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Abstract

Turbulent flows are ubiquitous in nature and they appear in many engineering appli-
cations. Transition to turbulence, in general, increases skin-friction drag in air/water
vehicles compromising their fuel-efficiency and reduces the efficiency and longevity of
wind turbines. While traditional flow control techniques combine physical intuition with
costly experiments, their effectiveness can be significantly enhanced by control design
based on low-complexity models and optimization. In this dissertation, we develop a
theoretical and computational framework for the low-complexity stochastic modeling of
wall-bounded shear flows.

Part I of the dissertation is devoted to the development of a modeling framework which
incorporates data-driven techniques to refine physics-based models. We consider the
problem of completing partially known sample statistics in a way that is consistent with
underlying stochastically driven linear dynamics. Neither the statistics nor the dynam-
ics are precisely known. Thus, our objective is to reconcile the two in a parsimonious
manner. To this end, we formulate optimization problems to identify the dynamics and
directionality of input excitation in order to explain and complete available covariance
data. For problem sizes that general-purpose solvers cannot handle, we develop cus-
tomized optimization algorithms based on alternating direction methods. The solution
to the optimization problem provides information about critical directions that have
maximal effect in bringing model and statistics in agreement.

In Part II, we employ our modeling framework to account for statistical signatures of
turbulent channel flow using low-complexity stochastic dynamical models. We demon-
strate that white-in-time stochastic forcing is not sufficient to explain turbulent flow
statistics and develop models for colored-in-time forcing of the linearized Navier-Stokes
equations. We also examine the efficacy of stochastically forced linearized NS equations
and their parabolized equivalents in the receptivity analysis of velocity fluctuations to
external sources of excitation as well as capturing the effect of the slowly-varying base
flow on streamwise streaks and Tollmien-Schlichting waves.

In Part III, we develop a model-based approach to design surface actuation of turbulent
channel flow in the form of streamwise traveling waves. This approach is capable of
identifying the drag reducing trends of traveling waves in a simulation-free manner.
We also use the stochastically forced linearized NS equations to examine the Reynolds
number independent effects of spanwise wall oscillations on drag reduction in turbulent
channel flows. This allows us to extend the predictive capability of our simulation-free
approach to high Reynolds numbers.
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Chapter 1

Introduction

A growing awareness of the global energy crisis has motivated vigorous research on
fuel-efficient vehicles and renewable energy generation, such as wind and tidal energy
harvesting. While much progress has been made in alternative energy development, tur-
bulence has presented a major obstacle. Turbulence, in general, increases skin-friction
drag in air and water vehicles compromising their fuel-efficiency [1, 2]. It also reduces
efficiency and longevity of turbines in wind and tidal energy generation. It is thus of
critical importance to understand the physics of turbulent flows and incorporate this
knowledge in the design of vehicles and turbine blades.

Turbulent flows are at the center of many key processes in nature and engineering ap-
plications. As viscous stresses are overcome by the fluids inertia and the Reynolds
number1 increases, smooth and ordered (laminar) motion becomes complex and dis-
ordered (turbulent); see figure 1.2. In this process, which is known as transition to
turbulence, velocity and pressure fluctuations undergo rapid variations with a broad
range of spatial and temporal scales and the motion becomes inherently three dimen-
sional and unsteady. In boundary layers, large fluctuations caused by turbulence lead
to an increase in the dissipation of kinetic energy. This increases resistance to motion
in turbulent boundary layers relative to laminar boundary layers. While in applications
such as air transportation or wind power generation it is desired to suppress turbulence
for the purpose of drag reduction, other applications necessitate its promotion for the
purpose of mixing chemical species or preventing separation [3]. In both scenarios, a
fundamental understanding of the physics of turbulent flows is critical in developing
efficient flow control strategies.

1In fluid mechanics, the Reynolds number is a dimensionless quantity that represents the ratio of
inertial to viscous forces.

1
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(a) (b) (c)

(d) (e)

Figure 1.1: Turbulence increases the fuel consumption of (a) submarines, (b) passenger
aircrafts and (c) ships. It also reduces the energy efficiency of (d) wind farms and (e)
tidal turbines.

(a) (b)

Figure 1.2: Visualization of a flat-plate boundary-layer flow [4]. The flow direction is
from left to right. (a) Laminar flow; (b) Transition to turbulent flow.
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Figure 1.3: The number of full scale wing tests in Boeing’s aircraft design procedure
over three decades.

In the late 1970’s, Boeing built and tested over 70 prototype wings in the design and
test procedure for the 767. These full scale wind tunnel tests were not only costly
but they significantly delayed the design and manufacturing process. With the rise of
computational fluid mechanics and supercomputers, numerical simulations were incor-
porated into the early design stages [3]. This brought the number of full scale wing
tests down to 11 by 1995. However, the limitations of numerical simulations and the
absence of reliable turbulence models have caused this trend to plateau; see figure 1.3.
Large-eddy simulation is rapidly advancing in its modeling and implementation, but the
computational cost for external flows at high Reynolds numbers is still too high for it
to be incorporated into aerodynamic design [5]. Without a tractable model to capture
the complex nature of turbulence, current practice is largely empirical, and relies on
numerical simulations and experiments in an attempt to mitigate turbulence. Although
these offer valuable insights into the performance of control strategies, they are costly,
time-consuming, and not amenable to systematic controller design.

