)
+
ρ

2
‖F ◦ IcS‖2F ,

where the penalty weight ρ is a positive scalar and ‖·‖F is the Frobenius norm. Starting
with an initial estimate of the Lagrange multiplier, e.g., V 0 = 0, the augmented La-
grangian method iterates between minimizing Lρ(F, V i) with respect to unstructured
F (for a fixed V i) and updating V as follows

V i+1 = V i + ρ (F i ◦ IcS),

where F i is the minimizer of Lρ(F, V i). Note that, by construction, V i belongs to the
complementary subspace Sc, that is,

V i ◦ IcS = V i.

Then the sequence {V i} converges to the Lagrange multiplier V ?, and consequently, the
sequence of the minimizers {F i} converges to the structured optimal feedback gain F ?.
We summarize this approach in Algorithm 3.

Algorithm 3 Augmented Lagrangian method for (SH2)

Require: V 0 = 0 and ρ0 > 0.
1: for i = 0, 1, . . ., do
2: for a fixed V i, minimize Lρ(F, V i) with respect to the unstructured F to have the

minimizer F i (see Section 4.3);
3: update V i+1 = V i + ρi (F i ◦ IcS);
4: update ρi+1 = σ ρi with σ > 1;
5: until: the stopping criterion ‖F i ◦ IcS‖F < ε is reached.
6: end for

The convergence rate of the augmented Lagrangian method depends on the penalty
weight ρ; see [54]. In general, a large ρ results in a fast convergence rate. However,
large values of ρ may introduce computational difficulty in minimizing the augmented
Lagrangian. This is because the condition number of the Hessian matrix ∇2Lρ(F, V )
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becomes larger as ρ increases. It is thus recommended [54] to increase the penalty weight
gradually until it reaches a certain threshold value τ . Our numerical experiments suggest
that ρ0 ∈ [ 1, 5 ], σ ∈ [ 3, 10 ], and τ ∈ [ 104, 106 ] work well in practice. Additional
guidelines for choosing these parameters can be found in [54, Section 4.2].

4.2.1 Sensitivity interpretation of the Lagrange multiplier

The Lagrange multiplier provides useful information about the sensitivity of the optimal
value with respect to the perturbation of constraints [43, 54, 56]. In particular, for the
structured design problem, the Lagrange multiplier indicates how sensitive the optimal
H2 norm is with respect to the change of structural constraints. We use this sensitivity
interpretation to identify sparsity patterns for improving H2 performance.

Let 〈·, ·〉 denote the standard inner product of matrices

〈M1,M2〉 = trace (MT
1 M2).

It is readily verified that

‖F ◦ IcS‖2F = 〈F ◦ IcS , F ◦ IcS〉 = 〈F ◦ IcS , F 〉

and
〈V, F ◦ IcS〉 = 〈V ◦ IcS , F 〉 = 〈V, F 〉,

where we used V ◦ IcS = V . Thus, the augmented Lagrangian can be rewritten as

Lρ(F, V ) = J(F ) + 〈V, F 〉 +
ρ

2
〈F ◦ IcS , F 〉

and its gradient with respect to F is given by

∇Lρ(F, V ) = ∇J(F ) + V + ρ (F ◦ IcS).

Since the minimizer F ? of Lρ(F, V ?) satisfies ∇Lρ(F ?, V ?) = 0 and F ? ◦IcS = 0, we have

∇J(F ?) + V ? = 0.

Let the structural constraints {Fij = 0, (i, j) ∈ Sc} be relaxed to {|Fij | ≤ w,
(i, j) ∈ Sc} with w > 0, and let F̂ be the minimizer of

minimize J(F )

subject to {|Fij | ≤ w, (i, j) ∈ Sc}.
(4.2)

Since the constraint set in (4.2) contains the constraint set in (SH2), J(F̂ ) is smaller
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than or equal to J(F ?)

J(F̂ ) := J(F ? + F̃ ?) ≤ J(F ?), (4.3)

where F̃ ? denotes the difference between F̂ and F ?. Now, the Taylor series expansion
of J(F ? + F̃ ?) around F ? yields

J(F ?) − J(F ? + F̃ ?) = −〈∇J(F ?), F̃ ?〉 + O(‖F̃ ?‖2F )

= 〈V ?, F̃ ?〉 + O(‖F̃ ?‖2F ).

Furthermore,

〈V ?, F̃ ?〉 ≤
∑
i, j

|V ?
ij ||F̃ ?ij |

=
∑

(i, j)∈S

|V ?
ij ||F̃ ?ij | +

∑
(i, j)∈Sc

|V ?
ij ||F̃ ?ij |

≤ w
∑

(i, j)∈Sc
|V ?
ij |

where we have used the fact that V ?
ij = 0 for (i, j) ∈ S and |F̃ ?ij | ≤ w for (i, j) ∈ Sc.

Thus, up to the first order in F̃ ?, we have

J(F ?) − J(F ? + F̃ ?) ≤ w
∑

(i,j)∈Sc
|V ?
ij |.

Note that larger |V ?
ij | implies larger decrease in the H2 norm if the corresponding con-

straint Fij = 0 is relaxed. This sensitivity interpretation can be utilized to identify
controller architectures for performance improvement; see Section 4.4.2 for an illustra-
tive example.

4.3 Anderson-Moore method for augmented Lagrangian
minimization

Similar to the F -minimization step in Section 3.3, Anderson-Moore method can be
employed for the minimization of the augmented Lagrangian. The expression for the
gradient of Lρ(F ) is given by

∇Lρ(F ) = ∇J(F ) + V + ρ (F ◦ IcS)

= 2(RF −BT
2 P )L + V + ρ (F ◦ IcS),
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where recall that L and P are the solution of the Lyapunov equations

(A − B2F )L + L(A − B2F )T = −B1B
T
1 (NC-L)

(A − B2F )TP + P (A − B2F ) = − (Q + F TRF ). (NC-P)

Thus, the necessary condition for optimality of Lρ(F ) is given by

2(RF −BT
2 P )L + V + ρ (F ◦ IcS) = 0. (NC-FS)

Solving the system of equations (NC-L), (NC-P), and (NC-FS) simultaneously for
matrix variables F , L, and P is a non-trivial task. In the absence of structural con-
straints, setting

∇J(F ) = 2(RF −BT
2 P )L = 0

yields the optimal unstructured feedback gain

Fc = R−1BT
2 P

where the pair (A−B2F,B1) is assumed to be controllable and therefore L is invertible.
Here, P is the positive definite solution of the algebraic Riccati equation obtained by
substituting Fc in (NC-P)

ATP + PA + Q − PB2R
−1BT

2 P = 0.

Starting with F = Fc, we can solve Lyapunov equations (NC-L) and (NC-P), and
then solve (NC-FS) to obtain a new feedback gain F̄ . We can thus alternate between
solving (NC-L), (NC-P) and solving (NC-FS) as described in Section 3.3.

Similar to the descent property established in Proposition 1, we show that the dif-
ference between two consecutive steps F̄ − F is a descent direction of Lρ. Therefore,
we can employ the Armijo rule to choose the step-size s in F + s(F̄ − F ) such that the
alternating method converges to a stationary point of Lρ. We then update V and ρ in
the augmented Lagrangian (see Section 4.2 for details), and use the minimizer of Lρ to
initialize another round of the alternating descent iterations. As V converges to V ?, the
minimizer of Lρ converges to F ?. Therefore, the augmented Lagrangian method traces
a solution path (parameterized by V and ρ) between the unstructured optimal gain Fc
and the structured optimal gain F ?.

We summarize Anderson-Moore method for (SH2) in Algorithm 4. Although this
algorithm is similar to Algorithm 1 with a few slight modifications, it is presented here
for completeness.

Remark 3. For a diagonal matrix R, the descent direction F̃ = F̄ −F can be computed
efficiently in a row-by-row fashion. Substituting F̄ = F + F̃ in (NC-FS) yields

2RF̃L + ρ (F̃ ◦ IcS) + ∇Lρ(F ) = 0. (4.4)
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Algorithm 4 Anderson-Moore method to minimize augmented Lagrangian Lρ(F, V i)

1: For V 0 = 0, start with the optimal unstructured feedback gain Fc.
2: For V i with i ≥ 1, start with the minimizer of Lρ(F, V i−1).
3: for k = 0, 1, . . . , do
4: solve Lyapunov equations (NC-L) and (NC-P) with fixed F = Fk to obtain Lk

and Pk;
5: solve linear equation (NC-FS) with fixed L = Lk and P = Pk to obtain F̄k;
6: update Fk+1 = Fk + sk(F̄k − Fk) where sk is determined by Armijo rule;
7: until: the stopping criterion ‖∇Lρ(Fk)‖F < ε is reached.
8: end for
9: Armijo rule [54, Section 1.2] for step-size sk:

10: Let sk = 1, repeat sk = βsk
11: until

Lρ(Fk + sk(F̄k − Fk)) < Lρ(Fk) + α sk 〈∇Lρ(Fk), F̄k − Fk〉,

where α, β ∈ (0, 1), e.g., α = 0.3 and β = 0.5.

If R is a diagonal matrix, we can write the jth row of (4.4) as

F̃j
(
2RjjL + ρdiag (IcS j)

)
+ (∇Lρ)j = 0 (4.5)

where (·)j denotes the jth row of a matrix and diag (IcS j) is a diagonal matrix with

IcS j on its main diagonal. Therefore, each row of F̃ can be computed independently by
solving (4.5).

4.4 Examples

We next demonstrate the utility of the augmented Lagrangian approach in the design of
optimal structured controllers. The mass-spring system in Section 4.4.1 illustrates the
efficiency of the augmented Lagrangian method, and the vehicular formation example
in Section 4.4.2 illustrates the effectiveness of the Lagrange multiplier in identifying
controller architectures for improving H2 performance.

4.4.1 Mass-spring system

We consider a mass-spring system example in Section 2.4.1. The control applied to the
ith mass has access to displacement and velocity of the ith mass, and displacements of p
neighboring masses on the left and p neighboring masses on the right. Thus, IS = [Sp I ]
where Sp is a banded matrix with ones on p upper and p lower sub-diagonals. For N =
100 masses with p = 0, 1, 2, 3, the computational results are summarized in Table 4.1.
Here, the stopping criterion for the augmented Lagrangian method is ‖F ◦IcS‖F < 10−6,
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Table 4.1: Mass-spring system with N = 100 masses and distributed controller using
displacements of p masses from the left and p masses from the right. ALT# is the
number of alternating steps and Fc ◦ IS is the projection of the centralized gain Fc onto
the subspace S.

p ALT# J(F ?) J(Fc ◦ IS)
0 92 499.9 546.5
1 83 491.2 497.2
2 71 488.0 489.6
3 70 486.8 487.6

and the stopping criterion for the alternating method is ‖∇Lρ(F )‖F < 10−3.
We note that as the spatial spread p of the distributed controller increases (i) the

improvement of J(F ?) becomes less significant; and (ii) J(Fc ◦ IS) ≈ J(F ?), i.e., near
optimal performance can be achieved by the truncated optimal unstructured controller
Fc ◦ IS . These observations are consistent with the spatially decaying property of the
optimal unstructured controller on the information from neighboring subsystems [5,13].

4.4.2 Formation of vehicles

We consider a formation of nine vehicles in a plane. The control objective is to keep con-
stant distances between neighboring vehicles. Modeling these independently actuated
vehicles as double-integrators, in both horizontal and vertical directions, yields

A = diag (Ai), B1 = diag (B1i), B2 = diag (B2i),

Ai =

[
O2 I2

O2 O2

]
, B1i = B2i =

[
O2

I2

]
, i = 1, . . . , 9,

where I2 and O2 are 2 × 2 identity and zero matrices. The control weight R is set to
identity, and the state weight Q is obtained by penalizing both the absolute and the
relative position errors

xTQx =
9∑

i= 1

(
p2

1i + p2
2i + 10

∑
j ∈Ni

(
(p1i − p1j)

2 + (p2i − p2j)
2
))
,

where p1i and p2i are the absolute position errors of the ith vehicle in the horizontal
and vertical directions, respectively, and set Ni determines neighbors of the ith vehicle.

The decentralized control architecture with no communication between vehicles spec-
ifies the block diagonal structure Sd; see Fig. 4.1a. We solve (SH2) for F ∈ Sd and obtain
the Lagrange multiplier V ? ∈ Scd; see Fig. 4.1b. We next separate the entries of V ? into
two groups depending on their magnitudes. For example, we put V ?

ij into group large if
its magnitude is greater than half of the maximum absolute value of the entries of V ?;
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(a) (b)

Figure 4.1: (a) Block diagonal feedback gain F where each block signifies that the two
control inputs acting on each vehicle only have access to the four states of that vehicle;
(b) Lagrange multiplier V ? with entries separated into groups small (×) and large (�)
according to (4.6).

Otherwise, we put V ?
ij into group small. In other words,

V ?
ij is in group

{
small, if 0 < |V ?

ij | ≤ 0.5VM ,

large, if |V ?
ij | > 0.5VM ,

(4.6)

where VM is the maximum absolute value of the entries of V ?. We solve (SH2) for
F ∈ Ss or F ∈ Sl, where Ss and Sl are the subspaces obtained from removing the
constraints {Fij = 0} corresponding to {V ?

ij} in groups small and large, respectively. We
also consider the performance of the optimal controller in the unstructured subspace Su
with no constraints on F .

Table 4.2 shows the influence of the number of optimization variables on the perfor-
mance improvement. Note that Sl has the largest improvement per variable among all
three structures Ss, Sl, and Su. As illustrated in Fig. 4.2, Sl determines a localized com-
munication architecture in which each vehicle communicates only with its neighbors.
Therefore, the Lagrange multiplier V ? identifies nearest neighbor interactions as the
architecture of the distributed controller. We note that the nearest neighbor commu-
nication graph is also identified by solving the sparsity-promoting optimal control (SP)
with the weighted `1 penalty.
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Table 4.2: Performance improvement, κ = (J?d − J?)/J?d , relative to the optimal H2

norm J?d = 65.4154 with decentralized structure Sd. Here, r is the number of extra
variables in Ss, Sl, and Su compared with Sd, and κ/r is the performance improvement
per variable.

J? κ r κ/r
Ss 64.1408 1.95% 472 0.0041%
Sl 64.2112 1.84% 104 0.0177%
Su 62.1183 5.04% 576 0.0088%

Figure 4.2: Localized controller architecture in which each vehicle communicates only
with its neighbors. The arrow directed from node i to node j indicates that node i is
sending information to node j. Priority order of communication channels is determined
by the absolute values of V ?

ij , ranging from the highest to the lowest: brown, red, orange,
green, blue, purple, and black.



Chapter 5

Conclusions and future directions

Conclusions

We design sparse and block sparse state feedback gains that optimize the H2 perfor-
mance of distributed systems. The design procedure consists of a structure identification
step and a polishing step. In the identification step, we solve a parameterized family
of sparsity-promoting optimal control problems whose solution gradually changes from
the centralized gain to the sparse gain of interest. In the polishing step, we fix the iden-
tified sparsity patterns S and then solve the structured H2 problem to find the optimal
feedback gain belonging to S.

We demonstrate that the alternating direction method of multipliers (ADMM) is a
simple but powerful algorithm for the sparsity-promoting optimal control problem. It
alternates iteratively between promoting the sparsity of the controller and optimizing
the performance of the system. This alternating mechanism facilitates the incorporation
of different sparsity-promoting penalty functions that induce elementwise or blockwise
sparsity patterns. By exploiting the separable structure of these penalty functions,
we decompose the corresponding optimization problems into sub-problems that can be
solved analytically.

We also employ the augmented Lagrangian method to design structured optimal
controllers with a priori assigned structures. This approach does not require the knowl-
edge of a structured stabilizing gain to initialize the algorithm. Furthermore, we use
sensitivity interpretation of the Lagrange multiplier to identify effective relaxations of
sparsity constraints for improving H2 performance.

Extensions and future directions

Alternative performance indices. Although we focus on the H2 performance,
the developed framework based on ADMM can be extended to design problems with
other performance indices. This is because the G-minimization step (3.3b) in ADMM
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is independent of the H2 objective function. Thus, the analytical solutions to G-
minimization problem can be done exactly as in Section 3.2 for any performance index.
On the other hand, the F -minimization step (3.3a) needs modifications for different
objective functions.

Distributed implementation of ADMM. It is of interest to develop distributed
schemes for the F -minimization step (3.3a) in the ADMM algorithm. Recently devel-
oped tools from distributed optimization [57, 58] may play an important role in this
effort.

Uniqueness of the solution path. For a class of distributed systems studied in
Chapter 6, the sparsity-promoting optimal control problem (SP) can be formulated as
a convex optimization problem. In this case, the uniqueness of the γ-parameterized
solution path to (SP) can be readily established. For broader classes of systems, the
uniqueness property of the solution path is an important future research question.



Part II

Sparsity-promoting optimal
control for consensus networks
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Chapter 6

Identification of sparse
communication graphs for
consensus networks

Reaching consensus in a decentralized fashion is an important problem in network sci-
ence [4]. This problem is often encountered in social networks where a group of indi-
viduals is trying to agree on certain issues [28, 29]. A related problem of distributing
computational load evenly over a network of processors has been studied extensively
in computer science [30, 31]. Recently, consensus problems have received considerable
attention in the context of distributed control [33–36].

In cooperative control of vehicular formations, it is desired to use local interactions
between vehicles to reach agreement on heading direction, velocity, and inter-vehicular
spacing. Furthermore, vehicles have to maintain agreement in the presence of uncer-
tainty introduced by modeling errors, measurement noise, and communication failures.
It is therefore of importance to consider robustness of consensus networks.

In this chapter, we consider consensus networks subject to white stochastic distur-
bances. Under the influence of disturbances, the network will not reach a consensus
value, but each node in the network will fluctuate around the average of node val-
ues. Therefore, the steady-state variance of the deviation from average can be used to
quantify the robustness of stochastically forced consensus networks.

It is not surprising that the performance of networks depends heavily on the under-
lying interconnection topology [32, 37, 59]. A more connected network usually achieves
better performance at the expense of more communication links. It is thus desired to
identify networks that strike a balance between the number of communication links
and the performance of the network. With this objective in mind, we build upon the
sparsity-promoting optimal control framework developed in Part I. We solve a param-
eterized family of sparsity-promoting optimal control problems whose solution traces a
trade-off curve between the performance of network and the sparsity of communication
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graph. The main contribution of this chapter is a semidefinite program formulation for
the optimal network design problem. As a consequence, the globally optimal solution
can be computed efficiently.

This chapter is organized as follows. In Section 6.1, we formulate the sparsity-
promoting optimal control problem for the design of consensus networks. In Section 6.2,
we provide a semidefinite program formulation for the optimal control problem. In
Section 6.3, we use an illustrative example to demonstrate the utility of the developed
approach.

6.1 Undirected consensus networks

Consider a network with N integrator nodes

ẋi = ui + di, i = 1, . . . , N, (6.1)

where ui is the control input acting on node i and di is the uncorrelated white stochastic
disturbance with zero mean and unit variance. Each node forms its control action using
a weighted sum of the differences between itself and other nodes

ui = −
∑
j 6= i

Fij (xi − xj). (6.2)

We focus on undirected networks in which the communication link between any pair of
nodes (i, j) is bidirectional with the same feedback gain

Fij = Fji, i 6= j.

A zero element Fij of the feedback gain matrix F ∈ RN×N implies that there is no
communication link between nodes i and j. The communication architecture of the
network is therefore determined by the sparsity pattern of F ; in particular, the number
of communication links is determined by the number of nonzero elements of F .

We are interested in identifying sparsity patterns of F that strike a balance be-
tween the number of communication links and a performance measure that quantifies
the robustness of consensus in the stochastically forced network. Recall the sparsity-
promoting optimal control problem

minimize
F

J(F ) + γ g(F ) (6.3)

where γ ≥ 0 is the problem parameter that controls the trade-off between the perfor-
mance measure J (defined in Section 6.1.2) and the weighted `1 norm (introduced in
Section 2.2)

g(F ) =
∑
i, j

Wij |Fij |, Wij > 0.
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Here, the weights Wij are determined by (2.9) with the feedback gain being the solution
F ? of (6.3) at the previous value of γ. (For γ = 0, problem (6.3) does not depend on
the weighted `1 norm.)

6.1.1 Stochastically forced consensus networks

By substituting (6.2) into (6.1) and putting the variables in vectors, we can express the
dynamics of stochastically forced consensus networks as follows

ẋ = −Fx + d. (6.4)

Since F is a symmetric matrix F = F T for undirected networks, the stability of sys-
tem (6.4) amounts to F being a positive definite matrix F � 0. Using only relative
information exchange (6.2), however, the average mode of the network is not stabiliz-
able. This can be verified by noting that F has a zero eigenvalue associated with the
vector of all ones 1,

F1 = 0. (6.5)

Hence, the control input u is invariant by adding a constant α to the state x, i.e.,

u = −Fx = −F (x + α1).

Note that property (6.5) is independent of the choice of Fij . For connected networks,
we can choose Fij (see Section 7.2) such that the remaining N − 1 eigenvalues of F are
positive, i.e.,

0 = λ1 < λ2 ≤ · · · ≤ λN .

In the absence of stochastic disturbances, all nodes converge asymptotically to the
average of the initial condition

lim
t→∞

x(t) = 1 x̄(0) (6.6)

where the average mode is given by

x̄(t) :=
1

N

N∑
i= 1

xi(t) =
1

N
1Tx(t).

To see (6.6), consider the eigenvalue decomposition F = SΛST with the diagonal matrix
Λ = diag{λi}Ni= 1 and the orthonormal matrix S = [ s1 · · · sN ] with s1 = 1√

N
1.

Then (6.6) follows from

lim
t→∞

x(t) = lim
t→∞

e−Ftx(0) = lim
t→∞

(
s1s

T
1 +

N∑
i= 2

e−λitsis
T
i

)
x(0) = s1s

T
1 x(0).
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In the presence of disturbances, the average mode undergoes a random walk starting
from the initial average value and its variance grows linearly with time. To see this,
consider the dynamics of the average mode

˙̄x = d̄,

where d̄ = 1
N 1

Td is the average of disturbances. Since the trajectory of the average
mode is determined by

x̄(t) = x̄(0) +

∫ t

0
d̄(τ) dτ,

and since d̄ is white stochastic disturbance with zero and unit variance, we have

E{x̄(t)} = x̄(0), E{(x̄(t)− x̄(0))2} =

∫ t

0

∫ t

0
E{d̄(τ)d̄(σ)} dτ dσ = t.

6.1.2 Performance of consensus networks

Several performance outputs can be considered to quantify the robustness of consensus.
For example, consider the following global and local performance errors [37]:

• The global error quantifies the deviation of each node from the average mode

x̃i = xi − x̄, i = 1, . . . , N. (6.7)

• The local error quantifies the difference between the neighboring nodes

x̃ij = xi − xj for (i, j) ∈ E (6.8)

where E is the edge set of local interaction graph (see Section 6.3).

Note that the average mode x̄ is unobservable from both global and local errors. Al-
ternative performance outputs that render x̄ unobservable can be considered as well [32,
37]. Let such a performance output be given by z1 = Cx with the output matrix C
satisfying C1 = 0. The control objective is to keep the performance output z1 and the
control input z2 = u small under the influence of disturbances. This objective can be
quantified using the H2 norm of the system from d to z

ẋ = −Fx + d

z =

[
z1

z2

]
=

[
C
−F

]
x.

The H2 norm J is given by

J(F ) = trace

(∫ ∞
0

e−Ft (Q + FF ) e−Ftdt

)
(6.9)
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where Q = CTC and Q satisfies
Q1 = 0. (6.10)

Note that the integral in (6.9) is bounded even though the average mode is not asymp-
totically stable. This is because the average mode is not observable from either Q or F .

6.2 Semidefinite programming formulation for the sparsity-
promoting optimal control problem

In this section, we show that the sparsity-promoting optimal control problem (6.3)
can be formulated as a semidefinite program (SDP). To this end, we first derive an
alternative expression for the H2 norm.

Proposition 2. Let the symmetric matrices F and Q satisfy

F1 = 0, F + 11T /N � 0,
Q1 = 0, Q + 11T /N � 0.

Then the H2 norm J in (6.9) can be expressed as

J(F ) =
1

2
trace

(
QF † + F

)
=

1

2
trace

(
Q(F + 11T /N)−1 + F

)
, (6.11)

where F † denotes the Moore-Penrose pseudoinverse of F .

Proof. From the eigenvalue decomposition of the symmetric matrix F

F = SΛST =
[

1√
N
1 S̄

] [ 0 0
0 Λ̄

][ 1√
N
1T

S̄T

]
, (6.12)

several formulae follow

F = S̄Λ̄S̄T (6.13)

F † = S̄Λ̄−1S̄T (6.14)

= (F + 11T /N)−1 − 11T /N. (6.15)
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We now compute

J(F ) = trace

(∫ ∞
0

e−Λt (STQS + Λ2) e−Λt dt

)
(6.16)

=

∫ ∞
0

trace
(

(S̄TQS̄ + Λ̄2) e−2Λ̄t
)

dt (6.17)

=
1

2
trace

(
S̄TQS̄ Λ̄−1 + Λ̄

)
(6.18)

=
1

2
trace

(
QF † + F

)
(6.19)

=
1

2
trace

(
Q(F + 11T /N)−1 + F

)
. (6.20)

Here, step (6.16) follows from the eigenvalue decomposition (6.12); step (6.17) follows
from the cyclic property of trace, i.e., trace(M1M2) = trace(M2M1); step (6.18) follows
from ∫ ∞

0
e−2Λ̄t dt =

1

2
Λ̄−1;

step (6.19) follows from (6.14); and finally, step (6.20) follows from (6.15) in conjunction
with Q1 = 0.

We now state the main result of this section.

Proposition 3. For the objective function J in (6.11), the sparsity-promoting optimal
control problem

minimize
F

J(F ) + γ
∑
i, j

Wij |Fij | (6.21)

can be formulated as an SDP

minimize
X,Y, F

1

2
trace (X + F ) + γ 1TY 1

subject to

[
X Q1/2

Q1/2 F + 11T /N

]
� 0

F 1 = 0
−Y ≤ W ◦ F ≤ Y.

(6.22)

Here, a positive semidefinite matrix M is denoted as M � 0 and an elementwise non-
negative matrix M is denoted as M ≥ 0. The notation M1 ≤ M2 is understood as
M2 −M1 ≥ 0 and ◦ is the elementwise multiplication of two matrices.

Proof. Transforming the weighted `1 norm in (6.21) to a linear function with linear
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inequality constraints yields

minimize
Y, F

J(F ) + γ 1TY 1

subject to −Y ≤W ◦ F ≤ Y

where Y is a matrix with nonnegative elements Y ≥ 0. The result then follows from
Proposition 4 which provides the SDP formulation for the minimization of J .

Proposition 4. Suppose that

Q1 = 0, Q + 11T /N � 0. (6.23)

Then the optimization problem

minimize
F

1

2
trace

(
Q(F + 11T /N)−1 + F

)
subject to F1 = 0, F + 11T /N � 0

(6.24)

can be formulated as an SDP

minimize
X,F

1

2
trace (X + F )

subject to

[
X Q1/2

Q1/2 F + 11T /N

]
� 0

F1 = 0

(6.25)

where Q1/2 denotes the matrix square-root of Q, i.e., Q = Q1/2Q1/2.

Proof. The key step of the proof is to show that the solution F from (6.25) satisfies

F̄ := F + 11T /N � 0, (6.26)

i.e., F̄ is a positive definite matrix. Clearly, F̄ � 0 follows from the LMI in (6.25).
Recall the generalized Schur complement [43, Appendix A.5.5][

X Q1/2

Q1/2 F̄

]
� 0 ⇐⇒ F̄ � 0, (I − F̄ F̄ †)Q1/2 = 0, X − Q1/2F̄ †Q1/2 � 0

and consider the eigenvalue decomposition Q = UΛQU
T where U = [ 1√

N
1 Ū ] and

ΛQ = diag (λQ), λQ = [ 0 λQ2 · · · λQN ], (6.27)

with λQi > 0 for i = 2, . . . , N. Then multiplying UT from the left and U from the right
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to (I − F̄ F̄ †)Q1/2 = 0 yields

UT (I − F̄ F̄ †)UΛ
1/2
Q = 0.

From (6.27), it follows that the matrix M := UT (I − F̄ F̄ †)U has all zeros from the 2nd
to the Nth columns. Since M is a symmetric matrix, it follows that it has all zeros
from the 2nd to the Nth rows as well. In other words, the only nonzero element of M
is at its 1st row and 1st column, i.e.,

M =

[
a 0
0 0

]
= UT (I − F̄ F̄ †)U.

Therefore,

F̄ F̄ † = I −
[

1√
N
1 Ū

] [ a 0
0 0

][ 1√
N
1T

ŪT

]
= I − a

N
11T .

Simple calculation

F̄ = F̄ F̄ †F̄ = F̄ − a

N
11T F̄ = F̄ − a

N
11T

shows that a = 0. Therefore, F̄ F̄ † = I and (6.26) follows. Then the equivalence
between (6.24) and (6.25) can be established by noting that[

X Q1/2

Q1/2 F̄

]
� 0 ⇐⇒ X � Q1/2F̄−1Q1/2

whenever F̄ � 0. To minimize the objective function in (6.24) for F̄ � 0, we simply
take X = Q1/2F̄−1Q1/2, which yields the objective function in (6.25).

6.2.1 SDP formulation for the structured H2 problem

After identifying the sparsity pattern S from the solution to (6.22), we next turn to
the polishing step, i.e., solving the H2 problem subject to structural constraints on the
feedback matrix,

minimize
F

J(F )

subject to F1 = 0, F + 11T /N � 0, F ∈ S.
(6.28)

Here, we fix the sparsity pattern F ∈ S and then solve (6.28) to obtain the optimal
feedback gain that belongs to S. Problem (6.28) can be formulated as the following
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SDP

minimize
X,F

1

2
trace (X + F )

subject to

[
X Q1/2

Q1/2 F + 11T /N

]
� 0

F1 = 0
F ◦ IS = F

where the structural identity IS of S is given by (3.17).

6.3 An example

Consider N = 50 randomly distributed nodes in a region of 10×10 units. Let two nodes
be neighbors if their Euclidean distance is not greater than 2 units; see Fig. 6.1a. We
are interested in keeping both global and local errors in (6.7) and (6.8) small. Thus, the
performance output z is given by

z =

 zg
zl
z2

 =

 (I − 11T /N)x
ETx
−Fx


where zg and zl denote the global and local errors, respectively, and E denotes the
incidence matrix of the edge set E of the local interaction graph shown in Fig. 6.1a.
Each column of E is a vector of N elements representing an edge in E ; for an edge (i, j),
the corresponding column of E has 1 and −1 at the ith and jth elements, and zero
everywhere else. With the above choice of z, the matrix Q is determined by

Q = EET + (I − 11T /N).

We solve the sparsity-promoting optimal control problem (6.3), followed by the
polishing step described in Section 6.2.1, with 100 logarithmically-spaced points for
γ ∈ [10−3, 1]. As shown in Fig. 6.2, the number of nonzero elements of F decreases and
the H2 norm J increases as γ increases. For γ = 1, the identified communication graph
establishes long-range links between selected pairs of remote nodes, in addition to the
interactions between neighbors; see Fig. 6.1b. Relative to the centralized gain Fc, the
identified sparse gain F uses 7% nonzero elements, i.e.,

card (F )/card (Fc) = 7%

and achieves a performance loss of only 14%, i.e.,

(J − Jc)/Jc = 14%.

Here, Fc is the solution to (6.22) with γ = 0 and F is the solution to (6.22) with γ = 1,
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(a) (b)

Figure 6.1: (a) Local performance graph where edges connect every pair of nodes with a
distance not greater than 2 units. (b) Identified communication graph for γ = 1 where
the long-range communication links are highlighted in black color.

followed by the polishing step in Section 6.2.1.
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Figure 6.2: The solution to (6.3) as a function of γ, followed by the polishing step in
Section 6.2.1, for the network shown in Fig. 6.1a.



Chapter 7

Design of communication graphs
for consensus networks

In this chapter, we focus on the structured H2 problem for the design of consensus
networks. We obtain several expressions for the H2 norm in terms of edge weights of
the identified communication graph. We show that the H2 performance is a convex
function over the convex set of stabilizing feedback gains over the edges. For several
simple graphs, we derive explicit formulae for the solution to the structured H2 problem
and provide asymptotic scalings of local and global performance measures with respect
to the network size. The key step that facilitates the results in this chapter is the
elimination of the average mode using a change of coordinates based on an algebraic
representation of graphs.

This chapter is organized as follows. In Section 7.1, we determine the H2 norm of
the system with a minimal realization obtained by removing the average mode. This is
done by a similarity transformation based on the incidence matrix of graphs. Using the
algebraic representation of the Laplacian matrix, we express theH2 objective function in
terms of edge weights. In Section 7.2, we character the set of stabilizing gains and show
the convexity of the H2 performance with respect to edge weights. In Section 7.3, we
derive analytical expressions for the solution to the structured H2 problem for several
simple graphs. Furthermore, we provide the asymptotic scaling trends of local and
global performance measures in large networks.

7.1 Alternative expressions for the H2 norm

Recall the dynamics of consensus networks from Chapter 6

ẋ = −Fx + d

z =

[
C
−F

]
x.

64
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where both C and F have a zero eigenvalue associated with the eigenvector 1. Since
the average mode x̄ = 1Tx/N is not observable from z, we next separate x̄ from the
dynamics evolving in 1⊥ (i.e., the subspace orthogonal to 1). Let U ∈ RN×(N−1) be
a full rank matrix such that all columns of U are orthogonal to 1. Using a change of
coordinates

ψ = T x

where

T =

[
UT

1T /N

]
, T −1 =

[
U(UTU)−1 1

]
, (7.1)

we have

ψ̇ = −T FT −1ψ + T d.

Straightforward algebra shows that

ψ̇ :=

[
φ̇
˙̄x

]
=

[
−UTFV 0

0 0

] [
φ
x̄

]
+

[
UT

1T /N

]
d

where
V = U(UTU)−1.

Under the new coordinates, the performance output is given by

z =

[
CV 0
−FV 0

] [
φ
x̄

]
.

Removing the average mode x̄, we obtain a minimal representation of the system con-
taining only the state φ

φ̇ = −UTFV φ + UTd

z =

[
CV
−FV

]
φ.

(7.2)

Thus, the H2 norm of the system from d to z can be expressed as

J(F ) = trace
(
Φ(V T (Q+ FF )V )

)
, (7.3)

where Q = CTC and Φ is the solution to the Lyapunov equation

(−UTFV )Φ + Φ(−UTFV )T = −UTU. (7.4)

7.1.1 Incidence matrix and graph Laplacian

In the coordinate transformation (7.1), the only condition imposed on U is that its
columns are orthogonal to 1. In this subsection, we choose a particular U based on the
incidence matrix of a graph. As we will see, this choice of U simplifies the Lyapunov
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equation (7.4) and consequently, the expression for the H2 norm (7.3). Furthermore,
it facilitates the derivation of analytical expressions for the optimal feedback gains in
Section 7.3.

We begin by introducing the incidence matrix and the Laplacian matrix of a graph.
Let G = (V, E) be an undirected connected graph with N = |V| nodes and m = |E|
edges. We associate with edge l between nodes i and j a vector el ∈ RN that has 1 and
−1 at its ith and jth entries, respectively, and 0 everywhere else. Let kl ∈ R be the
edge weight of l. The Laplacian matrix of the graph G is given by

F =
m∑
l= 1

kl el e
T
l .

Alternatively, it can be expressed as

F = EKET

where E = [ e1 e2 · · · em ] ∈ RN×m is the incidence matrix of the graph G and K =
diag{kl}ml= 1 ∈ Rm×m is a diagonal matrix of edge weights.

Note that by construction all columns of the incidence matrix E are orthogonal to
1. Therefore, a particular choice of U is to pick N−1 independence columns of E. This
can be done whenever the graph G is connected and in this case U will be the incidence
matrix of a tree subgraph of G; see [60]. Since the columns of U form the basis of 1⊥

and since all columns of E belong to 1⊥, the incidence matrix can be expressed as a
linear combination of the columns of U ,

E = UP.

As a consequence, the graph Laplacian can be expressed as

F = EKET = UPKP TUT .

Using UTV = UTU(UTU)−1 = I, the Lyapunov equation (7.4) becomes

UTUPKP TΦ + ΦPKP TUTU = UTU,

whose solution is given by

Φ =
1

2
(PKP T )−1. (7.5)

Therefore, the H2 norm (7.3) can be expressed as a function of the diagonal matrix K

J(K) =
1

2
trace

(
(PKP T )−1(V TQV ) + UTU(PKP T )

)
. (7.6)
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7.1.2 Local and global performance measures

For the local performance output (6.8), we have

C = ET .

Then
V TQV = V TCTCV = PP T

and the H2 norm (7.6) is given by

Jl(K) =
1

2
trace

(
K−1
P PP T + UTUKP

)
(7.7)

For the global performance output (6.7), we have

C = I − 1

N
11T .

Then
V TQV = V TCTCV = (UTU)−1

and the H2 norm (7.6) is given by

Jg(K) =
1

2
trace

(
(UTUKP )−1 + UTUKP

)
. (7.8)

7.2 Stability and convexity

This section contains the main results of this chapter, given by Propositions 5 and 6.
In Proposition 5, we characterize the set of stabilizing gains K for the system (7.2). In
Proposition 6, we show that J is a convex function on the set of stabilizing feedback
gains.

Proposition 5. The system (7.2) is stable if and only if

KP := PKP T

is a positive definite matrix.

Proof. Since
UTFV = UTUKP

is a product of a positive definite matrix UTU and a Hermitian matrix KP , the proposi-
tion follows from a result in matrix analysis [61, Theorem 7.6.3] saying that the product
W1W2 of a positive definite matrix W1 and a Hermitian matrix W2 has the same number
of positive, negative, and zero eigenvalues as W2.
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A sufficient condition for KP � 0 is K � 0. Since K is the diagonal matrix, this
sufficient condition is equivalent to kl > 0 for all l ∈ {1, . . . ,m}, i.e., positive feedback
gains on all edges of G. This condition is also necessary for tree graphs, since in that
case {E = U,P = I} and KP = K. Therefore, we conclude that for tree graphs, the
system (7.2) is stable if and only if all feedback gains on edges are positive.

Proposition 6. The H2 norm of system (7.2) is a convex function of the stabilizing
feedback gain K.

Proof. For two arbitrary stabilizing gains K1 and K2, we have

P (θK1 + (1− θ)K2)P T � 0, θ ∈ (0, 1),

that is, the convex combination θK1 + (1 − θ)K2 is also stabilizing. Thus, the set of
stabilizing feedback gains forms a convex set. Since the H2 norm is given by

J(K) =
1

2
trace

(
K−1
P V TQV + UTUKP

)
and since trace (UTUKP ) is linear (and thus convex) in K, it is sufficient to show
convexity of the function trace (K−1

P V TQV ). To this end, note that trace (K−1
P ) is a

convex function of the positive definite matrix KP ; see [43, Problem 3.18(a)]. Since
V TQV � 0 and the positive weighted sum preserves convexity [43, Section 3.2.1], it
follows that trace (K−1

P V TQV ) is a convex function of the stabilizing feedback gain K.

We conclude this section with the formulae for the gradient and Hessian of J(K)

∇J(K) =
1

2
diag(P T (UTU − K−1

P V TQVK−1
P )P ),

∇2J(K) = (P TK−1
P V TQVK−1

P P ) ◦ (P TK−1
P P ).

Since elementwise multiplication of two positive semidefinite matrices results in a pos-
itive semidefinite matrix [62, Theorem 5.2.1], the convexity of J(K) also follows from
the positive semidefiniteness of the Hessian matrix ∇2J(K).

7.3 Analytical solutions to the structured H2 problem

In this section, we consider the minimization of the global and local performance mea-
sures (7.8) and (7.7) with respect to the feedback gain matrix K for several simple
graphs. By exploiting structure of path, star, circle, and complete graphs, we obtain
analytical expressions for the optimal solutions.
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7.3.1 Tree

A tree is a connected graph with no cycles. In this case, P = I and (7.7) simplifies to

Jl(K) =
1

2
trace

(
K−1 + UTUK

)
.

By the definition of the incidence matrix, the diagonal entries of the matrix UTU are
all equal to 2 yielding

Jl(K) =
1

2

N−1∑
i= 1

(k−1
i + 2ki).

The unique optimal feedback gains are thus constant for all the N − 1 edges

k∗l = 1/
√

2.

The optimal local performance measure is

J∗l = (N − 1)
√

2.

For the global performance measure (7.8), we have

Jg(K) =
1

2
trace

(
(KUTU)−1 + KUTU

)
=

1

2

N−1∑
i= 1

(k−1
i (UTU)−1

ii + 2ki).

The optimal feedback gain is thus given by

(k∗g)i =

√
(UTU)−1

ii /2, i ∈ {1, . . . , N − 1}.

The optimal global performance is

J∗g =

N−1∑
i= 1

√
2(UTU)−1

ii .

Thus, in contrast to the local performance measure (7.7), the optimal feedback gain and
the optimal global performance measure depend on the structure of the tree. We next
consider two special cases where we can determine (UTU)−1 explicitly.

Path: In this case, UTU = T where T is a symmetric Toeplitz matrix with the first
row given by [ 2 − 1 0 · · · 0 ] ∈ RN−1. The inverse of T can be determined analytically

(T−1)ij = i(N − j)/N for j ≥ i. (7.9)
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It follows that

(k∗g)i =
√
i(N − i)/(2N), J∗g =

N−1∑
i= 1

√
2i(N − i)/N.

For large N , J∗g ≈
πN
√
N

4
√

2
.

Star: In this case, UTU = I + 11T and (UTU)−1 = I − 11T /N . The diagonal
entries of (UTU)−1 are all equal to (N − 1)/N . The optimal feedback gain and the
global performance measure are given by

k∗g =
√

(N − 1)/(2N), J∗g = (N − 1)
√

2(N − 1)/N.

7.3.2 Circle

A circle graph is an edge-transitive graph1 and we use the result that the optimal
solution for convex problems on edge-transitive graphs are constant [32], that is, k∗i = k
for all i ∈ {1, . . . , N}. The local performance measure (7.7) simplifies to

Jl(k) =
1

2
trace

(
PP T (kPP T )−1 + kPP TUTU

)
=

1

2
k−1(N − 1) + kN,

where we used
trace

(
PP TUTU

)
= trace

(
ETE

)
= 2N.

Thus,
k∗l =

√
(N − 1)/(2N), J∗l =

√
2(N − 1)3/N.

On the other hand, for global performance measure, we have

Jg(k) =
1

2

(
1

k

N − 1∑
i= 1

i(N − i)
2N

+ 2kN

)
=

N2 − 1

24k
+ kN.

It follows that

k∗g =
√

(N2 − 1)/(24N), J∗g =
√
N(N2 − 1)/6.

1An automorphism of a graph G is a permutation π of the vertex set V such that (i, j) ∈ E if and
only if (π(i), π(j)) ∈ E . A graph is edge-transitive if given any pair of edges there is an automorphism
that transforms one edge into the other.
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Table 7.1: Optimal gains and performances for the path, star, circle, and complete
graph.

J∗l k∗l J∗g (k∗g)i

Path
√

2(N − 1) 1/
√

2 (π/8)N
√

2N
√

(i(N − i))/(2N)

Star
√

2(N − 1) 1/
√

2
√

2(N − 1)3/N
√

(N − 1)/(2N)

Circle
√

2(N − 1)3/N
√

(N − 1)/(2N)
√
N(N2 − 1)/6

√
(N2 − 1)/(24N)

Complete (N − 1)
√
N 1/

√
N N − 1 1/N

7.3.3 Complete graph

A complete graph has an edge between every pair of vertices; thus, it has N(N − 1)/2
edges. A complete graph is also edge-transitive and with an identical procedure as done
for the case of circle, for local performance measure (7.7) we have

k∗l = 1/
√
N, J∗l = (N − 1)

√
N.

On the other hand, for the global performance measure (7.8) we have

Jg(k) =
1

2
trace

(
(kPP TUTU)−1 + kPP TUTU

)
=

1

2
(N − 1)((kN)−1 + kN).

where we used the fact that the eigenvalues of PP TUTU are the nonzero eigenvalues of
ETE, which all equal to N . Thus, we have

k∗g = 1/N, J∗g = N − 1.

We summarize the formulas for the optimal feedback gains and the optimal performance
measures (7.7) and (7.8) in Table 7.1.

7.3.4 Asymptotic scaling of performance measures with the number
of nodes

We next consider how the optimal performance measures scale with the network size
N . We also consider the asymptotic scaling of the optimal feedback gain {k∗i }mi= 1,
which serves as an indication of the control effort of the optimal design. The results
for the graphs considered are summarized in Table 7.2, where the optimal local and
global performance measures are normalized by N . The normalized global performance
measures are illustrated in Fig. 7.1.

In [37], it was established that using constant feedback gain for all edges of the
circle, the global performance measure normalized by the formation size scales linearly
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Table 7.2: Comparison of the asymptotic scaling of optimal performance measures nor-
malized by N , and the maximum value of feedback gains, for path, circle, star and
complete graph.