In this dissertation, we utilize tools from systems theory, fluid mechanics and optimiza-
tion to develop low-complexity models that capture the complex dynamics of turbulent
flows in a way that is tractable for analysis, optimization, and control design. The
remainder of this introductory chapter is organized as follows. In Section 1.1, we briefly
overview various aspects of low-complexity modeling for turbulent flows. In Section 1.2,
we provide a preliminary discussion on matrix completion problems. In Section 1.3, we
discuss different classes of flow control strategies. In Section 1.4, we provide an outline
of the dissertation. Finally, a preview of our main results and contributions is provided
in Section 1.5.
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1.1 Low-complexity modeling of turbulent flows

Turbulence modeling involves the development of mathematical models that approxi-
mate the physical behavior of turbulent flows and is a key element in computational
fluid dynamics. A shared quality among notable turbulence models is their simplic-
ity and agreement with physical intuition. An ideal model is commonly described as
one that requires the least amount of complexity to capture the essence of the rele-
vant physics [6]. Turbulence is an inherently three dimensional and time dependent
phenomenon. Therefore, an enormous amount of information is necessary to describe
all details of a turbulent flow. However, a complete time history over all spatial coor-
dinates for every flow property is rarely required. The level of complexity of a model
qualitatively scales with the sufficient amount of detail required in the turbulent flow ap-
plication. It is thus important to identify the relevant properties that must be captured
by the mathematical model.

In recent years, due to the advent of advanced measurement techniques and the avail-
ability of parallel computing resources, experimentally and numerically generated data
sets are becoming increasingly available for a wide range of flow configurations and
Reynolds numbers. An accurate statistical description of turbulent flows may provide
insights into flow physics and will be instrumental in model-based control design for
suppressing or promoting turbulence. Thus, it is increasingly important to understand
how structural and statistical features of turbulent flows can be embedded in models of
low-complexity that are suitable for analysis, optimization, and control design.

Nonlinear dynamical models of wall-bounded shear flows that are based on the Navier-
Stokes equations typically have a large number of degrees of freedom. This makes them
unsuitable for analysis and control synthesis. On the other hand, the existence of coher-
ent structures in turbulent wall-bounded shear flows [7–9] has inspired the development
of data-driven techniques for reduced-order modeling of the Navier-Stokes equations.
These include proper orthogonal decomposition (POD) [10–12], balanced POD [13,14],
Koopman modes [15–18], dynamic mode decomposition [19–21], and low-order Galerkin
models [22–25]. However, in all of these modeling schemes, control actuation and sens-
ing may significantly alter the identified modes. This introduces nontrivial challenges
for model-based control design [26,27].

In contrast, linearization of the Navier-Stokes equations around the mean velocity gives
rise to models that are well-suited for analysis and synthesis using tools of modern ro-
bust control. These tools allow the designer to ensure satisfactory performance even
when the real physical system deviates from the model used for control design. Fur-
thermore, when driven by stochastic excitation, such models are capable of qualitatively
and quantitatively replicating structural features of both transitional [28–30] and tur-
bulent [31–35] wall-bounded shear flows of Newtonian fluids. The utility of such tools
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extends to more complex flows and geometries including flows of non-Newtonian vis-
coelastic fluids [36–40], multiphase flows at low Reynolds numbers [41], and high-speed
aeroacoustic flows associated with turbulent jets [42].

In this dissertation, we develop low-complexity stochastic dynamical models that are
based on the linearized Navier-Stokes equations and are statistically consistent with
experimental measurements and the result of numerical simulations. In our modeling
framework, complexity is quantified by the number of degrees of freedom in the linearized
evolution model that are directly influenced by stochastic excitation sources. We develop
models for colored-in-time stochastic forcing using a maximum entropy formulation
together with a regularization that serves as a proxy for rank minimization. Effectively,
our method provides a low-rank modification to the generator of the linearized Navier-
Stokes dynamics around the turbulent mean velocity. Our modeling framework relies
heavily on tools from convex optimization. It is also closely related to the field of low-
rank matrix completion in that it allows for the completion of unavailable statistics in
a way that is consistent with the linearized dynamics. Due to this close relationship,
we provide a brief overview of matrix completion problems in the next section.

A value of our method is that it provides a data-driven refinement of models that orig-
inate from first principles. Our method captures complex dynamics in a way that is
tractable for analysis, optimization and control design. While not intended to eliminate
the need for high-fidelity numerical simulations and experiments, low-complexity mod-
els are anticipated to significantly reduce the overall cost and the time of design and
validation.