J∗l /N J∗g /N k∗l max(k∗g)i

Path O(1) O(
√
N) O(1) O(

√
N)

Star O(1) O(1) O(1) O(1)

Circle O(1) O(
√
N) O(1) O(

√
N)

Complete O(
√
N) O(1) O(1/

√
N) O(1/N)

Figure 7.1: N -normalized global performance measure J∗g for path (−), circle (◦),
star (∗) and complete graph (♦).

with N . This result was derived under the assumption that the amount of control
effort is formation-size-independent. Note that the scaling of J∗g /N can be reduced to
a square-root dependence of N at the expense of k∗g also increasing as a square-root
function of N .



Chapter 8

Conclusions and future directions

Conclusions

We consider the design of distributed controller architectures for undirected net-
works of integrators. In the presence of stochastic disturbances, we identify communi-
cation topologies that strike a balance between the variance amplification of the network
and the number of communication links. We solve a parameterized family of sparsity-
promoting optimal control problems whose solution traces the optimal trade-off curve
that starts at the centralized controller and ends at the controller with sparse graphs.
We show that the optimal control problem can be formulated as a semidefinite program
whose global solution can be computed efficiently.

We consider the design of edge weights on communication graphs for consensus
networks. We show that the H2 performance is a convex function over the convex set of
stabilizing feedback gains over the edges. For several simple graphs, we derive explicit
formulae for the solution to the structured H2 problem and provide asymptotic scalings
of local and global performance measures with respect to the network size.

Extensions and future directions

Consensus networks with directed graphs. For simple directed graphs such as
path, circle, and star, we also obtain analytical solution to the structured H2 problem.
The extension to special classes of directed graphs, such as directed trees, is still an
open research problem.

Consensus networks with normal Laplacian matrices. In this case, we show
that the H2 norm of consensus networks is also a convex function of edge weights. This
result can be established by expressing the H2 norm in terms of the eigenvalues of the
Laplacian matrix (e.g., see [59]) and then by employing the spectral function theory
(e.g., see [32]). However, normal Laplacian matrices for directed graphs in general do
not form a convex set of edge weights. This is because summation of two normal (but
not symmetric) matrices in general is no longer a normal matrix. As such, it limits the
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utility of the convex characterization of the H2 norm. It is thus of interest to find a
subclass of normal Laplacian matrices (different from symmetric matrices) that form a
convex set of edge weights.



Part III

Optimal localized control of
vehicular formations

75



Chapter 9

Optimal control of vehicular
formations with nearest neighbor
interactions

The control of vehicular platoons has attracted considerable attention since the mid six-
ties [63–65]. Recent technological advances in developing vehicles with communication
and computation capabilities have spurred renewed interest in this area [33, 37–40, 66–
69]. The simplest control objective for the one-dimensional (1D) formation shown in
Fig. 9.1 is to maintain a desired cruising velocity and to keep a pre-specified constant
distance between neighboring vehicles. This problem is emblematic of a wide range
of technologically relevant applications including the control of automated highways,
unmanned aerial vehicles, swarms of robotic agents, and satellite constellations.

We consider the design of optimal localized feedback gains for one-dimensional for-
mations in which each vehicle only uses relative distances from its immediate neighbors
and its own velocity. This nearest neighbor interaction imposes structural constraints
on the feedback gains. We formulate the structured optimal control problem for both
the single- and the double-integrator models. For single-integrators, we show that the
structured optimal control problem is convex when we restrict the feedback gain to be
a symmetric positive definite matrix. In this case, the global minimizer can be com-
puted efficiently, and even analytical expressions can be derived. For double-integrators,
we also identify a class of convex problems by restricting the controller to symmetric
position and uniform diagonal velocity gains.

We then remove this symmetric restriction for both the single- and the double-
integrator models and begin the design process with a spatially uniform controller. We
develop a homotopy-based Newton’s method that traces a continuous solution path
from this controller to the optimal localized gain. Along this homotopy path, we solve a
parameterized family of the structured optimal control problems and obtain analytical
solutions when the homotopy parameter is small. We employ perturbation analysis to
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Figure 9.1: One-dimensional formation of vehicles.

decouple the matrix equations that result from optimality conditions, thereby render-
ing the unique optimal structured gain. This solution is used to warm-start Newton’s
method in order to efficiently compute the desired optimal gains as the homotopy pa-
rameter is gradually increased.

This chapter is organized as follows. In Section 9.1, we formulate the structured
optimal control problem for both single- and double-integrator models. In Section 9.2,
we show convexity of the symmetric gain design for the single-integrator model. In
Section 9.3, we develop the homotopy-based Newtons method for non-symmetric gains.
In Section 9.4, we examine the design of localized controllers for the double-integrator
model.

9.1 Problem formulation

A system of N identical vehicles moving along a straight line is shown in Fig. 9.1.
All vehicles are equipped with ranging devices that allow them to measure relative
distances with respect to their immediate neighbors. The objective is to design an
optimal controller that uses only local information (i.e., relative distances between the
neighboring vehicles) to keep each vehicle at its global position on a grid of regularly
spaced points moving with a constant velocity.

9.1.1 Single-integrator model

We first consider the kinematic model in which control input ūn directly affects the
velocity,

˙̄pn = d̄n + ūn, n ∈ {1, . . . , N}

where p̄n is the position of the nth vehicle and d̄n is the disturbance. The desired
position of the nth vehicle is given by pd,n = vd t + nδ where vd is the desired cruising
velocity and δ is the desired distance between the neighboring vehicles. Every vehicle
is assumed to have access to both vd and δ.

The localized controller utilizes relative position errors between nearest neighbors,

ūn = − fn(p̄n − p̄n−1 − δ) − bn(p̄n − p̄n+1 + δ) + vd
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Figure 9.2: Formation of vehicles with localized non-symmetric gains.

where the design parameters fn and bn denote the forward and backward feedback gains
of the nth vehicle. In deviation variables, {pn := p̄n − pd,n, un := ūn − vd, dn := d̄n}
the single-integrator model with nearest neighbor interactions is given by

ṗn = dn + un (9.1a)

un = − fn (pn − pn−1) − bn (pn − pn+1) (9.1b)

where the relative position errors pn − pn−1 and pn − pn+1 can be obtained by ranging
devices.

As illustrated in Fig. 9.2, fictitious lead and follow vehicles, respectively indexed by
0 and N +1, are added to the formation. These two vehicles are assumed to move along
their desired trajectories, implying that p0 = pN+1 = 0 and they are not considered to
belong to the formation. Hence, the control actions for the 1st and the Nth vehicles are
given by

u1 = − f1 p1 − b1 (p1 − p2)

uN = − fN (pN − pN−1) − bN pN .

In other words, the first and the last vehicles have access to their own global position
errors p1 and pN , which can be obtained by equipping them with GPS devices.

9.1.2 Double-integrator model

For the double-integrator model,

¨̄pn = d̄n + ūn, n ∈ {1, . . . , N}

we consider the controller that has an access to the relative position errors between the
neighboring vehicles and the absolute velocity errors,

ūn = − fn (p̄n − p̄n−1 − δ) − bn (p̄n − p̄n+1 + δ) − gn ( ˙̄pn − vd)
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where gn denotes the velocity feedback gain. In deviation variables, {pn := p̄n − pd,n,
vn := ˙̄pn − vd, un := ūn, dn := d̄n}, the double-integrator model is given by

p̈n = dn + un (9.2a)

un = − fn (pn − pn−1) − bn (pn − pn+1) − gn vn. (9.2b)

In matrix form, control laws (9.1b) and (9.2b) can be written as

u = −FC p = −
[
Ff Fb

] [ Cf
CTf

]
p

u = −FC
[
p
v

]
= −

[
Ff Fb Fv

]  Cf O
CTf O

O I

[ p
v

]

where p, v, and u denote the position error, the velocity error, and the control input
vectors, e.g., p = [ p1 · · · pN ]T . Furthermore, the N × N diagonal feedback gains are
determined by

Ff := diag {fn}, Fb := diag {bn}, Fv := diag {gn}

and Cf is a sparse Toeplitz matrix with 1 on the main diagonal and −1 on the first
lower sub-diagonal. For example, for N = 4,

Ff =


f1 0 0 0
0 f2 0 0
0 0 f3 0
0 0 0 f4

 , Cf =


1 0 0 0
−1 1 0 0

0 −1 1 0
0 0 −1 1

 . (9.3)

Thus, Cf p determines the vector of the relative position errors pn− pn−1 between each
vehicle and the one in front of it; similarly, CTf p determines the vector of the relative
position errors pn − pn+1 between each vehicle and the one behind it.

We will also consider formations with no fictitious followers. In this case, the Nth
vehicle only uses relative position error with respect to the (N − 1)th vehicle, i.e.,
bN = 0 implying that uN = −fN (pN − pN−1) for the single-integrator model and
uN = −fN (pN − pN−1)− gN vN for the double-integrator model.

9.1.3 Closed-loop stability: the role of fictitious vehicles

We next show that at least one fictitious vehicle is needed in order to achieve closed-loop
stability. This is because the absence of GPS devices in the formation prevents vehicles
from tracking their absolute desired trajectories.

For the single-integrator model, the state-feedback gain Kp = Ff Cf + FbC
T
f is a

structured tridiagonal matrix satisfying Kp 1 =
[
f1 0 · · · 0 bN

]T
where 1 is the
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vector of all ones. If neither the 1st nor the Nth vehicle has access to its own global
position, i.e., f1 = bN = 0, then Kp has a zero eigenvalue with corresponding eigenvector
1. Hence, the closed-loop system is not asymptotically stable regardless of the choice
of the feedback gains {fn}Nn= 2 and {bn}N−1

n= 1.
For the double-integrator model, the action of Acl = A − B2FC on [1T 0T ]T is

given by [
O I
−Kp −Fv

] [
1

0

]
=

[
0

−Kp 1

]
where 0 is the N -vector of all zeros. Thus, if f1 = bN = 0 then Acl has a zero eigenvalue
with corresponding eigenvector [ 1T 0T ]T . Therefore, for both the single- and the
double-integrator models, we need at least one vehicle with access to its global position
in order to achieve closed-loop stability.

9.1.4 Structured H2 problem

The state-space representation of the vehicular formation is given by

ẋ = Ax + B1 d + B2 u
y = C x, u = −F y.

For the single-integrator model (9.1), the state vector is x = p, the measured output y
is given by the relative position errors between the neighboring vehicles, and

A = O, B1 = B2 = I, C =

[
Cf
CTf

]
, F =

[
Ff Fb

]
. (VP1)

For the double-integrator model (9.2), the state vector is x = [ pT vT ]T , the measured
output y is given by the relative position errors between the neighboring vehicles and
the absolute velocity errors, and

A =

[
O I
O O

]
, B1 = B2 =

[
O
I

]
, C =

 Cf O
CTf O

O I

 , F =
[
Ff Fb Fv

]
.

(VP2)
Here, O and I denote the zero and identity matrices, and {Ff , Fb, Fv, Cf} are defined
in (9.3).

Upon closing the loop, we have

ẋ = (A − B2FC)x + B1d

z =

[
Q1/2 x

r1/2 u

]
=

[
Q1/2

−r1/2FC

]
x
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Figure 9.3: Formation of vehicles with localized symmetric gains.

where z encompasses the penalty on both the state and the control. Here, Q is a sym-
metric positive semi-definite matrix and r is a positive scalar. The objective is to design
the structured feedback gain F such that the influence of the white stochastic distur-
bance d, with zero mean and unit variance, on the performance output z is minimized
(in the H2 sense). This control problem can be formulated as

minimize J = trace
(
PB1B

T
1

)
subject to (A − B2FC)TP + P (A − B2FC) = − (Q + r CTF TFC), F ∈ S

(9.4)
where S denotes the structural subspace that F belongs to.

The necessary conditions for optimality of (9.4) are given by the set of coupled
matrix equations in F , P , and L

(A − B2FC)T P + P (A − B2FC) = −
(
Q + r CTF TFC

)
(NC-1)

(A − B2FC)L + L (A − B2FC)T = −B1B
T
1 (NC-2)

(rFCLCT ) ◦ IS = (BT
2 PLC

T ) ◦ IS . (NC-3)

Here, P and L are the closed-loop observability and controllability Gramians, ◦ denotes
the elementwise multiplication of two matrices, and the matrix IS in (NC-3) denotes the
structural identity of the subspace S under the elementwise multiplication F ◦ IS = F,
with IS = [ I I ] for the single-integrator model and IS = [ I I I ] for the double-
integrator model. For example, [Ff Fb ] ◦ [ I I ] = [Ff Fb ]. In the absence of the
fictitious follower, an additional constraint bN = 0 is imposed in (9.4) and thus, the
structural identity for the single- and the double-integrator models are given by [ I Iz ]
and [ I Iz I ], respectively. Here, Iz is a diagonal matrix with its main diagonal given
by [ 1 · · · 1 0 ].

9.2 Design of symmetric gains for the single-integrator
model: A convex problem

In this section, we design the optimal symmetric feedback gains for the single-integrator
model; see Fig. 9.3. This is a special case of the localized design, obtained by restricting
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the forward and the backward gains between the neighboring vehicles to be equal to
each other fn = bn−1 for n ∈ {2, . . . , N}. Under this assumption, we show that (9.4)
is a convex optimization problem for the single-integrator model. This implies that
the global minimum can be computed efficiently. Furthermore, in the absence of the
fictitious follower, we provide analytical expressions for the optimal feedback gains.

Let us denote k1 = f1 and kN+1 = bN and let

kn = fn = bn−1, n ∈ {2, . . . , N}. (9.5)

For the single-integrator model, the structured gain becomes a symmetric tridiagonal
matrix

K = Ff Cf + FbC
T
f

=


k1 + k2 −k2

−k2 k2 + k3
. . .

. . .
. . . −kN
−kN kN + kN+1

 . (9.6)

Consequently, Acl = −K is Hurwitz if and only if K is positive definite, in which case
the Lyapunov equation in (9.4) simplifies to

KP + PK = Q + rKK.

The application of [70, Lemma 1] transforms the problem (9.4) of optimal symmetric
design for the single-integrator model to

minimize
K

J(K) =
1

2
trace

(
QK−1 + rK

)
subject to K � 0 and K ∈ SK

(9.7)

where K ∈ SK is a linear structural constraint given by (9.6). Specifically, K = FfCf +
FbC

T
f is a symmetric tridiagonal matrix with the linear constraint (9.5). By introducing

an auxiliary variable X = XT ≥ Q1/2K−1Q1/2, we can formulate (9.7) as an SDP in X
and K

minimize
X,K

1

2
trace (X + rK)

subject to K � 0, K ∈ SK ,
[

K Q1/2

Q1/2 X

]
� 0

which can be solved using available SDP solvers. Here, we have used the Schur comple-
ment in conjunction with K > 0 to express X ≥ Q1/2K−1Q1/2 as an LMI.

Next, we exploit the structure of K to express J in (9.7) with Q = I in terms of
the feedback gains {kn}N+1

n= 1 between the neighboring vehicles. Since the inverse of the
symmetric tridiagonal matrix K can be determined analytically [71, Theorem 2.3], the
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ijth entry of K−1 is given by

(K−1)ij =
γi (γN+1 − γj)

γN+1
, j ≥ i, where γi =

i∑
n= 1

1

kn
(9.8)

yielding the following expression for J

J =
1

2
trace

(
K−1 + rK

)
=

1

2

N∑
n= 1

γn(γN+1 − γn)

γN+1
+ r

(
k1 + kN+1

2
+

N∑
n= 2

kn

)
.

The above expression for J is well-defined for {kn}N+1
n= 1 that guarantee positive definite-

ness of K in (9.6); this is because the closed-loop A-matrix is determined by Acl = −K.
The global minimizer of J can be computed using the gradient method [43].

For the formations without the fictitious follower, we next derive explicit analytical
expression for the global symmetric minimizer K = KT > 0 of (9.7) with Q = I. In
this case kN+1 = 0 and the ijth entry of K−1 in (9.8) simplifies to (K−1)ij = γi for
j ≥ i. Consequently, the unique minimum of

J =
1

2

N∑
n= 1

γn + r

(
k1

2
+

N∑
n= 2

kn

)

=
1

2

N∑
n= 1

N + 1− n
kn

+ r

(
k1

2
+

N∑
n= 2

kn

)

is attained for

k1 =
√
N/r, kn =

√
(N + 1− n)/(2r), n ∈ {2, . . . , N}. (9.9)

We also note that

trace
(
K−1

)
=

N∑
n= 1

γn =
N∑

n= 1

N + 1− n
kn

= r

(
k1 + 2

N∑
n= 2

kn

)
= r trace (K)

(9.10)
where the third equality follows from (9.9).

Figure 9.4 shows the optimal symmetric gains for a formation with N = 50 vehicles,
Q = I, and r = 1. Since the fictitious leader and the follower always move along their
desired trajectories, the vehicles that are close to them have larger gains than the other
vehicles. When no fictitious follower is present, the gains decrease monotonically from
the first to the last vehicle; see (×) in Fig. 9.4. In other words, the farther away the
vehicle is from the fictitious leader the less weight it places on the information coming
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from its neighbors. When both the fictitious leader and the follower are present, the
gains decrease as one moves from the boundary to the center of the formation; see (◦)
in Fig. 9.4.

Figure 9.4: Optimal symmetric gains for formations with follower (◦) and without
follower (×) for N = 50, Q = I, and r = 1. (×) are obtained by evaluating formula (9.9)
and (◦) are computed using the gradient method.

9.3 Homotopy-based Newton’s method

In this section, we remove the symmetric feedback gain restriction and utilize a homotopy-
based Newton’s method to solve (9.4). We solve a parameterized family of problems that
ranges between an easily solvable problem and the problem of interest. In particular,
we consider

Q(ε) = Q0 + ε (Qd − Q0) (9.11)

where Q0 is the initial weight to be selected, Qd is the desired weight, and ε ∈ [0, 1] is
the homotopy parameter. Note that Q = Q0 for ε = 0, and Q = Qd for ε = 1. The
homotopy-based Newton’s method consists of three steps: (i) For ε = 0, we find the
initial weight Q0 with respect to which a spatially uniform gain F0 is inversely optimal .
This is equivalent to solving problem (9.4) analytically with the performance weight Q0.
(ii) For 0 < ε� 1, we employ perturbation analysis to determine the first few terms in
the expansion F (ε) =

∑∞
n= 0 ε

nFn. (iii) For larger values of ε, we use Newton’s method
to solve (9.4). We gradually increase ε and use the structured optimal gain obtained
for the previous value of ε to initialize the next round of iterations. This process is
repeated until the desired value ε = 1 is reached.

In the remainder of this section, we focus on the single-integrator model. In Sec-
tion 9.4, we solve problem (9.4) for the double-integrator model.
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9.3.1 Spatially uniform symmetric gain: Inverse optimality for ε = 0

One of the simplest localized strategies is to use spatially uniform gain, where Ff and
Fb are diagonal matrices with fn = f and bn = b for all n and some positive f and b.
In particular, for Ff = Fb = I it is easy to show closed-loop stability and to find the
performance weight Q0 with respect to which the spatially uniform symmetric gain

K0 = F0C =
[
I I

] [ Cf
CTf

]
= T

is inversely optimal. The problem of inverse optimality amounts to finding the per-
formance weight Q0 for which an a priori specified K0 is the corresponding optimal
state-feedback gain [72, 73]. From linear quadratic regulator theory, the optimal state-
feedback gain is given by K0 = R−1BT

2 P0 where P0 is the positive definite solution
of

ATP0 + P0A + Q0 − P0B2R
−1BT

2 P0 = 0.

For the kinematic model (VP1), A = O and B2 = I, with R = rI, we have K0 = r−1P0

and Q0 − r−1P0P0 = 0. Therefore, the state penalty Q0 = rK2
0 = rT 2 guarantees

inverse optimality of the spatially uniform symmetric gain K0. The above procedure of
finding Q0 can be applied to any structured gain F0 that yields a symmetric positive
definite K0, e.g., the optimal symmetric gain of Section 9.2.

9.3.2 Perturbation analysis for ε� 1

We next utilize perturbation analysis to solve (9.4) with Q(ε) given by (9.11) for ε� 1.
For small ε, by representing P , L, and F as

P =
∞∑
n= 0

εnPn, L =
∞∑
n= 0

εnLn, F =
∞∑
n= 0

εnFn

substituting in (NC-1)-(NC-3), and collecting same-order terms in ε, we obtain the set
of equations (PA) with A0 := A − B2F0C. Note that these equations are conveniently
coupled in one direction, in the sense that for any n ≥ 1, O(εn) equations depend only
on the solutions of O(εm) equations for m ≤ n. In particular, it is easy to verify that
the first and the third equations of O(1) are satisfied with K0 = F0C = r−1BT

2 P0 and
with Q0 = rK2

0 identified in Section 9.3.1. Thus, the matrix L0 can be obtained by
solving the second equation of O(1), and the matrices P1, F1, and L1 can be obtained by
solving the first, the third, and the second equations of O(ε), respectively. The higher
order terms Fn, Pn, and Ln can be determined in a similar fashion. The matrix F found
by this procedure is the unique optimal solution of the control problem (9.4) for ε� 1.
This is because the equations (PA), under the assumption of convergence for small ε,
give a unique matrix F (ε) =

∑∞
n= 0 ε

nFn.
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O(1) :


AT0 P0 + P0A0 = −(Q0 + r CTF T0 F0C)

A0L0 + L0A
T
0 = −B1B

T
1

(rF0CL0C
T ) ◦ IS = (BT

2 P0L0C
T ) ◦ IS

O(ε) :


AT0 P1 + P1A0 = −(Qd −Q0)

A0L1 + L1A
T
0 = (B2F1C)L0 + L0(B2F1C)T

(rF1CL0C
T ) ◦ IS = (BT

2 P1L0C
T ) ◦ IS

O(ε2) :


AT0 P2 + P2A0 = (B2F1C)TP1 + P1(B2F1C) − rCTF T1 F1C

A0L2 + L2A
T
0 = (B2F1C)L1 + L1(B2F1C)T +

(B2F2C)L0 + L0(B2F2C)T

(rF2CL0C
T ) ◦ IS = (BT

2 P1L1C
T + BT

2 P2L0C
T − rF1CL1C

T ) ◦ IS
... ...

(PA)

We next provide analytical expressions for F1 = [F
(1)
f F

(1)
b ] obtained by solving the

O(ε) equations in (PA) with r = 1, Q0 = T 2, and Qd = I. When a fictitious follower is
present, we have

f
(1)
n =

n(n−N − 1)(4n(N + 1)−N(2N + 7) + 1)

12 (N2 − 1)
− 1

2

b
(1)
n =

n(N + 1− n)(4n(N + 1)−N(2N + 1)− 5)

12 (N2 − 1)
− 1

2

(9.12)

where f
(1)
n and b

(1)
n denote the nth diagonal entries of F

(1)
f and F

(1)
b . From (9.12) it

follows that f
(1)
n = b

(1)
N+1−n for n ∈ {1, . . . , N}. When a fictitious follower is not present,

we have

f
(1)
n =

1

2
(−n2 + (N + 1)n − 1), n ∈ {1, . . . , N − 1}

f
(1)
N =

1

2
(N − 1),

b
(1)
n =

1

2
(n2 − Nn − 1), n ∈ {1, . . . , N − 1}

b
(1)
N = 0.

To compute the optimal structured feedback gain for larger values of ε, we use
F (ε) obtained from perturbation analysis to initialize Newton’s method, as described
in Section 9.3.3.
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9.3.3 Newton’s method for larger values of ε

In this section, we employ Newton’s method to solve the necessary conditions for opti-
mality (NC-1)-(NC-3) as ε is gradually increased to 1. Newton’s method is an iterative
descent algorithm for finding local minima in optimization problems [43]. Specifically,
given an initial stabilizing structured gain F 0, a decreasing sequence of the objective
function {J(F i)} is generated by updating F according to F i+1 = F i + si F̃ i. Here, F̃ i

is the Newton direction that satisfies the structural constraint and si is the step-size.
For small ε, we initialize Newton’s method using F (ε) obtained from the perturba-

tion expansion up to the first order in ε, F (ε) = F0 + εF1. We then increase ε slightly
and use the optimal structured gain resulting from Newton’s method at the previous ε
to initialize the next round of iterations. We continue increasing ε gradually until de-
sired value ε = 1 is reached, that is, until the optimal structured gain F for the desired
Qd is obtained.

Since the homotopy-based Newton’s method solves a family of optimization problems
parameterized by ε, the optimal feedback gain is a function of ε ∈ [0, 1]. To see the
incremental change relative to the spatially uniform gain F0, we consider the difference
between the optimal forward gain fn(ε) and the uniform gain fn(0) = 1,

f̃n(ε) := fn(ε) − fn(0) = fn(ε) − 1.

Figure 9.5a shows the normalized profile f̃(ε)/‖f̃(ε)‖ for a formation with fictitious
follower, N = 50, r = 1, Q0 = T 2, and Qd = I. The values of ε are determined by
20 logarithmically spaced points between 10−4 and 1. As ε increases, the normalized
profile changes from an almost sinusoidal shape (cf. analytical expression in (9.12)) at
ε = 10−4 to an almost piecewise linear shape at ε = 1. Note that the homotopy-based
Newton’s method converges to the same feedback gains at ε = 1 when it is initialized
by the optimal symmetric controller obtained in Section 9.2.

Since the underlying path-graph exhibits symmetry between the edge pairs asso-
ciated with fn and bN+1−n, the optimal forward and backward gains satisfy a central
symmetry property,

fn = bN+1−n, n ∈ {1, . . . , N}

for all ε ∈ [0, 1]; see Fig. 9.5b for ε = 1. We note that the first vehicle has a larger
forward gain than other vehicles; this is because it neighbors the fictitious leader. The
forward gains decrease as one moves away from the fictitious leader; this is because
information about the absolute desired trajectory of the fictitious leader becomes less
accurate as it propagates down the formation. Similar interpretation can be given to
the optimal backward gains, which monotonically increase as one moves towards the
fictitious follower.

Since the 1st vehicle has a negative backward gain (see Fig. 9.5b), if the distance
between the 1st and the 2nd vehicles is greater than the desired value δ, then the 1st
vehicle distances itself even further from the 2nd vehicle. On the other hand, if the
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(a) (b)

Figure 9.5: Formation with fictitious follower, N = 50, r = 1, Q0 = T 2, and Qd = I. (a)
Normalized optimal forward gain f̃(ε)/‖f̃(ε)‖ changes from an almost sinusoidal shape
(cf. analytical expression in (9.12)) at ε = 10−4 to an almost piecewise linear shape at
ε = 1. (b) Optimal forward (◦) and backward (+) gains at ε = 1.

distance is less than δ, then the 1st vehicle pulls itself even closer to the 2nd vehicle.
This negative backward gain of the 1st vehicle can be interpreted as follows: Since the
1st vehicle has access to its global position, it aims to correct the absolute positions of
other vehicles in order to enhance formation coherence. If the 2nd vehicle is too close to
the 1st vehicle, then the 1st vehicle moves towards the 2nd vehicle to push it back; this
in turn pushes other vehicles back. If the 2nd vehicles is too far from the 1st vehicle,
then the 1st vehicle moves away from the 2nd vehicle to pull it forward; this in turn
pulls other vehicles forward. Similar interpretation can be given to the negative forward
gain of the Nth vehicle that neighbors the fictitious follower. Also note that the forward
gain of the Nth vehicle becomes positive when the fictitious follower is removed from
the formation; see Fig. 9.6c. This perhaps suggests that negative feedback gains of the
1st and the Nth vehicles are a consequence of the fact that both of them have access to
their own global positions.

As shown in Figs. 9.6a and 9.6b, the normalized optimal gains for the formation
without the fictitious follower also change continuously as ε increases to 1. In this case,
however, the optimal forward and backward gains do not satisfy the central symmetry;
see Fig. 9.6c. Since the optimal controller puts more emphasis on the vehicles ahead
when the fictitious follower is not present, the forward gains have larger magnitudes
than the backward gains. As in the formations with the fictitious follower, the optimal
forward gains decrease monotonically as one moves away from the fictitious leader. On
the other hand, the optimal backward gains at first increase as one moves away from
the 1st vehicle and then decrease as one approaches the Nth vehicle in order to satisfy
the constraint bN = 0.
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(a) (b)

(c)

Figure 9.6: Formation without fictitious follower, N = 50, r = 1, Q0 = T 2, and Qd = I.
Normalized optimal (a) forward and (b) backward gains. (c) Optimal forward (◦) and
backward (+) gains at ε = 1.
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9.4 Optimal localized design for the double-integrator model

In this section, we solve (9.4) for the double-integrator model using the homotopy-
based Newton’s method. For a formation in which each vehicle – in addition to relative
positions with respect to its immediate neighbors – has access to its own velocity , our
results highlight similarity between optimal forward and backward position gains for
the single- and the double-integrator models. We further show that the performance
measures exhibit similar scaling properties to those found in single-integrators. We also
establish convexity of (9.4) for the double-integrator model by restricting the controller
to symmetric position and uniform diagonal velocity gains.

The perturbation analysis and the homotopy-based Newton’s method closely follow
the procedure described in Sections 9.3.2 and 9.3.3, respectively. In particular, F0 =
[αI αI βI ] yields K0 = F0C = [αT βI ]. It is readily shown that, for positive α
and β with β2 > 8α, this spatially uniform structured feedback gain is stabilizing and
inversely optimal with respect to

Q0 =

[
Qp O
O Qv

]
, Qp = rα2 T 2, Qv = r(β2 I − 2αT ), r > 0.

In what follows, we choose α = 1 and β = 3 and employ the homotopy-based
Newton’s method to solve (9.4) for the double-integrator model. For a formation with
fictitious follower, N = 50, Q = I, and r = 1 the optimal forward and backward position
gains are shown in Fig. 9.7a and the optimal velocity gains are shown in Fig. 9.7b. We
note remarkable similarity between the optimal position gains for the single- and the
double-integrator models; cf. Fig. 9.7a and Fig. 9.5b. For a formation without fictitious
follower, the close resemblance between the optimal position gains for both models is
also observed.

For the double-integrator model with K = FC = [Kp βI ] and fixed β > 0 we next
show convexity of (9.4) with respect to Kp = KT

p > 0. The Lyapunov equation in (9.4),
for the block diagonal state weight Q with components Q1 and Q2, can be rewritten in
terms of the components of P with

P =

[
P1 P0

P T0 P2

]
that is,

KpP
T
0 + P0Kp = Q1 + KpKp (9.13a)

KpP2 − P1 + βP0 = βKp (9.13b)

2βP2 = P0 + P T0 + Q2 + β2I. (9.13c)
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(a) (b)

Figure 9.7: Double-integrator model with fictitious follower, N = 50, Q = I and r = 1.
(a) The optimal forward (◦) and backward gains (+); (b) the optimal velocity gains (�).

Linearity of the trace operator in conjunction with B1 = [O I ]T and (9.13c) yields

J = trace (P2) =
1

2β
trace

(
2P0 +Q2 + β2I

)
=

1

2β
trace

(
K−1
p Q1 +Kp +Q2 + β2I

)
where the last equation is obtained by multiplying (9.13a) from the left with K−1

p and
using trace (K−1

p P0Kp) = trace (P0). For Q1 ≥ 0, similar argument as in Section 9.2

can be used to conclude convexity of J with respect to Kp = KT
p > 0.



Chapter 10

Performance of vehicular
formations with nearest neighbor
interactions

We consider how the performance of the optimally-controlled vehicular formation scales
with the number of vehicles. We consider both macroscopic and microscopic perfor-
mance measures based on whether attention is paid to the absolute position error of
each vehicle or the relative position error between neighboring vehicles. The macroscopic
performance measure quantifies the resemblance of the formation to a rigid lattice. This
performance measure is also referred to as the coherence of the formation [37]. It was
shown in [37] that, for localized symmetric feedback with uniform bounds on control
energy at each vehicle, it is impossible to have large coherent formations that behave
like rigid lattice. This was established by exhibiting linear scaling O(N) of macroscopic
performance measure with the number of vehicles N . It is thus of interest to exam-
ine the coherence of vehicular formations with the optimal localized feedback design
introduced in Chapter 9.

When the control penalty in the quadratic performance objective is formation-size-
independent, it turns out that the optimal symmetric and non-symmetric controllers
asymptotically provide O(

√
N) and O( 4

√
N) scalings of formation coherence. However,

these controllers require similar growth with N of the control energy per vehicle. We
show that bounded control energy can be obtained by judicious selection of an N -
dependent control penalty, leading to O(N) and O(

√
N) scalings of formation coherence

for the optimal symmetric and non-symmetric controllers, respectively. These results
are summarized in Table 10.1 and they hold for both single- and double-integrators
for formations in which each vehicle has access to its own velocity ; see Sections 10.2
and 10.3 for details.

92
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Table 10.1: Summary of asymptotic scalings with the number of vehicles N for the opti-
mal symmetric and non-symmetric position gains. The N -independent control penalty,
R = r0I, in the quadratic performance objective leads to similar growth with N of for-
mation coherence and control energy (per vehicle). On the other hand, the N -dependent
control penalty that provides bounded control energy yields less favorable coherence.

Optimal
position gains

Control penalty
R = rI

Control energy
(per vehicle)

Formation
coherence

symmetric r(N) = r0

= const.

O(
√
N) O(

√
N)

non-symmetric O( 4
√
N) O( 4

√
N)

symmetric r(N) ∼ N O(1) O(N)

non-symmetric r(N) ∼
√
N O(1) O(

√
N)

In addition, we provide a spatially uniform non-symmetric controller that outper-
forms the optimal spatially varying symmetric controller in the scaling trend of macro-
scopic performance measure. This indicates that departure from symmetric gains can
improve coherence of large-scale formations and that the controller structure may play
a more important role than the optimal selection of feedback gains. Our results show
that the localized controller that achieves the best performance is both non-symmetric
and spatially-varying .

This chapter is organized as follows. In Section 10.1, we introduce the microscopic
and macroscopic performance measures that quantify the local and global position er-
rors of vehicular formations. In Section 10.2, we examine the performance of spatially
uniform symmetric and non-symmetric controllers, and optimal symmetric and non-
symmetric controllers for the single-integrator model. In Section 10.3, we consider the
performance of localized controllers for the double-integrator model.

10.1 Performance of optimal localized controller

To evaluate the performance of the optimal localized controller F , obtained by solv-
ing (9.4) with Q = I, we consider the closed-loop system

ẋ = (A − B2FC)x + B1d

ζ =

[
ζ1

ζ2

]
=

[
Q

1/2
s

−FC

]
x, s = g or s = l,

(10.1)

where ζ1 is the global or local performance output and ζ2 is the control input. Motivated
by [37], we examine two state performance weights for the single-integrator model
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• Macroscopic (global): Qg = I,

• Microscopic (local): Ql = T ,

where T is an N ×N symmetric Toeplitz matrix with its first row given by

[ 2 − 1 0 · · · 0 ] ∈ RN .

For example, for N = 4,

T =


2 −1 0 0
−1 2 −1 0

0 −1 2 −1
0 0 −1 2

 . (10.2)

The macroscopic performance weight Qg = I penalizes the global (absolute) position
errors,

ζT1 ζ1 = pTQg p =
N∑

n= 1

p2
n

and the microscopic performance weight Ql = T penalizes the local (relative) position
errors,

ζT1 ζ1 = pTQl p =
N∑

n= 0

(pn − pn+1)2

with p0 = pN+1 = 0. These state weights induce the macroscopic and microscopic
performance measures determined by the formation-size-normalized H2 norm

Πs(N) =
1

N
‖G1‖22, s = g or s = l,

where G1 is the transfer function of (10.1) from d to ζ1. On the other hand, the
microscopic performance measure Πl quantifies how well regulated the distances between
the neighboring vehicles are. We will also examine the formation-size-normalized control
energy (variance) of the closed-loop system (10.1),

Πctr(N) =
1

N
‖G2‖22,

which is determined by the H2 norm of the transfer function G2 from d to ζ2 = u.
Similarly, for the double-integrator model, we use the following performance weights

• Macroscopic (global), Qg =

[
I O
O I

]
,

• Microscopic (local), Ql =

[
T O
O I

]
.
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10.2 Performance vs. size for the single-integrator model

In this section, we study the performance of the optimal symmetric and non-symmetric
gains obtained in Sections 9.2 and 9.3.3. This is done by examining the dependence on
the formation size of performance measures Πg, Πl, and Πctr introduced in Section 10.1.
Our results highlight the role of non-symmetry and spatial variations on the scaling
trends in large-scale formations. They also illustrate performance improvement achieved
by the optimal controllers relative to spatially uniform symmetric and non-symmetric
feedback gains.

For the spatially uniform symmetric gain with {fn, bn} in (9.1b) being fn = bn =
α > 0, we show analytically that Πg is an affine function of N . This implies that
the formation coherence scales linearly with N irrespective of the value of α. We also
analytically establish that the spatially uniform non-symmetric gain with {fn = α > 0,
bn = 0} (look-ahead strategy) provides a square-root asymptotic dependence of Πg on
N . Thus, symmetry breaking between the forward and backward gains may improve
coherence of large-scale formations. We then investigate how spatially varying optimal
feedback gains, introduced in Sections 9.2 and 9.3.3, influence coherence of the forma-
tion. We show that the optimal symmetric gain provides a square-root dependence of
Πg on N and that the optimal non-symmetric gain provides a fourth-root dependence
of Πg on N .

Even though we are primarily interested in asymptotic scaling of the global perfor-
mance measure Πg, we also examine the local performance measure Πl and the control
energy Πctr. For the single-integrator model (VP1) in Chapter 9, the closed-loop sys-
tem (10.1) simplifies to

ẋ = −FC x + d

ζ =

[
ζ1

ζ2

]
=

[
Q

1/2
s

−FC

]
x, Qs =

{
I, s = g
T, s = l.

Then

Πs =
1

N
trace (LQs)

Πctr =
1

N
trace

(
LCTF TFC

) (10.3)

where L denotes the closed-loop controllability Gramian,

(−FC)L + L (−FC)T = − I. (10.4)

The asymptotic scaling properties of Πg, Πl, and Πctr, for the above mentioned
spatially uniform controllers and the spatially varying optimal controllers, obtained
by solving (9.4) with Q = I and r = 1, are summarized in Table 10.2. For both
spatially uniform symmetric and look-ahead strategies, we analytically determine the
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Table 10.2: Asymptotic dependence of Πg, Πl, and Πctr on the formation size N for uni-
form symmetric, uniform non-symmetric (look-ahead strategy), and optimal symmetric
and non-symmetric gains of Sections 9.2 and 9.3.3 with Q = I and r = 1. The results
in the first three rows are determined analytically ; the scalings in the last two rows are
estimated based on numerical computations.

Controller Πg Πl Πctr

uniform symmetric with/without follower O(N) O(1) O(1)

uniform non-symmetric O(
√
N) O(1) O(1)

optimal symmetric without follower O(
√
N) O(1/

√
N) O(

√
N)

optimal symmetric with follower O(
√
N) O(1/

√
N) O(

√
N)

optimal non-symmetric with/without follower O( 4
√
N) O(1/ 4

√
N) O( 4

√
N)

dependence of these performance measures on the formation size in Sections 10.2.1
and 10.2.2. Furthermore, for the formation without the fictitious follower subject to
the optimal symmetric gains, we provide analytical results in Section 10.2.3. For the
optimal symmetric and non-symmetric gains in the presence of fictitious followers, the
scaling trends are obtained with the aid of numerical computations in Section 10.2.3.

Several comments about the results in Table 10.2 are given next. First, in contrast to
the spatially uniform controllers, the optimal symmetric and non-symmetric gains, re-
sulting from an N -independent control penalty r in (9.4), do not provide uniform bounds
on the control energy per vehicle, Πctr. This implies the trade-off between the formation
coherence Πg and control energy Πctr in the design of the optimal controllers. It is thus
of interest to examine formation coherence for optimal controllers with bounded control
energy per vehicle (see Remark 4). Second, the controller structure (e.g., symmetric
or non-symmetric gains) plays an important role in the formation coherence. In par-
ticular, departure from symmetry in localized feedback gains can significantly improve
coherence of large-scale formations (see Remark 5).

10.2.1 Spatially uniform symmetric gain

For the spatially uniform symmetric controller with fn = bn = α > 0, we next show
that Πg is an affine function of N and that, in the limit of an infinite number of vehicles,
both Πl and Πctr become formation-size-independent. These results hold irrespective of
the presence of the fictitious follower.

For the single-integrator model with the fictitious follower we have K = FC = αT
(see (10.2) for the definition of T ), and L = T−1/(2α) solves the Lyapunov equa-
tion (10.4) [70, Lemma 1]. Since the nth diagonal entry of T−1 is determined by

(T−1)nn =
n (N + 1− n)

N + 1
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from (10.3) we conclude that the global performance measure Πg is an affine function
of N , and that both Πl and Πctr are formation-size-independent,

Πg =
1

2αN
trace

(
T−1

)
=

1

2αN

N∑
n= 1

n − 1

2αN(N + 1)

N∑
n= 1

n2 =
N + 2

12α

Πl =
1

2αN
trace

(
T T−1

)
=

1

2α

Πctr =
1

2αN
trace

(
α2 T T T−1

)
= α.

For the formation without the fictitious follower, the following expressions

Πg =
N + 1

4α
, Πl =

1

α
, Πctr =

α(3N + 1)

2N

imply that, for the spatially uniform symmetric controller, the asymptotic scaling trends
do not depend on the presence of the fictitious follower.

10.2.2 Spatially uniform non-symmetric gain (look-ahead strategy)

We next examine the asymptotic scaling of the performance measures for the spatially
uniform non-symmetric gain with {fn = α > 0, bn = 0}. We establish the square-root
scaling of Πg with N and the formation-size-independent scaling of Πl. Furthermore, in
the limit of an infinite number of vehicles, we show that Πctr becomes N -independent.

For the single-integrator model with K = FC = αCf (see (9.3) for the definition of
Cf ), the solution of the Lyapunov equation (10.4) is given by

L =

∫ ∞
0

e−αCf t e−αC
T
f t dt. (10.5)

As shown below, the inverse Laplace transform of (sI + αCf )−1 can be used to determine
the analytical expression for e−αCf t, yielding the following formulae,

Πg(N) =
1

N

N∑
n= 1

Lnn =
1

N

N∑
n= 1

αΓ(n+ 1/2)√
π Γ(n)

=
2αΓ(N + 3/2)

3
√
π Γ(N + 1)

Πl = α

Πctr = α − 1

N
LNN

with Γ(·) denoting the Gamma function.
We next show that, in the limit of an infinite number of vehicles, a look-ahead

strategy for the single-integrator model provides the square-root dependence of Πg on



98

N and the formation-size-independent Πl and Πctr. The solution of the Lyapunov
equation (10.4) with FC = αCf is determined by (10.5). Since the ith entry of the
first column of the lower triangular Toeplitz matrix (sI + αCf )−1 is αi/(s + α)i, the
corresponding entry of the matrix exponential in (10.5) is determined by the inverse
Laplace transform of αi/(s+ α)i, that is,

α (αt)i−1 e−αt

(i− 1)!
.

Thus, the nth element on the main diagonal of the matrix L in (10.5) is given by

Lnn =

∫ ∞
0

n∑
i= 1

(
αe−αt

(αt)i−1

(i− 1)!

)2

dt =
αΓ(n+ 1/2)√

π Γ(n)
=

α (2n)!

22n(n− 1)!n!
(10.6)

thereby yielding

Πg =
N∑

n= 1

Lnn
N

=
2αΓ(N + 3/2)

3
√
π Γ(N + 1)

=
2

3

α (2N + 2)!

22N+2N !(N + 1)!
. (10.7)

A similar procedure can be used to show that the n(n+ 1)th entry of L is determined

Ln(n+1) = L(n+1)(n+1) −
α

2
, n = 1, . . . , N − 1. (10.8)

Now, from (10.8) and the fact that L11 = α/2, we obtain

Πl =
1

N
trace (TL) =

2

N

(
N∑

n= 1

Lnn −
N−1∑
n= 1

Ln(n+1)

)
= α.

Similarly,

Πctr =
1

N
trace

(
LCTf Cf

)
=

2

N

(
N∑

n= 1

Lnn −
N−1∑
n= 1

Ln(n+1)

)
− 1

N
LNN

= α − 1

N
LNN .

Using Stirling’s approximation n! ≈
√

2πn (n/e)n for large n, we have

lim
n→∞

Lnn√
n

= lim
n→∞

α√
π

√
n

n− 1

(
n

n− 1

)n−1 1

e
=

α√
π
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where we used the fact that

lim
n→∞

(
n

n− 1

)n−1

= e.

Consequently,
lim

N→∞
Πctr(N) = α.

From (10.6) and (10.7), it follows that Πg = (2/3)L(N+1)(N+1) and thus,

lim
N→∞

Πg(N)√
N

=
2α

3
√
π
.

We conclude that Πg asymptotically scales as a square-root function of N and that Πctr

is formation-size-independent as N increases to infinity.