1.2 Matrix completion problems

The low-rank matrix completion problem considers the recovery of an unknown low-
rank matrix from only a subset of its entries. In many modern applications, due to
experimental/numerical limitations or even the large size of datasets, it is often the case
that data matrices are only partially known. Moreover, low-rank models have demon-
strated utility in many applications for the purpose of extracting useful information
from “big data”. As a result, the matrix completion problem has attracted a significant
amount of attention in recent years with applications in recommendation systems (e.g.
the Netflix Prize competition) [43, 44], compressive sensing [45–48], global positioning
in sensor networks [49–51], phase retrieval [52], system identification [53,54], computer
vision [55,56], multi-class learning in machine learning [57,58], robust spectral compres-
sive sensing [59], and many other areas of research [60, 61]. It is also closely related
to robust principal component analysis [62–65], non-negative matrix factorization [66],
and the tensor completion problem [67,68].
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The problem of completing a partially observed low-rank matrix can be expressed as
the following non-convex feasibility problem

find Z ∈ Rm×n

subject to rank (Z) ≤ r,

Zij = Mij , (i, j) ∈ I,

(1.1)

where I denotes the set of indices of the known entries in the true matrix M . Since it
may be difficult to handle the constraint set in (1.1), the following two reformulations
can be considered:

minimize
Z

rank (Z)

subject to Zij = Mij , (i, j) ∈ I,
(1.2)

which penalizes the violation of the first constraint in (1.1), and

minimize
Z

‖PI (M − Z) ‖2F
subject to rank (Z) ≤ r

(1.3)

which penalizes the violation of the second constraint in (1.1). Here, PI denotes a pro-
jection onto the set of indices represented by I. Since the rank function is a discrete
function and is thus intractable, various studies have considered reformulations of prob-
lems (1.2) and (1.3), which can be classified by how they deal with the rank function:
nuclear norm approximation or matrix factorization. The nuclear norm formulation
provides a convex approximation and can be solved to global optima, whereas the ma-
trix factorization formulation encodes the low-rankness explicitly through the product
of two smaller matrices but is non-convex. While most theoretical developments for
the matrix completion problem are based on the nuclear norm formulation [45–48, 69],
big data applications are generally based on matrix factorization [44]. Surprisingly, in
many numerical experiments algorithms for the non-convex matrix factorization formu-
lation can exactly recover the unknown low-rank matrix. Moreover, a number of studies
have established theoretical guarantees for low-rank matrix recovery using the matrix
factorization formulation [70,71]. We next briefly summarize these two approaches.

1.2.1 Nuclear norm formulation

Recent studies have demonstrated that the minimization of the nuclear norm (i.e., the
sum of the singular values)

‖Z‖∗ :=
∑
i

σi(Z),
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represents a good proxy for rank minimization [45,72,73]. Based on this, problem (1.2)
can be relaxed into the following nuclear norm minimization

minimize
Z

‖Z‖∗

subject to Zij = Mij , (i, j) ∈ I.
(1.4)

For M ∈ Rn×n, it has been shown that if card(I) ≥ c n1.2 rank(Z) log(n), where
card(I) is the cardinality of I (number of observations) and c is a constant, then
with high probability the solution to (1.4) is a solution to (1.2) [45]. In addition, it has
been shown that problem (1.4) recovers the lowest rank solution [73]. In other words,
one cannot find a matrix of lower rank with entries matching the partial observations
denoted by I.

When the entries denoted by I are not precisely known, a variation of (1.4) can be
considered to address noisy matrix completion [60]

minimize
Z

‖Z‖∗

subject to
∑

(i,j)∈I

(Zij − Mij)
2 ≤ ε. (1.5)

It has been shown that the reconstruction error for noisy matrix completion is propor-
tional to the initial observation error [60].

Problems (1.4) and (1.5) can be reformulated as a semidefinite programs (SDP) and
solved to global optima by standard SDP solvers for small-size problems. For larger
problems, first-order algorithms that rely on the singular value thresholding algorithm
[74] and several variants of the proximal gradient method [75, 76] have been proposed.
While the linear convergence of these algorithms has been established [77,78], the per-
iteration cost, which requires either exact or inexact singular value decomposition, is
still high making these algorithms rather slow. Another drawback of these algorithms
is that they require storage of large m by n matrices.

1.2.2 r∗ norm formulation

Recently, various benefits and applications of the so-called “r∗ norm” (also called
“k-support norm”), as a natural extension of the nuclear norm, have been demon-
strated [79–86]. In particular, its relation with the optimal rank r approximation under
convex constraints has been investigated [79, 85]. When the magnitudes of unknown
entries are significantly smaller than that of the known ones, the nuclear norm often
creates regions of large entries which deviate from the ground truth. In such cases, the
r∗ norm has shown to be more suitable for the purpose of matrix completion, especially
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if the objective is to penalize both the rank and the Frobenius norm of the unknown
matrix [85,86].