10.2.3 Optimal symmetric and non-symmetric controllers

We next examine the asymptotic scaling of the performance measures for the optimal
symmetric and non-symmetric gains of Sections 9.2 and 9.3.3. For the formation with-
out the fictitious follower, we analytically establish that the optimal symmetric gains
asymptotically provide O(

√
N), O(1/

√
N), and O(

√
N) scalings of Πg, Πl, and Πctr,

respectively. We then use numerical computations to (i) confirm these scaling trends
for the optimal symmetric gains in the presence of the fictitious follower; and to (ii)
show a fourth-root dependence of Πg and Πctr on N and an O(1/ 4

√
N) dependence of

Πl for the optimal non-symmetric gains. All these scalings are obtained by solving (9.4)
with the formation-size-independent control penalty r and Q = I. We also demonstrate
that uniform control variance (per vehicle) can be obtained by judicious selection of an
N -dependent r. For the optimal symmetric and non-symmetric gains, this constraint
on control energy (variance) increases the asymptotic dependence of Πg on N to linear
and square-root, respectively.

For the formation without the fictitious follower, the optimal symmetric gains are
given by (9.9). As shown in (9.10), trace (K−1) = trace (rK), thereby yielding

Πg = rΠctr =
1

2N
trace

(
K−1

)
=

√
r

2N

(
√
N +

N−1∑
n= 1

√
2n

)
. (10.9)

In the limit of an infinite number of vehicles,

lim
N→∞

Πg(N)√
N

= lim
N→∞

N−1∑
n= 1

√
rn

2N

1

N
=

∫ 1

0

√
rx

2
dx =

√
2r

9

which, for an N -independent r, leads to an asymptotic square-root dependence of Πg
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and Πctr on N ,

Πg(N) =

√
2 rN

9
+

√
r

4N
, N � 1

Πctr(N) =

√
2N

9r
+

1√
4 rN

, N � 1.

(10.10)

Similar calculation can be used to obtain O(1/
√
N) asymptotic scaling of Πl.

We next use numerical computations to study the scaling trends for the optimal
symmetric and non-symmetric gains in the presence of fictitious followers. The optimal
symmetric gain (cf. (◦) in Fig. 9.4) provides a square-root scaling of Πg with N ; see
Fig. 10.1a. On the other hand, the optimal non-symmetric gain (cf. Fig. 9.5b) leads
to a fourth-root scaling of Πg with N ; see Fig. 10.1b. The local performance measure
Πl decreases monotonically with N for both controllers, with Πl scaling as O(1/

√
N)

for the optimal symmetric gain and as O(1/ 4
√
N) for the optimal non-symmetric gain;

see Fig. 10.2. For both the optimal symmetric and non-symmetric controllers, our com-
putations indicate equivalence between the control energy and the global performance
measure when r = 1. (For the optimal symmetric gain without the fictitious follower
and r = 1, we have analytically shown that Πctr = Πg; see formula (10.9).) Therefore,
the asymptotic scaling of the formation-size-normalized control energy is O(

√
N) for the

optimal symmetric gain and O( 4
√
N) for the optimal non-symmetric gain. Finally, for

the formations without the fictitious follower, our computations indicate that the opti-
mal non-symmetric gains also asymptotically provide O( 4

√
N), O(1/ 4

√
N), and O( 4

√
N)

scalings of Πg, Πl, and Πctr, respectively.

Remark 4. In contrast to the spatially uniform controllers, the optimal structured con-
trollers of Sections 9.2 and 9.3.3, resulting from an N -independent control penalty r
in (9.4), do not provide uniform bounds on the formation-size-normalized control en-
ergy. These controllers are obtained using H2 framework in which control effort rep-
resents a ‘soft constraint’. It is thus of interest to examine formation coherence for
optimal controllers with bounded control energy per vehicle. For formations without
the fictitious follower, from (10.10) we see that the optimal symmetric controller with
r(N) = 2N/9 asymptotically yields Πctr ≈ 1 and Πg ≈ 2N/9 + 1/(3

√
2). Similarly,

for formations with followers, the optimal gains that result in Πctr ≈ 1 for large N can
be obtained by changing control penalty from r = 1 to r(N) = 0.08N for the optimal
symmetric gain and to r(N) = 0.175

√
N for the optimal non-symmetric gain1. These

N -dependent control penalties provide an affine scaling of Πg with N for the optimal
symmetric gain and a square-root scaling of Πg with N for the optimal non-symmetric
gain; see Fig. 10.3. The asymptotic scalings for formations without followers subject to
the optimal symmetric gains are obtained analytically (cf. (10.10)); all other scalings
are obtained with the aid of computations.

1Both spatially uniform symmetric and look-ahead strategies with α = 1 yield Πctr = 1 in the limit
of an infinite number of vehicles.
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(a) (b)

Figure 10.1: (a) Square-root scaling of Πg (∗) using optimal symmetric gain of Sec-
tion 9.2, 0.2784

√
N + 0.0375 (curve); and (b) Fourth-root scaling of Πg (◦) using op-

timal non-symmetric gain of Section 9.3.3, 0.4459 4
√
N − 0.0866 (curve). The optimal

controllers are obtained by solving (9.4) with Q = I and r = 1 for the formation with
the fictitious follower.

(a) (b)

Figure 10.2: (a) Πl (∗) using the optimal symmetric gain of Section 9.2, 1.8570/
√
N +

0.0042 (curve); and (b) Πl (◦) using the optimal non-symmetric gain of Section 9.3.3,
1.4738/ 4

√
N+0.0191 (curve). The optimal controllers are obtained by solving (9.4) with

Q = I and r = 1 for the formation with the fictitious follower.
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Figure 10.3: Πg using four structured gains with Πctr ≈ 1 for formations with fictitious
follower: spatially uniform symmetric (�), N/12 + 1/6 (blue curve), spatially uniform
non-symmetric (/), 2

√
N/(3

√
π) (green curve), optimal symmetric (∗), 0.0793N+0.0493

(black curve), and optimal non-symmetric (◦), 0.1807
√
N − 0.0556 (red curve).

Remark 5. Figure 10.3 illustrates the global performance measure Πg obtained with
four aforementioned structured controllers that asymptotically yield Πctr ≈ 1 for forma-
tions with fictitious follower. Note that the simple look-ahead strategy outperforms the
optimal symmetric gain; O(

√
N) vs. O(N) scaling. Thus, departure from symmetry in

localized feedback gains can significantly improve coherence of large-scale formations. In
particular, we have provided an example of a spatially uniform non-symmetric controller
that yields better scaling trends than the optimal spatially varying controller obtained by
restricting design to symmetric gains. Given the extra degrees of freedom in the optimal
symmetric gain this is perhaps a surprising observation, indicating that the network
topology may play a more important role than the optimal selection of the feedback gains
in performance of large-scale interconnected systems. On the other hand, our results
show that the optimal localized controller that achieves the best performance is both
non-symmetric and spatially-varying.

10.3 Performance vs. size for the double-integrator model

For the double-integrator model with each vehicle having access to its own velocity , we
show that the performance measures exhibit similar scaling properties to those found in
single-integrators. Specifically, the optimal localized controller obtained by solving (9.4)
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with Q = I and r = 1 provides a fourth-root dependence of the macroscopic performance
measure Πg on N ; see Fig. 10.4a. Furthermore, the microscopic performance measure
and control energy asymptotically scale as O(1/ 4

√
N) and O( 4

√
N), respectively; see

Fig. 10.4b and Fig. 10.4c.
For comparison, we next provide the scaling trends of the performance measures

for both the spatially uniform symmetric and look-ahead controllers. As in the single-
integrator model, the spatially uniform symmetric gain F0 = [αI αI βI ] provides
linear scaling of Πg with N and the formation-size-independent Πl and Πctr,

Πg(N) =
N + 2

12αβ
+

1

2β

Πl =
1

2αβ
+

1

2β

Πctr =
α

β
+
β

2
.

On the other hand, for the double-integrator model the performance of the look-ahead
strategy K = FC = [αCf βI ] heavily depends on the choices of α and β. In particular,
for α = 1/4 and β = 1, using similar techniques as in Section 10.2.2, we obtain

Πg(N) =
1√
π

N∑
n= 1

(N − n+ 1)

2N Γ(2n)

(
8 Γ(2n− 1

2
) + Γ(2n− 3

2
)
)

which asymptotically leads to the formation-size-independent scaling of Πctr and the
square-root scaling of Πg with N , i.e.,

lim
N→∞

Πg(N)√
N

=
16

3
√

2π
;

also see Fig. 10.5a. This is in sharp contrast to α = β = 1 which leads to an exponential
dependence of Πg on N ; see Fig. 10.5b. Therefore, the design of the look-ahead strategy
is much more subtle for double-integrators than for single-integrators.
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(a) Πg (b) Πl

(c) Πctr

Figure 10.4: Double-integrator model with the optimal non-symmetric gain obtained
by solving (9.4) with Q = I and r = 1 for formations with the fictitious follower: (a)
Πg (◦), 0.0736 4

√
N + 0.4900 (curve) (b) Πl (◦), 1.1793/ 4

√
N + 0.0408 (curve); (c) Πctr (◦),

0.2742 4
√
N + 0.8830 (curve).
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(a) (b)

Figure 10.5: Double-integrator model with look-ahead strategies K = [αCf βI ]. (a)
For α = 1/4 and β = 1, square-root scaling of Πg (◦), 2.1113

√
N − 0.3856 (curve); (b)

for α = β = 1, exponential scaling of Πg (◦), 100.1177N−1.3058 (line).



Chapter 11

Conclusions and future directions

Conclusions

We consider the optimal control of one-dimensional formations with nearest neighbor
interactions between vehicles. We formulate a structured optimal control problem in
which local information exchange of relative positions between immediate neighbors
imposes structural constraints on the feedback gains. We study the design problem
for both the single- and the double-integrator models and employ a homotopy-based
Newton’s method to compute the optimal structured gains. We show that design of
symmetric gains for the single-integrator model is a convex optimization problem, which
we solve analytically for formations with no fictitious followers. For double-integrators,
we identify a class of convex problems by restricting the controller to symmetric position
and uniform diagonal velocity gains.

As in [68], we employ perturbation analysis to determine the departure from a
stabilizing spatially uniform profile that yields nominal diffusion dynamics on a one-
dimensional lattice; in contrast to [68], we find the ‘mistuning’ profile by optimizing a
performance index rather than by performing spectral analysis. We also show how a
homotopy-based Newton’s method can be employed to obtain non-infinitesimal variation
in feedback gains that minimizes the desired objective function.

We establish several explicit scaling relationships and identify a spatially uniform
non-symmetric controller that performs better than the optimal symmetric spatially
varying controller (O(

√
N) vs. O(N) scaling of coherence with O(1) control energy

per vehicle). This suggests that departure from symmetry can improve coherence of
large-scale formations and that the controller structure may play a more important role
than the optimal feedback gain design. On the other hand, our results demonstrate
that the best performance is achieved with the optimal localized controller that is both
non-symmetric and spatially-varying.

Extensions and future directions

106
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Double-integrator model with relative position and velocity. The developed
tools can be readily extended to the design of optimal structured controllers for double-
integrators with relative position and velocity measurements; this is a topic of our
ongoing research.

Central symmetry property. As noted in Section 9.3.3, the optimal forward
and backward gains satisfy the central symmetry property, i.e., fn = bN+1−n for n ∈
{1, . . . , N}. This symmetry property implies that there may be hidden convexity of
the non-symmetric feedback design. This is because a necessary condition for convexity
of an optimization problem on graphs is that the solution is invariant under graph
automorphism [74]. In other words, central symmetry is a necessary condition for the
non-symmetric feedback design to be a convex problem. Furthermore, this symmetry
can be exploited to reduce the number of variables and improve the efficiency of design
algorithms.

Phase transition in scaling trends. For the double-integrator model with look-
ahead strategy, the scaling trend of the macroscopic measure switches from a square-root
function of N (for α = 1/4 and β = 1) to an exponential function of N (for α = 1 and
β = 1). It is thus of interest to study this scaling trend as a function of α with fixed
β = 1 for the double-integrator model.



Part IV

Algorithms for leader selection in
consensus networks

108



Chapter 12

Noise-corrupted leader selection
problem

We consider consensus networks with two groups of nodes. Ordinary nodes, the so-
called followers, form their control actions using relative information exchange with
their neighbors; while special nodes, the so-called leaders, in addition to relative infor-
mation from their neighbors also have access to their own states. This setting arises,
for example, in the control of vehicular formations where all vehicles are equipped with
ranging devices that provide relative distances from their neighbors, and the leaders
additionally have GPS devices that provide their global position information.

Suppose that we want to equip a number of vehicles with GPS devices to keep all
vehicles in the formation in their desired positions under the influence of noise. More
precisely, we are interested in assigning an a priori specified number of nodes as leaders
to minimize the steady-state variance of the deviation from consensus of the network.
Related sensor selection problems arise in parameter estimation [75] and in localization
of sensor networks [76,77].

For undirected networks1 in which all nodes including leaders are subject to stochas-
tic disturbances, we show that the noise-corrupted leader selection problem has a convex
objective function. In spite of this, the combinatorial nature of Boolean constraints (a
node is either a leader or it is not) makes determination of the global minimum challeng-
ing for large networks. Instead, we focus on developing efficient algorithms to compute
lower and upper bounds on the global optimal value.

This chapter is organized as follows. In Section 12.1, we formulate the noise-
corrupted leader selection problem and discuss its connection to the sensor selection
problem. In Section 12.2, we consider the convex relaxation of Boolean constraints and
obtain a lower bound on the global optimal value using a customized interior point
method. In Section 12.3, we obtain upper bounds on the global optimal value using
two different algorithms. The first algorithm utilizes the one-leader-at-a-time greedy

1See Section 6.1 for the definition of undirected networks.
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approach followed by a swap procedure that improves performance by checking possible
swaps between leaders and followers. In both steps, algorithmic complexity is signifi-
cantly reduced by exploiting structure of low-rank modifications to Laplacian matrices.
The second algorithm utilizes the alternating direction method of multipliers (ADMM),
which is capable of handling the nonconvex Boolean constraints by a simple projection.
In Section 12.4, we use two examples to illustrate that the gap between the lower and
upper bounds is small and sometimes even tight bounds can be attained.

12.1 Noise-corrupted leader selection

Consider n nodes with integrator dynamics

ψ̇i = ui + wi, i = 1, . . . , n

where ψi is the scalar state of node i, ui is the control input, and wi is the white
stochastic disturbance with zero-mean and unit-variance. A node is a follower if it uses
only relative information exchange with its neighbors to form its control action,

ui = −
∑
j ∈Ni

(ψi − ψj).

On the other hand, a node is a leader if, in addition to relative information exchange
with its neighbors, it also has access to its own state ψi

ui = −
∑
j ∈Ni

(ψi − ψj) − κi ψi.

Here, κi is a positive number and Ni is the set neighboring nodes of node i.
The communication network is modeled by a connected, undirected graph; thus, the

graph Laplacian F is a symmetric positive semidefinite matrix with a single eigenvalue
at zero and the corresponding eigenvector 1 of all ones. A state-space representation of
the leader-follower consensus network is given by

ψ̇ = − (F + DκDx)ψ + w, (12.1)

where
Dκ := diag (κ) , Dx := diag (x)

are diagonal matrices formed from the vectors κ = [κ1 · · · κn ]T and x = [x1 · · · xn ]T .
Here, x is a Boolean-valued vector with its ith entry xi ∈ {0, 1}, indicating that node
i is a leader if xi = 1 and that node i is a follower if xi = 0. In connected networks
with at least one leader F + DκDx is a positive definite matrix and the steady-state
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covariance of ψ is determined by

Σ := lim
t→∞

E
(
ψ(t)ψT (t)

)
=

∫ ∞
0

e−(F+DκDx)t e−(F+DκDx)T t dt

=
1

2
(F +DκDx)−1.

We use the total steady-state variance

trace (Σ) =
1

2
trace

(
(F +DκDx)−1

)
(12.2)

to quantify the performance of consensus networks subject to stochastic disturbances.
We are interested in identifying Nl leaders that are most effective in reducing the

steady-state variance (12.2). For an a priori specified number of leaders Nl < n, the
leader selection problem can thus be formulated as

minimize
x

J(x) = trace
(
(F + DκDx)−1

)
subject to xi ∈ {0, 1}, i = 1, . . . , n

1Tx = Nl.

(LS1)

In (LS1), the number of leaders Nl as well as the matrices F and Dκ are the problem
data, and the vector x is the optimization variable. As shown in Section 12.2, for
a positive definite matrix F + DκDx, the objective function J in (LS1) is a convex
function of x. The challenging aspect of (LS1) comes from the nonconvex Boolean
constraints xi ∈ {0, 1}; in general, finding the solution to (LS1) requires an intractable
combinatorial search.

12.1.1 Connections to the sensor selection problem

The problem of estimating a vector ψ ∈ Rn from m relative measurements corrupted
by additive white noise

yij = ψi − ψj + wij

arises in distributed localization in sensor networks. We consider the simplest scenario
in which all ψi’s are scalar-valued, with ψi denoting the position of sensor i; see [76,77]
for vector-valued localization problems. Let Ir denote the index set of the m pairs of
distinct nodes between which the relative measurements are taken and let eij belong to
Rn with 1 and −1 at its ith and jth elements, respectively, and zero everywhere else.
Then,

yij = eTij ψ + wij , (i, j) ∈ Ir
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or, equivalently in the matrix form,

yr = ETr ψ + wr (12.3)

where yr is the vector of relative measurements and Er ∈ Rn×m is the matrix whose
columns are determined by eij for (i, j) ∈ Ir. Since ψ + a1 for any scalar a results in
the same yr, with relative measurements the position vector ψ can be determined only
up to an additive constant. This can also be verified by noting that ETr 1 = 0.

Suppose that Nl sensors can be equipped with GPS devices that allow them to
measure their absolute positions

ya = ETa ψ + ETa wa

where Ea ∈ Rn×Nl is the matrix whose columns are determined by the ith unit vector ei
in Rn and the index i belongs to the index set of absolute measurements i ∈ Ia. Then
the vector of all measurements is given by[

yr
ya

]
=

[
ETr
ETa

]
ψ +

[
I 0
0 ETa

] [
wr
wa

]
(12.4)

where wr and wa are zero-mean white stochastic disturbances with

E(wrw
T
r ) = Wr, E(waw

T
a ) = Wa, E(wrw

T
a ) = 0.

Given the measurement vector y in (12.4), the linear minimum variance unbiased
estimate of ψ is determined by [78, Chapter 4.4]

ψ̂ = (ErW
−1
r ETr + Ea(E

T
aWaEa)

−1ETa )−1(ErW
−1
r yr + Ea(E

T
aWaEa)

−1ya)

with the covariance of the estimation error

Σ = E((ψ − ψ̂)(ψ − ψ̂)T ) = (ErW
−1
r ETr + Ea(E

T
aWaEa)

−1ETa )−1.

Furthermore, let us assume that

Wr = I, Wa = D−1
κ .

Then
Σ = (ErE

T
r + EaE

T
a DκEaE

T
a )−1,

where we use the fact that the inverse of a diagonal matrix is determined by the inverse
of individual elements on the diagonal to obtain

(ETa D
−1
κ Ea)

−1 = ETa DκEa.
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Since EaE
T
a is a diagonal matrix with its ith diagonal element being 1 for i ∈ Ia and

ErE
T
r is the Laplacian matrix of the relative measurement graph, it follows that

Dx = EaE
T
a , F = ErE

T
r , Σ = (F + DxDκDx)−1 = (F + DκDx)−1

where DxDκDx = DκDx because Dx and Dκ commute and DxDx = Dx. Therefore,
we have established the equivalence between the noise-corrupted leader selection prob-
lem (LS1) and the problem of choosing Nl sensors with absolute position measurements
such that the variance of the estimation error is minimized.

12.2 Lower bound on global performance

Since the objective function J in (LS1) is the composition of a convex function trace (F̄−1)
of a positive definite matrix F̄ � 0 with an affine function F̄ = F + DκDx, it follows
that J is a convex function of x. By enlarging the Boolean constraint set xi ∈ {0, 1}
to its convex hull xi ∈ [0, 1] (i.e., the smallest convex set that contains the Boolean
constraint set), we obtain a convex relaxation of (LS1)

minimize
x

J(x) = trace
(
(F + DκDx)−1

)
subject to 1Tx = Nl, 0 ≤ xi ≤ 1, i = 1, . . . , n.

(CR)

Since we have enlarged the constraint set, the solution x∗ of the relaxed problem (CR)
provides a lower bound on Jopt. However, x∗ may not provide a selection of Nl leaders,
as it may turn out not to be Boolean-valued. If x∗ is Boolean-valued, then it is the
global solution of (LS1).

The convex optimization problem (CR) can be formulated as an SDP

minimize
X,x

trace (X)

subject to

[
X I
I F +DκDx

]
� 0

1Tx = Nl, 0 ≤ xi ≤ 1, i = 1, . . . , n.

For small networks (e.g., n ≤ 30), this problem can be solved efficiently using standard
SDP solvers. For large networks, we develop a customized interior point method in
Section 12.2.1.
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12.2.1 Customized interior point method for (CR)

We begin by augmenting the objective function in (CR) with log-barrier functions as-
sociated with the inequality constraints on xi

minimize
x

q(x) = τ trace
(
(F + DκDx)−1

)
+

n∑
i= 1

(
− log(xi) − log(1− xi)

)
subject to 1Tx = Nl.

(12.5)
The solution of the approximate problems (12.5) converges to the solution of the convex
relaxation (CR) as the positive scalar τ increases to infinity [43, Section 11.2]. We solve a
sequence of problem (12.5) by gradually increasing τ , and by starting each minimization
using the solution from the previous value of τ . We use Newton’s method to solve (12.5)
for a fixed τ , and the Newton direction for problems with linear constraints is given
by (e.g., see [43, Section 10.2])

xnt = − (∇2q)−1∇q − δ(∇2q)−11

where

δ = −1
T (∇2q)−1∇q
1T (∇2q)−11

.

Here, the expressions for the ith entry of the gradient direction ∇q and for the Hessian
matrix are given by

(∇q)i = − τ κi ((F +DκDx)−2)ii − x−1
i − (xi − 1)−1

∇2q = 2τ (Dκ(F +DκDx)−2Dκ) ◦ (F +DκDx)−1 + diag
(
x−2
i + (1− xi)−2

)
,

where ◦ denotes the elementwise multiplication of matrices and diag(x) denotes a diag-
onal matrix with the main diagonal determined by x.

We next examine complexity of computing the Newton direction xnt. The major
cost of computing ∇2q is to form (F + DκDx)−2, which takes (7/3)n3 operations to
form (F +DκDx)−1 and n3 operations to form (F +DκDx)−2. Computing xnt requires
solving two linear equations,

(∇2q) y = −∇q, (∇2q) z = −1

which takes (1/3)n3 operations using Cholesky factorization. Thus, computation of each
Newton step requires (7/3 + 1 + 1/3)n3 = (11/3)n3 operations.
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12.3 Upper bounds on global performance

We next show that upper bounds can be obtained using an efficient greedy algorithm
and the alternating direction method of multipliers (ADMM). Greedy algorithm selects
one leader at a time, which introduces low-rank modifications to the Laplacian matrix.
We exploit this feature in conjunction with the matrix inversion lemma to gain com-
putational efficiency. On the other hand, the ADMM algorithm handles the Boolean
constraints explicitly by a simple projection onto a discrete nonconvex set.

12.3.1 Greedy algorithm to obtain an upper bound

With the lower bound on the optimal value Jopt resulting from the convex relax-
ation (CR) in Section 12.2, we next use a greedy algorithm to compute an upper bound
on Jopt. This algorithm selects one leader at a time by assigning the node that provides
the largest performance improvement as the leader. Once this is done, an attempt to
improve a selection of Nl leaders is made by checking possible swaps between the lead-
ers and the followers. We show that substantial improvement in algorithmic complexity
can be achieved by exploiting structure of the low-rank modifications to the Laplacian
matrix.

One-leader-at-a-time algorithm

As the name suggests, we select one leader at a time by assigning the node that results
in the largest performance improvement as the leader. To select the first leader, we
compute

J i1 = trace
(
(F + κieie

T
i )−1

)
for i = 1, . . . , n, and assign the node, say v1, that achieves the minimum value of {J i1}.
If two or more nodes provide the largest performance improvement, we select one of
these nodes as a leader. After choosing s leaders, v1, . . . , vs, we compute

J is+1 = trace
(
(Fs + κieie

T
i )−1

)
Fs = F + κv1ev1e

T
v1 + · · · + κvsevse

T
vs

for i /∈ {v1, . . . , vs}, and select node vs+1 that yields the minimum value of {J is+1}. This
procedure is repeated until all Nl leaders are selected.

Without exploiting structure, the above procedure requires O(n4Nl) operations. On
the other hand, the rank-1 update formula obtained from matrix inversion lemma

(Fs + κieie
T
i )−1 = F−1

s − F−1
s κieie

T
i F

−1
s

1 + κieTi F
−1
s ei

(12.6)



116

yields

J is+1 = trace (F−1
s ) − κi‖(F−1

s )i‖22
1 + κi(F

−1
s )ii

,

where (F−1
s )i is the ith column of F−1

s and (F−1
s )ii is the iith entry of F−1

s . To initiate
the algorithm, we use the generalized rank-1 update [79],

F−1
1 = F † − (F †ei)1

T − 1(F †ei)
T + ((1/κi) + eTi F

†ei)11
T

and thus,
J i1 = trace (F †) + n ((1/κi) + eTi F

†ei),

where F † denotes the pseudo-inverse of F

F † = (F + 11T /n)−1 − 11T /n.

Therefore, once F−1
s is determined, the inverse of the matrix on the left-hand-side

of (12.6) can be computed using O(n2) operations and J is+1 can be evaluated using
O(n) operations. Overall, Nl rank-1 updates, nNl/2 objective function evaluations,
and one full matrix inverse (for computing F−1

s ) require O(n2Nl + n3) operations as
opposed to O(n4Nl) operations without exploiting the low-rank structure. In large-
scale networks, further computational advantage can be gained by exploiting structure
of the underlying Laplacian matrices; see [80].

Swap algorithm

Having determined a selection of leaders using one-leader-at-a-time algorithm, we swap
one of the Nl leaders with one of the n−Nl followers, and check if such a swap leads to a
decrease in J . If no decrease occurs for all (n−Nl)Nl swaps, the algorithm terminates;
if a decrease in J occurs, we update the leader and then restart checking the possible
(n−Nl)Nl swaps for the new leader selection. This swap procedure has been used as an
effective means for improving performance of combinatorial algorithms encountered in
graph partitioning [81], sensor selection [75], and community detection problems [82].

Since a swap between a leader i and a follower j leads to a rank-2 modification (12.7)
to the matrix F̄ = F +DκDx, we can exploit this low-rank structure to gain computa-
tional efficiency. Using the matrix inversion lemma, we have(

F̄ − κieie
T
i + κjeje

T
j

)−1
= F̄−1 − F̄−1 Ēij (I2 + ETijF̄

−1Ēij)
−1ETij F̄

−1, (12.7)

where Eij = [ ei ej ], Ēij = [−κiei κjej ], and I2 is the 2 × 2 identity matrix. Thus,
the objective function after the swap between leader i and follower j is given by

Jij = J − trace
(
(I2 + ETijF̄

−1Ēij)
−1ETij F̄

−2Ēij
)
. (12.8)
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Figure 12.1: A 3× 3 grid.

Here, we do not need to form the full matrix F̄−2, since

ETij F̄
−2Ēij =

[
−κi(F̄−2)ii κj(F̄

−2)ij
−κi(F̄−2)ji κj(F̄

−2)jj

]
and the ijth entry of F̄−2 can be computed by multiplying the ith row of F̄−1 with the
jth column of F̄−1. Thus, evaluation of Jij takes O(n) operations and computation of
the matrix inverse in (12.7) requires O(n2) operations.

Remark 6. Since the total number of swaps can be large, we limit the maximum number
of swaps with a linear function of the number of nodes n. On the other hand, partic-
ular structure of networks can be exploited to reduce the required number of swaps. To
illustrate this, let us consider the problem of selecting one leader in a network with 9
nodes shown in Fig. 12.1. Suppose that nodes in set S1 := {1, 3, 7, 9} have the same
feedback gain κ1 and that nodes in set S2 := {2, 4, 6, 8} have the same feedback gain κ2.
In addition, suppose that node 5 is chosen as a leader. Owing to symmetry, to check if
selecting other nodes as a leader can improve performance we only need to swap node
5 with one node in each set S1 and S2. We note that more sophisticated symmetry
exploitation techniques can be found in [74, 83].

12.3.2 Alternating direction method of multipliers

Since the previously introduced greedy algorithm may not yield an optimal selection
of leaders, we next employ the ADMM algorithm [50] as an alternative approach to a
selection of Nl leaders for problem (LS1). Although the convergence of this method
depends on the initial conditions and on the algorithmic parameters, ADMM is capable
of handling the nonconvex Boolean constraints explicitly by a simple projection onto a
discrete nonconvex set

B :=
{
x | 1Tx = Nl, xi ∈ {0, 1}, i = 1, . . . , n

}
. (12.9)
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We can rewrite (LS1) as an unconstrained optimization problem

minimize
X,x

J(x) + I(x), (12.10)

where I(x) is indicator function associated with set B

I(x) =

{
0 if x ∈ B

+∞ if x /∈ B.

Now, (12.10) can be put into the following equivalent form suitable for the application
of ADMM

minimize
x, z

J(x) + I(z)

subject to x − z = 0
(12.11)

and the augmented Lagrangian associated with (12.11) is given by

Lρ(x, z, λ) = J(x) + I(z) + λT (x − z) +
ρ

2
‖x − z‖22,

where λ ∈ Rn is the dual variable and ρ is a positive number. The ADMM algorithm
updates x, z, and λ in an iterative fashion

xk+1 := arg min
x

Lρ(x, zk, λk) (12.12a)

zk+1 := arg min
z

Lρ(xk+1, z, λk) (12.12b)

λk+1 := λk + ρ(xk+1 − zk+1), (12.12c)

for k = 0, 1, . . . until ‖xk+1 − zk+1‖2 ≤ ε and ‖zk+1 − zk‖2 ≤ ε.
Splitting the optimization variables into two copies {x, z} and updating them in

an alternating fashion yields the minimization problems (12.12a) and (12.12b) that are
easy to solve.

x-minimization step

By completion of squares in Lρ with respect to x, problem (12.12a) can be expressed as

minimize
x

trace
(
(F + DκDx)−1

)
+
ρ

2
‖x − uk‖22 (12.13)

where
uk := zk − (1/ρ)λk.
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Since (12.13) is equivalent to the following problem,

minimize
x, µ

trace
(
(F + DκDx)−1

)
+ µ

subject to
ρ

2
‖x − uk‖22 ≤ µ

it can be expressed as an SDP

minimize
X,x, µ

trace (X) + µ

subject to

[
X I
I F +DκDx

]
� 0[

I x− uk
(x− uk)T 2µ/ρ

]
� 0

where the second LMI is an alternative way of writing the quadratic constraint

2µ/ρ − (x− uk)T (x− uk) ≥ 0

using Schur complement. Thus, for small networks, problem (12.13) can be solved
efficiently using standard SDP solvers. For large networks, we use descent methods [43]
(e.g., Newton’s method) with the gradient and Hessian of Lρ with respect to x being
given by

∇Lρ = −κ ◦ diag
(
(F +DκDx)−2

)
+ ρ (x − uk)

∇2Lρ = 2 (Dκ(F +DκDx)−2Dκ) ◦ (F +DκDx)−1 + ρI,

where diag (M) denotes the vector determined by the main diagonal of a matrix M .

z-minimization step

Using similar argument as in [50, Section 9.1], the z-minimization problem (12.12b) can
be solved explicitly using a simple projection onto the set B

zi =

{
1 if vki ≥ [vk]Nl
0 if vki < [vk]Nl ,

(12.14)

where
vk := xk+1 + (1/ρ)λk

and [vk]Nl denotes the (Nl)th largest entry of vk.
We next provide detailed derivation for (12.14). We use completion of squares to
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obtain the following problem which is equivalent to (12.12b)

minimize
z

(ρ/2)‖z − vk‖22
subject to z ∈ B

whose solution is given by (12.14). To see this, consider z̄ ∈ B, i.e., 1T z̄ = Nl and
z̄i ∈ {0, 1}, but z̄ is not the projection determined by (12.14). Thus, there exists at
least one entry of z̄, say the rth entry, such that z̄r = 1 for vkr < [vk]Nl , and at least one
entry, say the jth entry, such that z̄j = 0 for vkj ≥ [vk]Nl . Consider

δrj = (z̄r − vkr )2 + (z̄j − vkj )2 = (1− vkr )2 + (vkj )2

and δjr = (vkr )2 +(1−vkj )2. Since δrj−δjr = 2(vkj −vkr ) > 0, it follows that the objective

function (ρ/2)‖z − vk‖22 will decrease if we choose {z̄r = 0, z̄j = 1} instead of {z̄r = 1,
z̄j = 0}. Therefore, we can reduce the objective function by exchanging the values of
two entries z̄r = 1 (with vkr < [vk]Nl) and z̄j = 0 (with vkj ≥ [vk]Nl) until (12.14) is
satisfied for all i = 1, . . . , n.

12.4 Examples

We next provide two examples, a small network from [41] and a 2D lattice, to illustrate
the performance of the developed methods. In both examples we set κi to be the degree
of node i. We set the initial conditions of the ADMM algorithm to {z0 = 0, λ0 = 0}
and the penalty weight to ρ = 103.

12.4.1 A small network

For the network shown in Fig. 12.2 with Nl ≤ 5, we determine the global minima to
the noise-corrupted leader selection problem (LS1) by exhaustive search. It turns out
that the one-leader-at-a-time algorithm followed by the swap algorithm actually finds
the global minima. As shown in Table 12.1, ADMM provides the global minima for the
problems with 4 and 5 leaders.

Figure 12.3a shows lower bounds resulting from convex relaxation and upper bounds
resulting from ADMM and from greedy algorithm. As the number of leaders Nl in-
creases, the gap between the lower and upper bounds from greedy algorithm decreases;
see Fig. 12.3b.

12.4.2 A 2D lattice

We next consider the leader selection problem for a 9× 9 regular lattice. Figure 12.4a
shows lower bounds resulting from convex relaxation and upper bounds resulting from
ADMM and from greedy algorithm, i.e., the one-leader-at-a-time algorithm followed by
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Figure 12.2: A small network with 25 nodes.

Table 12.1: Lower and upper bounds on the noise-corrupted leader selection prob-
lem (LS1) for the example shown in Fig. 12.2. Lower bounds Jlb are obtained by
solving the convex relaxation (CR); upper bounds Jub from greedy algorithm – the
one-leader-at-a-time algorithm followed by the swap algorithm – are actually tight, i.e.,
Jub = Jopt; upper bounds Jub from ADMM are tight for Nl = 4, 5.

greedy algorithm ADMM

Nl Jlb Jub leaders Jub leaders

1 38.4 72.3 13 118.3 25
2 30.3 43.4 8, 25 47.9 7, 25
3 26.7 35.2 8, 16, 25 36.7 7, 16, 25
4 24.3 30.0 3, 7, 16, 25 30.0 3, 7, 16, 25
5 22.4 25.8 3, 7, 9, 16, 25 25.8 3, 7, 9, 16, 25
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(a) (b)

Figure 12.3: Computational results for the network with 25 nodes shown in Fig. 12.2:
(a) lower bounds (−) resulting from convex relaxation and upper bounds resulting from
greedy algorithm (i.e., one-leader-at-a-time algorithm followed by swap algorithm) (+)
and from ADMM (◦); (b) the gap between lower bounds and upper bounds resulting
from greedy algorithm.

the swap algorithm. As the number of leaders Nl increases, the gap between the lower
and upper bounds from greedy algorithm decreases; see Fig. 12.4b. For Nl = 1, . . . , 40,
the number of swap updates ranges between 1 and 19 and the average number of swaps
is 10.

Figure 12.5 shows selection of leaders resulting from the greedy algorithm for dif-
ferent choices of Nl. For Nl = 1, the center node (5, 5) provides the optimal selection
of a single leader. As Nl increases, nodes away from the center node (5, 5) are selected;
for example, for Nl = 2, nodes {(3, 3), (7, 7)} are selected and for Nl = 3, nodes {(2, 6),
(6, 2), (8, 8)} are selected. Selection of nodes farther away from the center becomes more
significant for Nl = 4 and Nl = 8. The selection of leaders exhibits symmetry shown in
Fig. 12.5. In particular, when Nl is large, almost uniform spacing between the leaders
is observed; see Fig. 12.5f for Nl = 40.
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(a) (b)

Figure 12.4: The computational results for the 2D lattice example: (a) lower bounds (−)
resulting from convex relaxation and upper bounds resulting from greedy algorithm (i.e.,
one-leader-at-a-time algorithm followed by swap algorithm) (+) and from ADMM (◦);
(b) the gap between lower bounds and upper bounds resulting from greedy algorithm.
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(a) Nl = 1 (b) Nl = 2 (c) Nl = 3

(d) Nl = 4 (e) Nl = 8 (f) Nl = 40

Figure 12.5: Selections of leaders (•) obtained using the one-at-a-time algorithm followed
by the swap algorithm for a 2D lattice. The two selections of two leaders denoted by
(•) and (∗) in (b) provide the same objective function J . The four selections of three
leaders denoted by (•), (∗), (×), and (◦) in (c) provide the same J .



Chapter 13

Noise-free leader selection
problem

In this chapter, we consider the noise-free leader selection problem in which leaders are
assumed to be immune to noise and they follow their desired trajectories at all times.
This idealized setting has recently be studied by several authors; e.g., see [41, 42]. For
connected networks with at least one leader, it was shown in [41] that adding leaders
always improves performance. In view of this, the one-at-a-time greedy algorithm was
proposed in [41] for the noise-free leader selection problem. It was shown in [42] that the
variance of deviation from consensus is a supermodular function of the set of noise-free
leaders. This implies that the performance improvement by adding additional leaders
is diminishing as the number of leaders increases. Furthermore, the supermodular
optimization framework is then employed to show that the greedy algorithm provides
selection of leaders that is within a provable bound from globally optimal solution [42].

In contrast to the above references, we use convex optimization to select noise-free
leaders. We first provide an explicit expression for the objective function to identify
the source of nonconvexity and to suggest an LMI-based convex relaxation. We then
relax the hard Boolean constraint on the number of leaders with a soft-constraint by
augmenting the objective function with the `1 norm of the optimization variables. The `1
norm provides a means for obtaining a sparse solution whose nonzero elements identify
the leaders. The developed algorithm produces a trade-off curve between the number
of noise-free leaders and the variance of the deviation from consensus by solving a
parameterized family of convex optimization problems.

This chapter is organized as follows. In Section 13.1, we formulate the noise-free
leader selection problem and discuss its connections to the sensor selection problem. In
Section 13.2, we provide an explicit expression for the objective function and we propose
the soft-constraint method. In Section 13.3, we use two examples to illustrate that the
performance of the developed method is close to that of the greedy algorithm, and both
approaches outperform the simple degree-heuristics-based method.
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13.1 Noise-free leader selection

We consider the selection of noise-free leaders which follow their desired trajectories
at all times. Equivalently, in coordinates that determine deviation from the desired
trajectory, the state of every leader is identically equal to zero. Therefore, the dynamics
of the followers are given by

ψ̇f = −Ff ψf + wf .

Here, Ff is obtained from the Laplacian matrix F of the network by eliminating all
rows and columns associated with the leaders. Thus, the problem of selecting leaders
that minimize the steady-state variance of ψf amounts to

minimize
x

Jf (x) = trace (F−1
f )

subject to xi ∈ {0, 1}, i = 1, . . . , n
1Tx = Nl.

(LS2)

As in (LS1), the Boolean constraints xi ∈ {0, 1} are nonconvex. Furthermore, as we
demonstrate in Section 13.2, the objective function Jf in (LS2) is a nonconvex function
of x.

In what follows, we establish the equivalence between the noise-corrupted and the
noise-free leader selection problems (LS1) and (LS2) when all leaders use arbitrarily
large feedback gains on their own states. Partitioning ψ into the state of the leader
nodes ψl and the state of the follower nodes ψf brings system (12.1) to the following
form1 [

ψ̇l
ψ̇f

]
= −

[
Fl +Dκl F0

F T0 Ff

] [
ψl
ψf

]
+

[
wl
wf

]
. (13.1)

Here, Dκl := diag (κl) with κl ∈ RNl being the vector of feedback gains associated with
the leaders. Taking the trace of the inverse of the 2× 2 block matrix in (13.1) yields

J = trace
(
F−1
f + F−1

f F T0 S−1
κl
F0 F

−1
f + S−1

κl

)
where

Sκl = Fl + Dκl − F0 F
−1
f F T0

is the Schur complement of Ff . Since S−1
κl

vanishes as each component of the vector
κl goes to infinity, the variance of the network is solely determined by the variance of
the followers, Jf = trace (F−1

f ), where Ff is the reduced Laplacian matrix obtained by
removing all columns and rows corresponding to the leaders from F .

1Note that Dx does not show in (13.1) since the partition is performed with respect to the indices
of the 0 and 1 diagonal elements of Dx.
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13.1.1 Connections to the sensor selection problem

Recall that in Section 12.1.1, we show that the noise-corrupted leader selection prob-
lem (LS1) is equivalent to the sensor selection problem in which the selected sensors
have access to their absolute measurements. To formulate a sensor selection problem
that is equivalent to the noise-free leader selection problem (LS2), we assume that the
exact positions of Nl sensors are known a priori . Let ψl denote the positions of these
reference sensors and let ψf denote the positions of the other sensors. We can thus
write the relative measurement equation (12.3) as

yr = ETr ψ + wr = ETl ψl + ETf ψf + wr

and the linear minimum variance unbiased estimate of ψf is given by

ψ̂f = (EfE
T
f )−1EfW

−1
r (yr − ETl ψl)

with the covariance of the estimation error being

Σf = (EfE
T
f )−1.

Identifying EfE
T
f with Ff in the Laplacian matrix F

F = ErE
T
r =

[
ElE

T
l ElE

T
f

EfE
T
l EfE

T
f

]
=

[
Fl F0

F T0 Ff

]
establishes the equivalence between problem (LS2) and the problem of assigning Nl

sensors with known reference positions to minimize the variance of the estimation error
of sensor network.

13.2 Linear approximation and soft-constraint method

In this section, we provide an alternative expression for the objective function Jf in the
noise-free leader selection problem (LS2). We use this explicit expression to identify the
source of nonconvexity and to suggest an LMI-based convex approximation. We then
relax the hard constraint of having exactly Nl leaders in (LS2) by augmenting the ob-
jective function Jf with the `1 norm of the optimization variable x. This soft-constraint
approach yields a parameterized family of optimization problems whose solution pro-
vides a trade-off between the `1 norm of x and the convex approximation of the variance
amplification of the network.
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13.2.1 Explicit expression for the objective function

Since the objective function Jf in (LS2) is not expressed explicitly in terms of the
optimization variable x, it is difficult to examine its basic properties such as convexity.
We next provide an alternative expression for Jf that allows us to establish the lack of
convexity and to suggest an LMI-based convex approximation of Jf .

Proposition 7. For networks with at least one leader, the objective function Jf in the
noise-free leader selection problem (LS2) can be written as

Jf = trace (F−1
f ) = trace

(
(I − Dx)(G + Dx ◦ F )−1(I − Dx)

)
(13.2)

where ◦ denotes the elementwise multiplication of matrices, and

G = (I − Dx)F (I − Dx), Dx = diag (x) , xi ∈ {0, 1}, i = 1, . . . , n.

Furthermore, Jf is a nonconvex function of x over the smallest convex set xi ∈ [0, 1]
that contains feasible points xi ∈ {0, 1} for i = 1, . . . , n.

Proof. After an appropriate relabeling of the nodes as done in (13.1), F and Dx can be
partitioned conformably into 2× 2 block matrices,

F =

[
Fl F0

F T0 Ff

]
, Dx =

[
INl×Nl ONl×p
Op×Nl Op×p

]
, p := n−Nl

which leads to

G =

[
ONl×Nl ONl×p
Op×Nl Ff

]
, Dx ◦ F =

[
INl×Nl ◦ Fl ONl×p
Op×Nl Op×p

]

G + Dx ◦ F =

[
INl×Nl ◦ Fl ONl×p
Op×Nl Ff

]
.

Since INl×Nl ◦ Fl is a diagonal matrix with positive diagonal elements and since the
principal submatrix Ff of the Laplacian F is positive definite for connected graphs [4,
Lemma 10.36], we have

G + Dx ◦ F � 0. (13.3)

Consequently,

trace
(
(I −Dx)(G + Dx ◦ F )−1(I −Dx)

)
= trace (F−1

f )

which yields the desired result (13.2).
We next use a simple example to illustrate the lack of convexity of Jf over xi ∈ [0, 1].
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Let

F =

[
1 −1
−1 1

]
, Dx =

[
x1 0
0 x2

]
with x1 ∈ [0, 1] and x2 = 1. From

G + F ◦Dx =

[
(1− x1)2 + x1 0

0 1

]
� 0 and Jf =

(1− x1)2

(1− x1)2 + x1

it can be verified that, for x1 ∈ [0, 1/3] the second derivative of Jf with respect to x1 is
negative; therefore, Jf is not convex.