For Z ∈ Rm×n and 1 ≤ r ≤ q := min{m,n}. The r norm of the matrix Z

‖Z‖r :=

√√√√ r∑
i=1

σ2
i (Z)

is unitarily-invariant and its dual-norm is the r∗ norm

‖Z‖r∗ := max
‖X‖r ≤ 1

〈Z,X〉 .

It also holds that

• ‖Z‖1 ≤ · · · ≤ ‖Z‖q = ‖Z‖F = ‖Z‖q∗ ≤ · · · ≤ ‖Z‖1∗

• rank(Z) ≤ r if and only if ‖Z‖r = ‖Z‖F = ‖Z‖r∗,

where ‖ · ‖F denotes the Frobenius norm. Based on this, problem (1.2) can be relaxed
into the following r∗ norm minimization

minimize
Z

‖Z‖r∗

subject to Zij = Mij , (i, j) ∈ I.

Here, the r∗ norm adds an additional layer of flexibility and can play the role of a
tuning parameter. Interestingly, it has also been shown that r need not be an integer
and that for particular applications (see Chapter 4) sweeping over real-valued r ≥ 1
can potentially improve the quality of completion without adding to the rank of the
solution [85–87].

1.2.3 Matrix factorization formulation

Problem (1.3), which penalizes the violation of the second constraint in (1.1), can be
rewritten as

minimize
X,Y

‖PI
(
M − X Y T

)
‖2F (1.6)

where X ∈ Rm×r and Y ∈ Rn×r. This formulation uncovers the matrix Z = X Y T with
rank no more than r. In addition, an alternative formulation has been proposed which
regulates the norms of X and Y

minimize
X,Y

‖PI
(
M − X Y T

)
‖2F + λ

(
‖X‖2F + ‖Y ‖2F

)
. (1.7)
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This can be obtained by maximum a posteriori (MAP) estimation under a certain
probabilistic model of the low-rank matrix [88].

In the matrix factorization approach, the low-rank requirement is automatically fulfilled
by decomposing the rank r matrix Z into smaller matrices X and Y . Problem (1.7) is a
non-convex fourth-order polynomial optimization problem, which is NP-hard. However,
by exploiting the structure of the problem, standard gradient methods in conjunction
with alternating minimization methods [44, 89, 90] or stochastic gradient descent [44,
91–94] can be used to efficiently obtain the optimal solution. These methods have less
storage requirements and smaller per-iteration computational costs. Empirical studies
have shown that these algorithms work very well for the matrix factorization approach.
However, apart from a few cases [70, 71, 95], theoretical guarantees for exact recovery
are rather underdeveloped.

1.2.4 Structured matrix completion problems

The focus of this section has so far been on the recovery of low-rank matrices based on
independently sampled entries. Another line, relevant to classes of covariance comple-
tion problems that arise in our modeling framework (cf. Section 2), considers problems
where a subset of the rows and columns of an approximately low-rank matrix are ob-
served and the goal is to reconstruct the whole matrix based on the observed data. Such
problems are denominated structured matrix completion problems.

The covariance completion problem that arises from our modeling framework aims at
the recovery of a covariance matrix based on a structured subset of observed statistics.
We use the nuclear norm as a convex surrogate to the rank function. As previously men-
tioned, the nuclear norm is the convex envelope of the rank function over the unit ball
‖Z‖2 ≤ 1 and in conjunction with incoherence conditions has been utilized to provide
theoretical guarantees for standard matrix completion problems [73]. However, these
theoretical results do not apply to the more structured observation model associated
with our optimization framework. Consequently, direct application of existing matrix
completion results yields pessimistic bounds on the number of observations.

In the covariance completion problem, even though only a small subset of highly struc-
tured observations are available, our numerical experiments show reasonable recovery of
state covariances. As will be discussed in the following chapters, such high recovery is
not possible without incorporating the physics of the linearized dynamics as a structural
constraint into the optimization framework.
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1.3 Flow control

As mentioned in Section 1.1, a fundamental understanding of the physics of turbulent
flows is critical in developing efficient flow control strategies. Flow control strategies are
devised to either mitigate the unfavorable effects of turbulence, e.g., large skin-friction
drag, or to promote turbulence and they can be classified into two main categories of
feedback and sensorless control strategies.

The advent of micro-electro-mechanical systems (MEMS) technology has enabled the
fabrications of integrated circuits with the necessary micro-sensors, control logic and
actuators that can be mounted on the surface of air/water vehicles as well as wind/tidal
turbines [96–99]. The relevant flow quantities such as pressure and shear stresses are
measured by sensors and the flow is actuated by wall-deformation actuators and com-
pliant surfaces via a feedback rule; see figure 1.4a. This allows for the actuation of small
eddies that reside close to the solid surface and are responsible for turbulent drag.