Explicit expression (13.2) in conjunction with Schur complement can be used to
convert the minimization of Jf into the following problem

minimize
X,x

trace (X)

subject to

[
X I − Dx

I − Dx G + Dx ◦ F

]
� 0

(13.4)

where X ∈ Rn×n is a symmetric positive definite matrix. To see this, note that since
G+Dx ◦ F � 0, we have[

X I −Dx

I −Dx G+Dx ◦ F

]
� 0 ⇔ X � (I −Dx)(G+Dx ◦ F )−1(I −Dx).

Thus, to minimize trace (X) subject to the inequality constraint, we take

X = (I − Dx)(G + Dx ◦ F )−1(I − Dx),

which shows the equivalence between the objective functions in (13.4) and in (13.2).
Thus, the noise-free leader selection problem (LS2) can be formulated as

minimize
X,x

trace (X)

subject to

[
X I − Dx

I − Dx G + Dx ◦ F

]
� 0

G = (I − Dx)F (I − Dx)
Dx = diag (x) , 1Tx = Nl, xi ∈ {0, 1}, i = 1, . . . , n.

(13.5)

In addition to the Boolean constraints, the quadratic dependence of G on Dx provides
another source of nonconvexity in (13.5). Thus, in contrast to (LS1), relaxation of the
Boolean constraints to xi ∈ [0, 1] for i = 1, . . . , n is not enough to guarantee convexity
of the optimization problem (13.5).
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13.2.2 Linear approximation of G

As established in Section 13.2.1, the alternative formulation (13.5) of the noise-free
leader selection problem (LS2) identifies two sources of nonconvexity: the quadratic
matrix inequality and the Boolean constraints. In view of this, we use linearization of
the matrix G to approximate the quadratic matrix inequality in (13.5) with an LMI.
Furthermore, instead of imposing Boolean constraints, we augment the objective func-
tion with the `1 norm of x. This choice is used as a proxy for obtaining a sparse solution
x whose nonzero elements identify the leaders.

The idea of using linearization comes from [22], where a linear approximation of the
objective function trace (Y Z) at the point (Y0, Z0) was considered

1

2
trace (Y0Z + Y Z0).

To design fixed-order output feedback controllers, the authors of [22] minimize trace (Y0Z+
Y Z0) with respect to Y and Z, set Y0 ← Y , Z0 ← Z, and repeat. Motivated by this
iterative scheme, we consider the following linear approximation of G

G0 :=
1

2
(I − Dx)F (I − Dx0) +

1

2
(I − Dx0)F (I − Dx) (13.6)

where Dx0 is our current-best-estimate of Dx. Replacing G with G0 leads to an LMI
approximation of the quadratic matrix inequality in (13.5).

In addition to the linearization, we relax the hard constraint 1Tx = Nl for Boolean-
valued x with a soft one. This is achieved by augmenting the objective function with
the `1 norm of x,

trace (X) + γ ‖x‖`1
where, as discussed in Section 2.1, the positive number γ characterizes our emphasis
on the sparsity of the vector x. Putting this soft-constraint approach and lineariza-
tion (13.6) together, we obtain a convex optimization problem

minimize
X,x

trace (X) + γ ‖x‖`1

subject to

[
X I − Dx

I − Dx G0 + Dx ◦ F

]
� 0

G0 =
1

2
(I − Dx)F (I − Dx0) +

1

2
(I − Dx0)F (I − Dx)

Dx = diag (x)

(13.7)

which can be solved efficiently for small size problems (e.g., n ≤ 30) using standard
SDP solvers. For large problems, we develop a customized algorithm in Section 13.2.3.

For a fixed value of γ, we start with Dx0 = 0 and solve problem (13.7) as part
of an iterative loop; the solution Dx = diag (x) at every iteration is treated as the
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current-best-estimate Dx0 = diag (x0) for the linearization in the next iteration until
‖x−x0‖2 ≤ ε. Ranging γ from small to large values, the solution to the γ-parameterized
family of problems (13.7) provides a trade-off between minimization of trace (X) and
minimization of ‖x‖`1 . Larger values of γ promote smaller ‖x‖`1 and typically lead to
fewer nonzero elements in x. Depending on the structure of the network, there may
not exist values of γ that lead to a vector x with exactly Nl nonzero elements. In this
case, we find the solution x∗ that has the least number of nonzero elements N∗ with
N∗ > Nl, and use the indices of the Nl largest entries of x∗ to determine the leaders.

13.2.3 ADMM for the soft-constraint method

We next employ ADMM for the soft-constraint method developed in Section 13.2.2. We
consider the following minimization problem

minimize
x

f(x) + γ ‖x‖`1

where f is the convex approximation of (13.2)

f(x) = trace
(
(I − Dx)(G0 + Dx ◦ F )−1(I − Dx)

)
and G0 is the linear approximation of G given by (13.6). This problem is equivalent to
the constrained problem

minimize
x, z

f(x) + γ ‖z‖`1
subject to x − z = 0

and the associated augmented Lagrangian function is given by

Lρ(x, z, λ) = f(x) + γ ‖z‖`1 + λT (x − z) +
ρ

2
‖x − z‖22.

By completion of squares in Lρ with respect to z, the z-minimization problem (12.12b)
can be expressed as

minimize
z

γ ‖z‖`1 +
ρ

2
‖z − vk‖22

where vk = xk+1 +(1/ρ)λk. The solution is given by the soft thresholding operator (e.g.,
see [50, Section 4.4.3])

z∗i = Sγ/ρ(vki ) =


(

1 − γ/ρ

|vki |

)
vki , |vki | > γ/ρ

0, |vki | ≤ γ/ρ
(13.8)

for i = 1, . . . , n. On the other hand, by completing squares in Lρ with respect to x, we
obtain

minimize
x

φ(x) = f(x) +
ρ

2
‖x− uk‖22
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where uk = zk − (1/ρ)λk. This problem can be solved using descent methods (e.g.,
gradient method [43]). Here, we provide the expression for the gradient of φ

∇φ(x) = − 2 diag
(
(I −Dx)M−1

)
+ diag

(
F (I −Dx0)M−1(I −Dx)2M−1

)
−diag

(
M−1(I −Dx)2M−1

)
◦ diag (F ) + ρ(x− uk)

where M = G0 +Dx ◦ F .

13.3 Examples

13.3.1 A small network

We next use the soft-constraint method of Section 13.2.2 to select leaders for a small
network with 25 nodes shown in Fig. 12.2. As shown in Figs. 13.1a and 13.1b, the
number of leaders Nl decreases and the variance Jf of the followers increases as γ
increases. The trade-off between the number of leaders and the variance of followers is
illustrated in Fig. 13.1c.

Figure 13.2 compares performance of the soft-constraint method to performance of
the greedy algorithm [41,42,84], which chooses one leader at a time by assigning the node
that provides the largest performance improvement as a leader. Using a supermodular
optimization framework, it was shown in [42] that the greedy algorithm selects noise-
free leaders that are within a provable performance bound from the global solution
to (LS2). This motivates us to use greedy algorithm as a benchmark for performance
of the soft-constraint method. As shown in Fig. 13.2a, for a small number of leaders
(e.g., Nl ≤ 5), the greedy algorithm outperforms the soft-constraint method; the only
exception happens for Nl = 3. A more detailed comparison is reported in Table 13.1,
with the global solution to (LS2) for Nl ≤ 5 obtained using the exhaustive search.

When the number of leaders is large (e.g., Nl ≥ 9), the soft-constraint method
outperforms the greedy algorithm; see Fig. 13.2b. The heuristics of assigning nodes with
large degrees (i.e., large number of neighbors) as leaders is outperformed by both greedy
and soft-constraint methods. The poor performance of the simple degree-heuristics-
based-selection was also noted in [41,42,84].

13.3.2 A random network

We next consider the selection of noise-free leaders in a network with 100 randomly
distributed nodes in a unit square. A pair of nodes can communicate with each other
if their distance is not greater than 0.2. This scenario arises in sensor networks with
prescribed omnidirectional (i.e., disk shape) sensing range [4]. As shown in Figs. 13.3a
and 13.3b, the number of leaders Nl decreases and the variance Jf of followers increases
with γ; also see the trade-off curve between Nl and Jf in Fig. 13.3c.
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(a) Number of leaders Nl (b) Variance of the network Jf (c) Trade-off between Nl and Jf

Figure 13.1: Performance of the soft-constraint method for the network shown in
Fig. 12.2: (a) the number of leaders Nl decreases as γ increases; (b) the variance of
the followers Jf increases as γ increases; and (c) the trade-off between Nl and Jf .

(a) (b)

Figure 13.2: (a) The variance of the followers Jf obtained using the soft-constraint
method (◦), the greedy algorithm (∗), and the degree heuristics (+) for the network
shown in Fig. 12.2. (b) Comparison of three algorithms for Nl ≥ 9.

Table 13.1: Performance comparison of greedy algorithm and soft-constraint method
with the global solution to the noise-free leader selection problem (LS2) for the network
shown in Fig. 12.2.

global solution greedy algorithm soft-constraint

Nl Jf leaders Jf leaders Jf leaders

1 66.0 13 66.0 13 112.0 25
2 38.4 8, 25 44.8 13, 25 64.0 16, 25
3 30.0 8, 16, 25 33.3 7, 13, 25 32.1 7, 16, 25
4 25.3 7, 9, 16, 25 27.4 7, 13, 16, 25 29.4 7, 16, 20, 25
5 20.7 3, 7, 9, 16, 25 22.2 3, 7, 13, 16, 25 22.6 3, 7, 16, 20, 25
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(a) (b) (c)

Figure 13.3: Computational results of a random network with 100 nodes: (a) the number
of leaders Nl decreases as γ increases; (b) the variance of the followers Jf increases as
γ increases; and (c) the trade-off curve between Nl and Jf .

For this random network example, we observe similar selection of leaders and simi-
lar performance of the soft-constraint and greedy algorithms. Furthermore, for Nl > 1,
both these algorithms significantly outperform the degree-heuristics-based-selection; see
Fig. 13.5. To gain some insight into the selection of leaders, we compare the results ob-
tained using soft-constraint method and the degree heuristics. As shown in Fig. 13.4b,
the degree heuristics chooses nodes that turn out to be in the proximity of each other.
In contrast, the soft-constraint method select leaders that, in addition to having large
degrees, are far from each other; see Fig. 13.4a. As a result, the selected leaders can
influence more followers and thus more effectively improve the performance of the net-
work.

The contrast between the degree-heuristics-based method and the soft-constraint
method becomes even more dramatic for large number of leaders. As shown in Figs. 13.4c
and 13.4d, the leader sets obtained using the soft-constraint method and degree heuris-
tics are almost complements of each other. While the degree heuristics clusters the
leaders around the center of the network, the soft-constraint method distributes the
leaders around the boundary of the network.

Figures 13.6a and 13.6b show the degree distribution of all the nodes in the random
network and of the 41 nodes that are selected as leaders (see Fig. 13.4c). In contrast
to the degree heuristics, the soft-constraint method chooses nodes with both large- and
small-degrees as leaders; in particular, all nodes with degree less than 8 and all nodes
with degree greater than 18 are selected.
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(a) Nl = 5 (b) Nl = 5

(c) Nl = 41 (d) Nl = 40

Figure 13.4: Selection of leaders (•) for the random network example using soft-
constraint method in (a) and (c) and using degree-heuristics-based method in (b) and
(d).
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Figure 13.5: The objective function Jf obtained using the soft-constraint method (◦),
the greedy algorithm (∗), and the degree heuristics (+) for the random network.

(a) (b)

Figure 13.6: The degree distribution of (a) the random network of Section 13.3.2 and
of (b) 41 leaders selected using soft-constraint method. Note that the soft-constraint
method chooses all nodes with degree less than 8 and all nodes with degree greater than
18.



Chapter 14

Conclusions and future directions

Conclusions

We develop efficient algorithms that facilitate selection of leaders in large stochasti-
cally forced consensus networks. For the noise-corrupted leader selection problem (LS1),
we focus on computing lower and upper bounds on the global optimal value. A lower
bound is obtained by solving a convex relaxation, and upper bounds result from a simple
but efficient greedy algorithm and the alternating direction method of multipliers. For
the noise-free leader selection problem (LS2), we provide an explicit expression for the
variance amplification of the network. This allows us to identify sources of nonconvexity
and to propose a convex relaxation of the objective function in (LS2). Furthermore, we
use augmentation of the objective function with the `1 norm of the vector of optimiza-
tion variables as a surrogate for obtaining a sparse solution whose nonzero elements
identify the leaders.

Ongoing research and future directions

Leader selection in real-world networks. We are currently applying the devel-
oped algorithms for leader selection problems in different types of real-world networks,
such as collaboration of scientists [82] and power grid networks [85]. Our preliminary
results show interesting connections between the selection of leaders and the influen-
tial nodes identified using metrics from social networks [86]. Studies along these lines
(e.g., [87]) will bridge the gap between notions in network science and tools from control
theory and optimization in understanding complex dynamical networks.

Leader selection in directed networks. Recently, controllability of directed
networks has received considerable attention in network science [88]. Inspired by this
effort, we also study the effect of leaders in directed trees and directed lattices. In [89],
we consider the steady-state variance distribution in directed lattices with leaders being
placed along the boundary of the lattice. We show that the variance of followers along
the diagonal of the 2D lattice scales as a logarithmic function of node indices
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Phase transition phenomenon. As observed in the random network example in
Section 13.3.2, the selection of leaders switches from nodes with large degrees (when the
number of leaders is small) to nodes with small degrees (when the number of leaders is
large enough). It is of interest to study under what conditions this phase transition of
leader selection from large degree nodes to small degree nodes takes place. Tools from
random graphs [90,91] will play an important role in this effort.
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[20] A. Zečević and D. D. Šiljak. Control of Complex Systems, Structural Constraints
and Uncertainty. Springer Verlag, 2010.

[21] P. L. D. Peres and J. C. Geromel. An alternate numerical solution to the linear
quadratic problem. IEEE Trans. Automat. Control, 39:198–202, 1994.

[22] L. El Ghaoui, F. Oustry, , and M. AitRami. A cone complementarity linearization
algorithm for static output-feedback and related problems. IEEE Trans. Automat.
Control, 42(8):1171–1176, 1997.

[23] V. L. Syrmos, C. T. Abdallah, P. Dorato, and K. Grigoriadis. Static output
feedback-a survey. Automatica, 33(2):125–137, 1997.

[24] M. C. de Oliveira and J. C. Geromel. Numerical comparison of output feedback
design methods. In Proceeding of the 1997 American Control Conference, pages
72–76, 1997.

[25] J. C. Geromel, C. C. de Souza, and R. E. Skelton. Static output feedback con-
trollers: stability and convexity. IEEE Trans. Automat. Control, 43(1):120–125,
1998.



141

[26] V. D. Blondel and J. N. Tsitsiklis. A survey of computational complexity results
in systems and control. Automatica, 2000.

[27] K. Zhou, J. C. Doyle, and K. Glover. Robust and optimal control. Prentice-Hall,
1996.

[28] M. H. DeGroot. Reaching a consensus. J. Amer. Statist. Assoc., 69(345):118–121,
1974.

[29] B. Golub and M. Jackson. Naive learning social networks and the wisdom of
crowds. American Economic Journal: Microeconomics, 2(1):112–149, 2010.

[30] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J.
Parallel Distrib. Comput., 7(2):279–301, 1989.

[31] J. E. Boillat. Load balancing and Poisson equation in a graph. Concurrency:
Practice and Experience, 2(4):289–313, 1990.

[32] L. Xiao, S. Boyd, and S.-J. Kim. Distributed average consensus with least-mean-
square deviation. J. Parallel Distrib. Comput., 67(1):33–46, 2007.

[33] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mobile au-
tonomous agents using nearest neighbor rules. IEEE Trans. Automat. Control,
48(6):988–1001, 2003.

[34] R. Olfati-Saber and R. M. Murray. Consensus problems in networks of agents with
switching topology and time-delays. IEEE Trans. Automat. Control, 49(9):1520–
1533, 2004.

[35] L. Moreau. Stability of multiagent systems with time-dependent communication
links. IEEE Trans. Automat. Control, 50(2):169–182, 2005.

[36] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri. Communication constraints
in the average consensus problem. Automatica, 44(3):671–684, 2007.
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Appendix A

Least-squares approximation of
structured covariances

The use of second order statistics has been extensively studied in spectral estimation [92–
94]. Recently, there has been renewed interest [95, 96] in utilizing state covariances of
linear filters to extract information about the power spectra of the input processes. To
qualify as a valid state covariance, a positive semi-definite matrix has to satisfy a certain
linear constraint imposed by the underlying dynamics. However, the sample covariances,
computed from a finite measurement record, almost always fail to have the required
structure. Most methods in spectral estimation [93] take sample covariances even though
the effect of inaccuracy is not well understood nor analyzed in any detail [97].

In view of the above, it is pertinent to find a nonnegative definite matrix with
required structure to approximate the given sample covariance. The natural Euclidean
distance gives a least-squares problem which can be solved by standard semi-definite
programming (SDP) solvers. For the n × n covariance matrix, however, the number
of optimization variables is of O(n2), which implies numerical difficulty (computational
effort of O(n6)) of the interior-point methods employed in available SDP solvers. In this
appendix, we develop an alternative approach to this optimization problem.

Our presentation is organized as follows: we set up the problem and give an equiv-
alent formulation in Section A.1. We derive the dual problem and present the uncon-
strained optimization methods in Section A.2. Then, a numerical example is provided
with the computational results presented in Section A.3. The appendix is concluded
with a brief summary in Section A.4.

A.1 Problem formulation

Let a finite dimensional linear system be given by its state equation

ẋ = Ax + Bd
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where d ∈ Cm is a stationary, zero-mean stochastic process and x ∈ Cn is the state
vector. The system is characterized by the controllable pair (A,B), where A ∈ Cn×n is
Hurwitz, and B ∈ Cn×m is full column rank. Under these assumptions, the steady state
covariance X := limt→∞ E{x(t)x∗(t)} satisfies the following linear constraint (cf. [98])

AX + XA∗ = −(BH + H∗B∗) (LC)

where E(·) is the expectation operator and (·)∗ is the complex conjugate transpose. The
matrix H ∈ Cm×n depends on the input power spectrum and the pair (A,B). It was
also established in [98] that the condition for a positive semi-definite matrix X to be
the state covariance of a linear system (A,B) for some stationary, zero-mean, stochastic
input d, is equivalent to the solvability of (LC) in terms of H. However, the sample
covariance

Σ :=
1

k

k∑
i= 1

xix
∗
i

computed from k samples almost always fails to satisfy (LC) [97]. In view of this, we
formulate the following approximation problem:

• Given a positive semi-definite matrix Σ = Σ∗ � 0 and a controllable pair (A,B)
with A Hurwitz and B full column rank, find X = X∗ � 0 that is closest to Σ in
the least-squares sense and satisfies (LC) for some H ∈ Cm×n.

This optimization problem can be formulated as follows:

minimize
1

2
‖X − Σ‖2F

subject to X = X∗ � 0

AX + XA∗ = −(BH + H∗B∗)

(P1)

where ‖ · ‖F denotes the Frobenius norm, and X and H are the optimization variables.

A.1.1 Standard SDP formulation

The primal problem (P1) is a convex optimization problem with a norm objective func-
tion and a linear constraint in the positive semi-definite cone S+

n . By introducing an
auxiliary variable κ, (P1) can be cast into an SDP problem [99],

minimize κ

subject to
1

2
‖X − Σ‖2F ≤ κ

X = X∗ � 0

AX + XA∗ = −(BH + H∗B∗)
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which can be solved by standard primal-dual interior-point methods. However, the num-
ber of optimization variables is of O(n2), which implies the computational complexity
O(n6) of these standard methods.

A.1.2 Equivalent constraints

For a given positive semi-definite matrixX, the solvability of (LC) in terms ofH qualifies
X to be a valid steady state covariance. However, having H as an optimization variable
increases the problem size by m× n, and computations become more expensive as the
number of inputs m increases. We note that the Lyapunov-type constraint (LC) implies
that X must lie in the range of a certain linear operator L, i.e., X ∈ R(L). Namely,
the constraint (LC) can be equivalently represented as

X =

∫ ∞
0

eAt(BH + H∗B∗)eA
∗t dt =: L(H)

where L maps H into X. Equivalently, X must be orthogonal to the null space of the
adjoint of L, i.e., X ⊥ N (Lad). Next, we determine the basis of N (Lad).

Real field case

Let us first consider the linear constraint over the field of real numbers. The complex
conjugate transpose in (LC) is then replaced by transpose, AX + XAT = −(BH +

HTBT ). The linear operator L(H) :=
∫∞

0 eAt(BH + HTBT )eA
T t dt maps Rm×n to

Rn×n. Let symmetric matrix G ∈ Rn×n be in the range of L. The unique linear
operator Lad exists and satisfies 〈G,L(H)〉 = 〈Lad(G), H〉 where the inner product is
defined as 〈M,N〉 := trace (MTN). Hence,

〈G,L(H)〉 = trace (GT
∫ ∞

0
eAt(BH +HTBT )eA

T t dt)

=

∫ ∞
0

trace (eA
T tGeAt(BH +HTBT ) dt)

= 2 trace (

∫ ∞
0

eA
T tGeAt dtBH).

Thus,

Lad(G) = 2BT (

∫ ∞
0

eA
T tGeAtdt) =: 2BTZ

where Z represents the solution to the Lyapunov equation ATZ + ZA = −G. To
construct the basis of N (Lad), we introduce the change of coordinates {B̃ = PB, Ã =
PAP−1}, such that B̃ = [Im×m O(n−m)×m]T . Under this coordinate transformation,
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the basis G̃ satisfies

Lad(G̃) = B̃T Z̃ =
[
I O

] [ Z̃1 Z̃T2
Z̃2 Z̃3

]
=
[
Z̃1 Z̃T2

]
=
[
O O

]
.

Therefore, any symmetric matrix Z̃ of the form

Z̃ =

[
O O

O Z̃3

]
gives a member of the N (Lad) by substituting Z̃ into ÃT Z̃ + Z̃Ã = − G̃. Matrices G̃i’s
are determined by substituting the basis elements of S(n−m)×(n−m) for Z̃. Thus, Gi’s

in the original coordinates {A, B} are recovered by Gi = P T G̃iP . Finally, the Gram-
Schmidt procedure is employed to orthonormalize Gi’s. The number of basis elements,
r, is easily determined by the size of Z̃3, r = 0.5(n−m)(n−m+ 1).