Despite recent advances in the area of MEMS, the extremely small spatial and tem-
poral scales of flow fluctuations at high Reynolds numbers has hindered the utility of
feedback control strategies in turbulent flow applications [1, 100]. A more feasible al-
ternative is to consider sensorless flow control strategies that are commonly inspired by
nature [101] and rely on our understanding of the fundamental flow physics. Examples
of such control strategies are riblet-mounted [102] and superhydrophobic (super water
repellent) surfaces [103]; see figures 1.4b and 1.4c. The skin of sharks is textured with
riblet-shaped denticles, which help them swim with reduced friction [104]; similarly, the
water repellent properties of lotus leaves have motivated the design of superhydropho-
bic surface coatings [103]. In aerospace applications, a self-adhesive plastic film with
V-shaped riblets, manufactured by 3M, was applied over the fuselage and the wings
of an Airbus A320 aircraft, and a net drag reduction of about 2% was reported [105].
In this dissertation, we touch upon the design of two other sensorless schemes: wall
transpiration in the form of streamwise traveling waves and spanwise wall oscillations;
see figures 1.4d and 1.4e. Instead of actuating the flow, sensorless control strategies
modify the geometrical properties of the flow. As a result they inhibit the motion of
eddies by preventing them from coming very close to the surface and thereby influence
the exchange of energy between the flow and the surface. This ultimately leads to a
reduction in skin-friction drag.

In the past two decades, many studies have focused on model-based flow control design
using techniques from linear systems theory [33, 106–110]. In Part III, we develop
a model-based approach to designing streamwise traveling waves for turbulent drag
reduction in channel flow. This approach is capable of identifying the drag reducing
trends of traveling waves in a simulation-free manner. We also use the stochastically
forced linearized Navier-Stokes equations to examine the Reynolds number independent
effects of spanwise wall oscillations on drag reduction in turbulent channel flows. This
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(a) (b) (c)

(d) (e)

Figure 1.4: (a) An array of distributed hot-film shear-stress sensors and wall-deformation
actuators for feedback flow control [96]; (b) Sketch of a riblet-mounted surface; (c)
Sketch of a superhydrophobic surface; (d) Wall transpiration in the form of streamwise
traveling waves; (e) Spanwise wall oscillations.

allows us to extend the predictive capability of our approach to high Reynolds numbers.

1.4 Dissertation structure

This dissertation is organized into three parts and two appendices. Each part contains
individual chapters that are self-contained and describe various projects that were car-
ried out in my graduate studies. At the end of each part, the main contributions are
summarize and future research directions are discussed.

Part I of the dissertation is devoted to the theoretical and algorithmic development of
low-complexity models that account for partially observed second-order statistics. In
Chapter 2, we consider the problem of completing partially known sample statistics
in a way that is consistent with the underlying stochastically driven linear dynamics.
The theoretical developments of this chapter lead to the formulation of a covariance
completion optimization problem whose solution provides spectral information about
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critical directions that have maximal effect in bringing model and statistics in agree-
ment. In Chapter 3, we develop efficient customized optimization algorithms for solving
the covariance completion problem. In Chapter 4, we examine the utility of the r∗
norm approximation in improving the quality of covariance completion relative to the
nuclear norm formulation. In Chapter 5, we provide an alternative approach to the
covariance completion problem based on low-rank dynamical perturbations to the un-
derlying stochastically driven linear dynamics. In Chapter 6, we summarize the main
contributions of Part I and discuss extensions and future research directions.

Part II is devoted to the low-complexity modeling of transitional and turbulent shear
flows. In Chapter 7, we utilize the modeling framework developed in Part I for the
stochastic modeling of turbulent channel flow. In Chapter 8, we investigate the efficacy
of the stochastically forced linearized Navier-Stokes equations and their parabolized
equivalents in modeling the transitional boundary layer. In Chapter 9, we conclude
Part II by discussing broader implications of our framework as well as outlining possible
extensions.

Part III considers the model-based control of turbulent channel flow using passive surface
actuation. In Chapter 10, we develop a model-based framework to analyze turbulent
drag reduction in channel flow subject to streamwise traveling blowing and suction.
Chapter 11 is devoted to the model-based analysis of the effect of spanwise wall oscilla-
tions on drag reduction in high Reynolds number turbulent channel flows. In Chapter 12,
we summarize Part III and discuss open research problems.

Appendix A provides proofs to the lemmas and propositions of Chapters 2 and 3. Fi-
nally, in Appendix B we provide additional details related to the developments of Chap-
ter 7.

1.5 Preview of main results and contributions

In what follows, we provide an overview of the main contributions of this dissertation.

Part I

Low-complexity modeling of partially available second-order statistics. We
consider the problem of completing partially known sample statistics in a way that is
consistent with the underlying stochastically driven linear dynamics. Neither the statis-
tics nor the dynamics are precisely known. Thus, our objective is to reconcile the two in
a parsimonious manner. More specifically, we seek to explain correlation data with the
least number of possible input disturbance channels. We formulate this inverse problem
as rank minimization, and for its solution, we employ a convex relaxation based on the
nuclear norm. This gives rise to a class of structured covariance completion problems.
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The solution to the covariance completion problem provides spectral information about
critical directions that have maximal effect in bringing model and statistics in agree-
ment. An additional contribution is the design of a class of linear filters that realize
suitable colored-in-time excitation to account for the observed state statistics. These
filters solve a non-standard stochastic realization problem with partial covariance infor-
mation. Finally, we show that the effect of the resulting colored-in-time input process
is precisely equivalent to a perturbation of the system dynamics, without any need to
increase the state dimension.

Optimization algorithms for structured covariance completion problems. We
cast the covariance completion problem as a semidefinite program that can be solved
using general-purpose solvers. For problem sizes that these solvers cannot handle, we
develop two customized algorithms based on alternating direction methods; the Al-
ternating Minimization Algorithm (AMA) and the Alternating Direction Method of
Multipliers (ADMM). We draw a contrast between AMA and ADMM by showing that
AMA leads to explicit, easily computable updates of both primal and dual optimization
variables. We interpret AMA as a proximal gradient for the dual problem and estab-
lish convergence for our customized AMA with fixed step-size. Moreover, we utilize a
Barzilai-Borwein step-size initialization followed by backtracking to achieve sufficient
dual ascent. This enhances convergence relative to theoretically proven sub-linear con-
vergence rates for AMA with fixed step-size. We also provide an example that illustrates
the utility of our modeling and optimization framework and draw contrast between AMA
and the commonly used ADMM algorithm.

The Matlab source codes for our customized ADMM and AMA algorithms can be
found at:

http://www.ece.umn.edu/users/mihailo/software/ccama/

The use of the r∗ heuristic in covariance completion problems. We use the r∗
norm as an alternative to the nuclear norm approximation in the covariance completion
problem. Relative to the nuclear norm relaxation, the r∗ norm exploits an additional
degree of freedom which is useful in the completion of diagonally dominant covariances.
While the nuclear norm relaxation yields forcing models of low-complexity, in some
cases it can result in unreasonable completion of second-order statistics. Our numerical
experiments show that the use of the r∗ norm can indeed result in better covariance
completion without adding to the rank of the solution to our optimization problem.

Perturbation of system dynamics and the covariance completion problem.
We formulate the problem to match available covariance data while minimizing the
energy required to adjust the dynamics by a suitable low-rank perturbation. More
specifically, in the context of covariance completion via stochastically forced linear dy-
namics, we start from a pre-specified set of input channels and pose an optimization

http://www.ece.umn.edu/users/mihailo/software/ccama/
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problem that allows us to identify a small subset of these channels that can explain par-
tially observed second-order statistics via suitable feedback interactions. To cope with
the combinatorial complexity of our optimization problem, we utilize a convex charac-
terization that has been used in the context of optimal sensor and actuator selection,
which also allows us to cast our problem as a semidefinite program. This work provides
an alternative interpretation for our covariance completion framework as a static state-
feedback synthesis approach to an inverse problem that identifies dynamical feedback
interactions which account for available statistical signatures.

Part II

Stochastic modeling of turbulent channel flow. We employ our modeling frame-
work to account for second-order statistics of turbulent channel flow using stochastic
dynamical models of low complexity that are based on the linearized Navier-Stokes equa-
tions. We demonstrate that white-in-time stochastic forcing is not sufficient to explain
turbulent flow statistics and develop models for colored-in-time forcing of the linearized
dynamics. In addition, we show that colored-in-time excitation of the Navier-Stokes
equations can also be interpreted as a low-rank modification to the generator of the
linearized dynamics. Although our models are based on matching one-point velocity
correlations, we demonstrate good recovery of two-point correlations. We also analyze
the spatio-temporal responses of our model to stochastic and deterministic excitation
sources. In particular, by examining the power spectral density of velocity fluctuations,
we have shown that the dynamical modification attenuates the amplification over all
temporal frequencies. A similar effect has been observed in the eddy-viscosity-enhanced
linearization of the Navier-Stokes equations. Finally, we have computed two-point tem-
poral correlations resulting from our model to demonstrate that the essential features
of the convection velocities of individual modes are reproduced. Our method provides a
data-driven refinement of models that originate from first principles and captures com-
plex dynamics of turbulent flows in a way that is tractable for analysis, optimization,
and control design.