Complex field case

When the matrices are defined over the field of complex numbers, the previous inner
product procedure fails to give a linear operator Lad, because H∗ is not linear with
respect to H. To circumvent this difficulty, we note that the bijection between a complex
matrix X = Xr + jXi and a real matrix X̄ of the form

X̄ =

[
Xr −Xi

Xi Xr

]
is a ring isomorphism [100]. By mapping {A,B,H} into {Ā, B̄, H̄}, the constraint (LC)
transforms to ĀX̄ + X̄ĀT = −(B̄H̄ + H̄T B̄T ). This can be also verified by expand-
ing (LC) and equating the real and imaginary parts on both sides of the resulting
equation. Thus, the procedure of Section A.1.2 can be employed to construct the
basis Ḡi. Correspondingly, the number of basis elements, r, for the complex case is
r = (n−m)(2n− 2m+ 1).

Thus, (LC) is now transformed into the following equivalent set of constraints

trace (GiX) = 0, i = 1, 2, . . . , r. (TC)

As already mentioned, the number of Gi’s to span N (Lad) is r = 0.5(n−m)(n−m+ 1)
(in the real case) and r = (n − m)(2n − 2m + 1) (in the complex case). If m ≥ n,
then (LC) is always satisfied for some H; thus, we assume m < n in the sequel. The
transformation of (LC) to (TC) is advantageous for optimization because:

• it eliminates H, which contains m× n optimization variables;
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• the number of corresponding trace constraints decreases as the number of inputs
increases.

Examples where the number of inputs is close to the number of states, i.e. m ≈ n,
can be found in spatially distributed systems. A particular example, which is the main
motivation for current developments, is encountered in wall-bounded shear flows of
incompressible fluids (e.g., boundary layers subject to spatio-temporal excitation in
the form of a free-stream turbulence). The algorithms developed in this appendix are
expected to be useful in the study of these problems.

The primal problem is now cast into

minimize
1

2
‖X − Σ‖2F

subject to X = X∗ � 0

trace(GiX) = 0, i = 1, 2, . . . , r

(P2)

where Gi’s form the orthonormal basis of N (Lad). After solving (P2), the least-squares
solution H can be found by a very cheap computation as follows. Let D := AX?+X?A∗,
where X? is the unique solution of (P2). Left-multiplication of (LC) with B∗ and right-
multiplication with B gives

B∗B(HB) + (HB)∗B∗B = −B∗DB. (A.1)

With X ∈ R(L), there exists H such that HB is Hermitian (see Section 3, Remark 1
in [98]). Therefore, H can be computed by

H = −(B∗B)−1(B∗D +MB∗)

where matrix M := HB is obtained as the solution to the Lyapunov equation (A.1).
In the sequel, we study optimization problem (P2). The covariance matrix approx-

imation problems have been recently studied by several research groups. Higham first
introduced the nearest correlation matrix problem and proposed an alternating projec-
tion method [101]. Malick studied the semi-definite least-squares (SDLS) problem [102],
which generalized S+

n to any closed convex cone. He proposed a quasi-Newton algorithm
and gave a dual interpretation for the alternating projection method as the standard
gradient algorithm (see Section 5.2 in [102]). Boyd and Xiao studied the least-squares
covariance adjustment problem (LSCAP) [103], which is an extension of the SDLS with
trace inequality constraints. They proposed a projected gradient method and exploited
structure (such as sparsity) to reduce computational expense. The objective functions of
the dual problems in both SDLS and LSCAP are not twice continuously differentiable.
This implies that the convergence rates of the proposed methods in [102] and [103] are
at best linear [104]. Utilizing recent results for strongly semi-smooth functions [105],
Qi and Sun developed a generalized Newton method with quadratic convergence rate,
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which is highly efficient and outperforms quasi-Newton and projected gradient methods
(as reported in [104]).

Although fruitful results have been developed for general problems (as evident from
the above references), for our specific problem (P2) we derive and cast its dual problem
into an unconstrained problem via standard optimization theory. We then implement
unconstrained maximization methods proposed in [102–104].

A.2 Dual problem

In this section, the primal problem (P2) is cast into its dual problem via standard
Lagrange multipliers method. It is then converted into an unconstrained maximiza-
tion problem by projection on S+

n . To begin with, the Lagrangian [54] is formed by
introducing the Lagrange multipliers νi ∈ C and Z ∈ Cn×n

L(ν, Z,X) :=
1

2
‖Σ−X‖2F − trace(ZX) +

r∑
i= 1

νitrace(GiX)

with Z = Z∗ � 0 corresponding to the inequality constraint. The minimizer of
L(ν, Z,X) over X satisfies ∂L(ν, Z,X)/∂X = 0, which gives Xmin = Σ + Z −∑r

i= 1 νiGi. By choosing X = Xmin and denoting Gν :=
∑r

i= 1 νiGi, we have the
dual objective function

g(ν, Z) = −0.5‖Z − Gν‖2F − trace((Z − Gν)Σ)

= −0.5‖Σ + Z − Gν‖2F + 0.5‖Σ‖2F .

Thus, the dual problem is given by

maximize g(ν, Z) = −0.5‖Σ + Z − Gν‖2F + 0.5‖Σ‖2F
subject to Z = Z∗ � 0.

Note that any Hermitian matrix can be decomposed as X = X+ + X− with X+

and X− , respectively, being the positive and negative semi-definite parts of X, i.e.,
X+ =

∑
λ̄i> 0 λ̄iūiū

∗
i and X− =

∑
λ̄i< 0 λ̄iūiū

∗
i . Here ū1, . . . , ūn denote a set of

orthonormal eigenvectors of X with the corresponding eigenvalues {λ̄1, . . . , λ̄n}. Hence,
the eigenvalue decomposition of X gives

‖X‖2F = trace(Ū Λ̄Ū∗Ū Λ̄Ū∗) =
n∑

i= 1

λ̄2
i .

Thus, for given vector ν, the choice Z? = −(Σ − Gν)− eliminates the negative eigenval-
ues of Σ − Gν . It follows that Z? is the maximizer over S+

n . Hence, the dual problem
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is finally cast into the following unconstrained maximization problem

maximize g(ν) = −1

2
‖(Σ − Gν)+‖2F +

1

2
‖Σ‖2F (D)

where (Σ − Gν)+ is the corresponding positive semi-definite part of Σ − Gν . The
operation (·)+ on a Hermitian matrix can be interpreted as the projection on the positive
semi-definite cone S+

n . Specifically, one can compute the eigenvalue decomposition and
replace the negative eigenvalues by zero to obtain the nonnegative definite part. The
dual variables are scalars νi’s.

For the convex primal problem with linear constraints, feasibility is sufficient to
guarantee strong duality [54, p. 504]. The primal problem constraints are easily seen
feasible (for instance, X = 0). Therefore, there is no duality gap and the optimal can
be obtained by solving the unconstrained dual problem (D). With the solution from
dual problem given by ν?i ’s, the optimal solution of the primal problem is determined
by X? = (Σ − Gν?)+. One advantage of the dual formulation is that the number
of the variables r = 0.5(n−m)(n−m+ 1) is only a fraction of the size of the primal
problem (P2), 0.5(n2 +n), when m ≈ n. Furthermore, due to the absence of constraints
any method for unconstrained maximization problem can be utilized.

A.2.1 Unconstrained maximization methods

We derive the gradient of the objective function using standard perturbation theory and
borrow available results from [104] to obtain generalized second order derivative. Let
λj be the eigenvalue of Σ−Gν with the associated orthonormal eigenvector uj . Define
φ(λ) := max(0, λ). Then, the objective function is given by

g(ν) = − 1

2

n∑
j= 1

φ2(λj) +
1

2
‖Σ‖2F .

We now employ results from standard perturbation analysis [106] to determine the
gradient of g(ν). For simplicity, consider a matrix F perturbed by νG, where G and F
are Hermitian matrices and ν is a scalar. The derivative of an isolated eigenvalue λ of
the resulting matrix F − νG with respect to ν is given by ∂λ/∂ν = −u∗Gu, where u
is the unit eigenvector associated to λ. Therefore, the ith entry of ∇g is determined by
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∂g(ν)/∂νi =
∑

λj>0 λju
∗
jGiuj , and it can be rewritten compactly as

∂g(ν)

∂νi
=

∑
λj > 0

λju
∗
jGiuj =

∑
λj > 0

u∗j (Σ − Gν)+Giuj

= trace(
∑
λj > 0

uju
∗
j (Σ − Gν)+Gi)

= trace(UU∗(Σ − Gν)+Gi)

= trace((Σ − Gν)+Gi).

The quasi-Newton method utilizes the gradients of two consecutive steps to construct
the approximation of the second order derivative (Hessian). The Broyden-Fletcher-
Goldfarb-Shanno (BFGS) scheme is employed due to its efficiency for general problems.
Starting with negative identity, the negative definite matrix Hs in our maximization
problem is updated using the following BFGS scheme (see [54, p. 150])

H+
s = Hs +

yyT

yT s
− Hsss

THs

sTHss

where y := ∇g(ν+) −∇g(ν) and s := ν+ − ν with ν+ and ν denoting the current and
previous step variables, respectively. The BFGS direction is determined by vBFGS =
−H−1

s ∇g(ν). Given ν0, the first step ν1 can be obtained by a gradient method which
is necessary for the BFGS iterations to proceed.

The objective function is not twice continuously differentiable when Σ − Gν has
zero eigenvalues [104]. This implies that the classical Hessian needs to be generalized.
The detailed discussion about the smoothness property of the objective function and
the derivation of generalized Newton direction can be found in [104]. To compute
generalized ∇2g(ν), one constructs the symmetric matrix Ω as follows,

Ωij =


(φ(λi)− φ(λj))/(λi − λj) if λi 6= λj
1 if λi = λj > 0
0 if λi = λj ≤ 0.

Then for any ∆ν ∈ Rr, the generalized Hessian acting on ∆ν is given by

∇2g(ν)(∆ν) =

 trace(−U(Ω ◦ (U∗G∆νU))U∗G1)
...

trace(−U(Ω ◦ (U∗G∆νU))U∗Gr)


where ◦ denotes the Hadamard product, i.e. entrywise multiplication. By solving
∇2g(ν)(vNT ) = −∇g(ν) using conjugate gradient (CG) method [54,104], we obtain the
generalized Newton direction vNT .
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A.2.2 Implementation

With the three ascending directions ∇g, vBFGS and vNT determined above, the algo-
rithm for the unconstrained problem is given next. We choose the standard backtracking
line search as the step size method, with parameters α = 0.3, β = 0.5 (see [43, p. 464]).

Algorithm
Start with initial point ν0 (e.g., ν0 = 0) and at each step k
repeat:

1. project Σ−Gνk onto S+
n , then compute ascending direction vk,

2. use the backtracking line search to determine step size t, then update νk+1 =
νk + tvk.

until: stopping criterion ‖∇g(ν)‖2 < ε is reached.
The convergence to the global optimal is guaranteed by the convexity of the problem.

A.2.3 Complexity analysis

The computational effort of each algorithm is studied in this section. At each step of
the gradient method, the computational effort is O(max (n3, rn2)) operations, where
O(n3) operations are required for the eigenvalue decomposition of Σ − Gν and O(n2)
operations are required for computation of the matrix inner product trace((Σ−Gν)+Gi)
for each i = 1, 2, . . . , r. As BFGS method uses gradient directions to form Hs, it requires
the same amount of operations as the gradient method. The extra effort comes from
computing the inverse of Hs, which requires O(r3) operations. Thus, each BFGS step
costs O(max (n3, rn2, r3)) operations. To compute the generalized Newton direction, it
takes O(max (n3, rn2)) operations to determine U(Ω ◦ (U∗G∆νU))U∗ in each CG step,
where O(rn2) operations are required to form the sum G∆ν and O(n3) operations are
required for matrix multiplications. Thus, the cost of each CG step is O(max (n3, rn2))
operations. The number of CG steps is O(r) provided that the problem is well pre-
conditioned [54,104]. Therefore, each Newton step costs O(max (rn3, r2n2)) operations
assuming O(r) CG steps.

For a given problem with n states, the cost of the above algorithms relies heavily
on the number of dual variables. From the construction of the basis in Section A.1.2,
the number of inputs m dictates the size of r = 0.5(n −m)(n −m + 1). Thus, if the
number of inputs is close to the number of states, i.e. m ≈ n, presented algorithms are
expected to be computationally efficient.

A.3 Numerical experiments

We present a mass-spring-damper example and compare the computation results for
different formulations of the problem. As discussed in Section A.1, the original primal
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problem (P1) is equivalent to primal problem (P2), which is then cast into the dual
problem (D) in Section A.2. The first two formulations can be solved by available SDP
solvers such as SeDuMi. Following [103, 104], we develop unconstrained maximization
methods for the dual formulation. The following experiments are performed in Matlab
on a personal computer with 3.2GHz CPU and 2.5GB RAM. Primal problems (P1)
and (P2) are solved using Yalmip [107] with SeDuMi as its SDP solver.

A.3.1 Mass-spring-damper example

We consider a mass-spring-damper system consisting of l masses and l + 1 springs and
dampers on a line as in Fig. A.1. (The dampers are not shown in the figure.) The
dynamics of the ith mass mi are given by

mip̈i + bi−1(ṗi − ṗi−1) + bi(ṗi − ṗi+1) +

ki−1(pi − pi−1) + ki(pi − pi+1) = di

where pi represents the displacement from a reference position of the ith mass, bi is the
damping coefficient of the ith damper, and ki is the spring constant of the ith spring.
We assign unit values to {mi, bi, ki}, and assume that a stationary Gaussian white
stochastic process, di, with zero-mean and unit variance is introduced to the ith mass.
The first and the last masses are connected to fixed boundaries; hence, ṗ0 ≡ 0, p0 ≡ 0,
ṗl+1 ≡ 0, pl+1 ≡ 0. By selecting the state variables x1 := col {pi} and x2 := col {ṗi},
the state-space representation is determined by

A =

[
O I
T T

]
, B =

[
O
I

]
where T := toeplitz([ −2 1 0 · · · 0 ]), I is l×l identity matrix, O is l×l zero matrix, and
input d := col {di}. To demonstrate the performance with respect to different number
of inputs, we assume the first l−m components in d to be identically equal to zero; the
definition of input matrix B should be changed correspondingly in this case.

Figure A.1: Mass-spring-damper system.
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Knowledge of the dynamics of the linear system and covariance Q of d can be used
to obtain the steady state covariance X by solving the Lyapunov equation

AX + XAT = −BQBT .

However, we consider a situation in which only limited observed sample data is available
to estimate state covariance and infer the second order statistics of the inputs. In the
numerical experiments, we take 1000 state samples (uniformly sampled in time from 0
to 10 seconds) and compute the sample covariance Σ. Invariably, Σ fails to satisfy (LC)
and we utilize approximation algorithms to find least-squares estimate of Σ.

A.3.2 Performance comparison of three formulations

As discussed in Section A.2.3, the computational effort of all unconstrained maxi-
mization algorithms depends heavily on the number of dual variables determined by
r = 0.5(n −m)(n −m + 1) (in this example, n = 2l). Hence, two sets of optimization
experiments are carried out with difference in the number of inputs m relative to the
number of states n (m = 0.1n in the first set and m = 0.5n in the second set with the
results shown in Tables A.1 and A.2, respectively). The time for all computations is
given in seconds. We only present results of BFGS method for the dual formulation be-
cause it generally outperforms gradient and generalized Newton methods. It is observed
in this example that the conjugate gradient method usually runs into difficulty when
r ≥ 100. However, in numerical examples reported in [104], the generalized Newton
method outperformed BFGS method significantly. The purpose of our experiments is
not to provide comparison between different unconstrained maximization methods but
rather to compare the different formulations of the problem in terms of their compu-
tational efficiency. For simplicity, the initial condition for BFGS method is set to be a
zero vector and the stopping criterion is ‖∇g(ν)‖2 ≤ 10−5.

As evident from Tables A.1 and A.2, three different formulations give very close
optimal solutions. For m = 0.1n, the primal formulation (P1) can be solved more
efficiently than formulation (P2) by standard SDP solver. The BFGS (as well as gradient
and generalized Newton methods) has difficulty in solving the dual formulation. For
m = 0.5n, however, the unconstrained formulation can be solved very efficiently and the
BFGS method significantly outperforms standard SDP solvers. Also, note that even for
the same SDP solver, formulation (P2) is much easier to handle than formulation (P1).
Another aspect of the dual formulation is the construction of the basis. From results
listed in Table A.3, the time required to construct the basis is actually comparable to
the optimization time. However, the basis can be computed off-line and stored for future
computations.

In the following tables, the time is given in seconds. In Table A.1 and A.2, the
optimal value ‖X? − Σ‖2F and the ratio ‖X? − Σ‖2F /‖Σ‖2F are reported. The time
for (P1) and (P2) is the time required to run the SDP solver SeDuMi. We note that
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Time(s) It. No. ‖X? − Σ‖2F
‖X?−Σ‖2F
‖Σ‖2F

r = 378 BFGS 25.1 238 3.6280e-4 13.5%
n = 30 P1 7.7 21 3.6288e-4 13.5%

P2 13.0 21 3.6288e-4 13.5%

r = 666 BFGS 108.3 298 4.4958e-4 13.5%
n = 40 P1 34.6 23 4.4965e-4 13.5%

P2 64.1 22 4.4965e-4 13.5%

r = 1035 BFGS 1182.8 1104 3.2386e-3 12.7%
n = 50 P1 127.1 28 3.2388e-3 12.7%

P2 281.6 28 3.2388e-3 12.7%

Table A.1: Performance comparison for m = 0.1n.

the interface Yalmip requires more time than solver SeDuMi. The stopping criterion
for BFGS method is ‖∇g(ν)‖2 ≤ 10−5. The number of dual variables is given by r =
0.5(n−m)(n−m+ 1).

A.4 Summary

The state sample covariances almost always fail to satisfy linear constraint imposed by
the underlying dynamics. The consistency with such dynamics is crucial in address-
ing the problem of characterizing the input power spectra. We formulate the structured
covariance least-squares problem and convert the linear matrix constraint into an equiv-
alent set of trace constraints. The corresponding dual problem can be solved efficiently
by unconstrained maximization methods when the number of inputs is close to the
number of states.
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Time(s) It. No. ‖X? − Σ‖2F
‖X?−Σ‖2F
‖Σ‖2F

r = 120 BFGS 0.1 5 6.3172e-3 5.3%
n = 30 P1 24.7 24 6.3172e-3 5.3%

P2 4.5 24 6.3172e-3 5.3%

r = 210 BFGS 0.2 5 7.2892e-3 5.9%
n = 40 P1 117.3 24 7.2893e-3 5.9%

P2 17.9 24 7.2893e-3 5.9%

r = 325 BFGS 0.5 5 6.7127e-2 7.4%
n = 50 P1 413.5 23 6.7127e-2 7.4%

P2 62.4 24 6.7127e-2 7.4%

Table A.2: Performance comparison for m = 0.5n.

n = 30 n = 40 n = 50
r = 378 r = 666 r = 1035

Basis time(s) 9.3 34.6 219.2
BFGS time(s) 25.1 108.3 1182.8

Table A.3: BFGS and basis time for m = 0.1n.


	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Main topics of the dissertation
	Structured state feedback synthesis and sparsity-promoting optimal control
	Sparsity-promoting optimal control for consensus networks
	Optimal localized control of vehicular formations
	Algorithms for leader selection in consensus networks

	Organization of the dissertation
	Contributions of the dissertation

	I Sparsity-promoting optimal control
	Optimal sparse feedback synthesis
	Sparsity-promoting optimal control problem
	Sparsity-promoting penalty functions
	Design of sparse feedback gains
	Examples
	Mass-spring system
	A random network with unstable dynamics
	Block sparsity: An example from bio-chemical reaction


	Identification of sparsity patterns via alternating direction method of multipliers
	Alternating direction method of multipliers
	Separable solution to G-minimization problem
	Weighted 1 norm
	Cardinality function
	Sum-of-logs function
	Derivation of (3.9)-(3.10)

	Anderson-Moore method for F-minimization problem
	Polishing step: Solving structured H2 problem
	Newton's method
	Conjugate gradient method to compute Newton direction


	Augmented Lagrangian approach to structured feedback design
	Structured feedback design
	Augmented Lagrangian method
	Sensitivity interpretation of the Lagrange multiplier

	Anderson-Moore method for augmented Lagrangian minimization
	Examples
	Mass-spring system
	Formation of vehicles


	Conclusions and future directions

	II Sparsity-promoting optimal control for consensus networks
	Identification of sparse communication graphs for consensus networks
	Undirected consensus networks
	Stochastically forced consensus networks
	Performance of consensus networks

	Semidefinite programming formulation for the sparsity-promoting optimal control problem
	SDP formulation for the structured H2 problem

	An example

	Design of communication graphs for consensus networks
	Alternative expressions for the H2 norm
	Incidence matrix and graph Laplacian
	Local and global performance measures

	Stability and convexity
	Analytical solutions to the structured H2 problem
	Tree
	Circle
	Complete graph
	Asymptotic scaling of performance measures with the number of nodes


	Conclusions and future directions

	III Optimal localized control of vehicular formations
	Optimal control of vehicular formations with nearest neighbor interactions
	Problem formulation
	Single-integrator model
	Double-integrator model
	Closed-loop stability: the role of fictitious vehicles
	Structured H2 problem

	Design of symmetric gains for the single-integrator model: A convex problem
	Homotopy-based Newton's method
	Spatially uniform symmetric gain: Inverse optimality for =0
	Perturbation analysis for 1
	Newton's method for larger values of 

	Optimal localized design for the double-integrator model

	Performance of vehicular formations with nearest neighbor interactions
	Performance of optimal localized controller
	Performance vs. size for the single-integrator model
	Spatially uniform symmetric gain
	Spatially uniform non-symmetric gain (look-ahead strategy)
	Optimal symmetric and non-symmetric controllers

	Performance vs. size for the double-integrator model

	Conclusions and future directions

	IV Algorithms for leader selection in consensus networks
	Noise-corrupted leader selection problem
	Noise-corrupted leader selection
	Connections to the sensor selection problem

	Lower bound on global performance
	Customized interior point method for (CR)

	Upper bounds on global performance
	Greedy algorithm to obtain an upper bound
	Alternating direction method of multipliers

	Examples
	A small network
	A 2D lattice


	Noise-free leader selection problem
	Noise-free leader selection
	Connections to the sensor selection problem

	Linear approximation and soft-constraint method
	Explicit expression for the objective function
	Linear approximation of G
	ADMM for the soft-constraint method

	Examples
	A small network
	A random network


	Conclusions and future directions
	References
	 Appendix A.  Least-squares approximation of structured covariances
	Problem formulation
	Standard SDP formulation
	Equivalent constraints

	Dual problem
	Unconstrained maximization methods
	Implementation
	Complexity analysis

	Numerical experiments
	Mass-spring-damper example
	Performance comparison of three formulations

	Summary