Stochastic modeling of spatially evolving flows. We examine the efficacy of
stochastically forced linearized Navier-Stokes equations and the parabolized stability
equations in studying the dynamics of flow fluctuations in the transitional boundary
layer. We utilize a parallel flow assumption in the Blasius boundary layer to analyze
the receptivity of velocity fluctuations to stochastic excitation sources (e.g., free-stream
turbulence and surface roughness). We also conduct a global analysis by examining
the energetically dominant flow structures that arise from stochastic excitation of the
linearized Navier-stokes equations around a streamwise varying base flow profile. To
account for the effect of linear diffraction, we introduce stochastic forcing into the lin-
ear parabolized stability equations and examine the interaction of the slowly-varying
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base flow with streamwise streaks and Tollmien-Schlichting waves. Our results demon-
strate the necessity for spatially correlated stochastic excitation of the linear PSE for
the purpose of capturing transient peaks in the streamwise intensity of the flow.

Part III

Turbulent drag reduction by streamwise traveling waves. For a turbulent chan-
nel flow with zero-net-mass-flux surface actuation in the form of streamwise traveling
waves we develop a model-based approach to design control parameters that can reduce
skin-friction drag. Our simulation-free approach is capable of identifying drag reducing
trends in traveling waves with various control parameters. We also use high-fidelity
simulations to verify the quality of our theoretical predictions.

Model-based analysis of the effect of spanwise wall oscillations on drag re-
duction at high Reynolds numbers. We use the stochastically forced linearized
Navier-Stokes equations to study the Reynolds number independent effects of span-
wise wall oscillations on drag reduction in turbulent channel flows. We show that the
influence of wall oscillations at low Reynolds numbers is confined to the streamwise
and spanwise wavelengths that correspond to the universal inner-scaled eddies in wall
turbulence. Since wall oscillations do not suppress large-scale eddies, which are respon-
sible for increased drag in the uncontrolled flow, we conclude that wall oscillations have
weaker influence on drag reduction at higher Reynolds numbers. Our observations ex-
tend the predictive capability of our simulation-free approach and enable predictions of
drag reduction at high Reynolds numbers.



Part I

Low-complexity modeling of
partially available second-order
statistics: theory and efficient

optimization algorithms
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Chapter 2

Low-complexity modeling of
partially available second-order
statistics

State statistics of linear systems satisfy certain structural constraints that arise from
the underlying dynamics and the directionality of input disturbances. In this chapter,
we study the problem of completing partially known state statistics. Our aim is to
develop tools that can be used in the context of control-oriented modeling of large-
scale dynamical systems. For the type of applications we have in mind, the dynamical
interaction between state variables is known while the directionality and dynamics of
input excitation is often uncertain. Thus, the goal of the mathematical problem that
we formulate is to identify the dynamics and directionality of input excitation in or-
der to explain and complete observed sample statistics. More specifically, we seek to
explain correlation data with the least number of possible input disturbance channels.
We formulate this inverse problem as rank minimization, and for its solution, we em-
ploy a convex relaxation based on the nuclear norm. In the next chapter, we develop
customized algorithms based on alternating direction methods that are well-suited for
problem sizes that cannot be handled by general-purpose solvers.

2.1 Introduction

Motivation for this work stems from control-oriented modeling of systems with a large
number of degrees of freedom. Indeed, dynamics governing many physical systems
are prohibitively complex for purposes of control design and optimization. Thus, it is
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common practice to investigate low-dimensional models that preserve the essential dy-
namics. To this end, stochastically driven linearized models often represent an effective
option that is also capable of explaining observed statistics. Further, such models are
well-suited for analysis and synthesis using tools from modern robust control.

An example that illustrates the point is the modeling of fluid flows. In this, the Navier-
Stokes equations are prohibitively complex for control design [106]. On the other
hand, linearization of the equations around the mean-velocity profile in the presence
of stochastic excitation has been shown to qualitatively replicate structural features of
shear flows [28–30, 33, 107–109, 111, 112]. However, it has also been recognized that a
simple white-in-time stochastic excitation cannot reproduce important statistics of the
fluctuating velocity field [113,114]. In this chapter, we introduce a mathematical frame-
work to consider stochastically driven linear models that depart from the white-in-time
restriction on random disturbances. Our objective is to identify low-complexity distur-
bance models that account for partially available second-order statistics of large-scale
dynamical systems.

Thus, herein, we formulate a covariance completion problem for linear time-invariant
(LTI) systems with uncertain disturbance dynamics. The complexity of the distur-
bance model is quantified by the number of input channels. We relate the number
of input channels to the rank of a certain matrix which reflects the directionality
of input disturbances and the correlation structure of excitation sources. We ad-
dress the resulting optimization problem using the nuclear norm as a surrogate for
rank [45,46,60,70,72,73,115,116].

The solution to the covariance completion problem gives rise to a class of linear filters
that realize colored-in-time disturbances and account for the observed state statistics.
This is a non-standard stochastic realization problem with partial spectral informa-
tion [117–120]. The class of modeling filters that we generate for the stochastic ex-
citation is generically minimal in the sense that it has the same number of degrees of
freedom as the original linear system. Furthermore, we demonstrate that the covariance
completion problem can be also interpreted as an identification problem that aims to
explain available statistics via suitable low-rank dynamical perturbations.

Our presentation is organized as follows. We summarize key results regarding the struc-
ture of state covariances and its relation to the power spectrum of input processes in
Section 2.2. In Section 2.3, we characterize admissible signatures for matrices that
parametrize disturbance spectra and formulate the covariance completion problem.
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2.2 Linear stochastic models and state statistics

We now discuss algebraic conditions that state covariances of LTI systems satisfy. For
white-in-time stochastic inputs state statistics satisfy an algebraic Lyapunov equation.
A similar algebraic characterization holds for LTI systems driven by colored stochastic
processes [121, 122]. This characterization provides the foundation for the covariance
completion problem that we study in this chapter.

Consider a linear time-invariant system

ẋ = Ax + B u

y = C x
(2.1)

where x(t) ∈ Cn is a state vector, y(t) ∈ Cp is the output, and u(t) ∈ Cm is a zero-mean
stationary stochastic input. The dynamic matrix A ∈ Cn×n is Hurwitz, B ∈ Cn×m is
the input matrix with m ≤ n, and (A,B) is a controllable pair. Let X be the steady-
state covariance of the state vector of system (2.1), X = limt→∞E (x(t)x∗(t)), with E
being the expectation operator. We next review key results and provide new insights
into the following questions:

(i) What is the algebraic structure of X? In other words, given a positive definite
matrix X, under what conditions does it qualify to be the steady-state covariance
of (2.1)?

(ii) Given the steady-state covariance X of (2.1), what can be said about the power
spectra of input processes that are consistent with these statistics?

2.2.1 Algebraic constraints on admissible covariances

The steady-state covariance matrix X of the state vector in (2.1) satisfies [121,122]

rank

[
AX + XA∗ B

B∗ 0

]
= rank

[
0 B
B∗ 0

]
. (2.2a)

An equivalent characterization is that there is a solution H ∈ Cn×m to the equation

AX + XA∗ = −BH∗ − HB∗. (2.2b)

Either of these conditions, together with the positive definiteness of X, completely
characterize state covariances of linear dynamical systems driven by white or colored
stochastic processes [121, 122]. When the input u is white noise with covariance W , X
satisfies the algebraic Lyapunov equation

AX + XA∗ = −BWB∗.
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Figure 2.1: (a) A cascade connection of an LTI system with a linear filter that is designed
to account for the sampled steady-state covariance matrix X; (b) An equivalent feedback
representation of the cascade connection in (a).

In this case, H in (2.2b) is determined by H = 1
2BW and the right-hand-side −BWB∗

is sign-definite. In fact, except for this case when the input is white noise, the matrix
Z defined by

Z := − (AX + XA∗) (2.3a)

= BH∗ + HB∗ (2.3b)

may have both positive and negative eigenvalues. Additional discussion on the structure
of Z is provided in Section 2.3.1.

2.2.2 Power spectrum of input process

For stochastically driven LTI systems the state statistics can be obtained from knowledge
of the system model and the input statistics. Herein, we are interested in the converse:
starting from the steady-state covariance X and the system dynamics (2.1), we want to
identify the power spectrum of the input process u. As illustrated in figure 2.1a, we seek
to construct a filter which, when driven by white noise, produces a suitable stationary
input u to (2.1) so that the state covariance is X. Next, we characterize a class of filters
with degree at most n.
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Consider the linear filter given by

ξ̇ = (A − BK) ξ + Bw (2.4a)

u = −K ξ + w (2.4b)

where w is a zero-mean white stochastic process with covariance Ω � 0 and

K =
1

2
ΩB∗X−1 − H∗X−1, (2.4c)

for some H that satisfies (2.2b). The power spectrum of u is determined by

Πuu(ω) = Ψ(jω) Ω Ψ∗(jω)

where
Ψ(s) = I − K (sI − A + BK)−1B

is the transfer function of the filter (2.4). To verify this, consider the cascade connection
shown in figure 2.1a, with state space representation[

ẋ

ξ̇

]
=

[
A −BK
0 A − BK

] [
x
ξ

]
+

[
B
B

]
w

x =
[
I 0

] [ x
ξ

]
.

(2.5)

This representation has twice as many states as linear system (2.1), but it is not con-
trollable and therefore not minimal. The coordinate transformation[

x
φ

]
=

[
I 0
−I I

] [
x
ξ

]
brings system (2.5) into the following form[

ẋ

φ̇

]
=

[
A − BK −BK

0 A

] [
x
φ

]
+

[
B
0

]
w

x =
[
I 0

] [ x
φ

]
.

Clearly, the input w does not enter into the equation for φ and

ẋ = (A − BK)x + Bw (2.6)

provides a minimal realization of the transfer function from white-in-time w to x,
(sI − A + BK)−1B. In addition, the corresponding algebraic Lyapunov equation in
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conjunction with (2.4c) yields

(A − BK)X + X(A − BK)∗ + B ΩB∗

= AX + XA∗ + B ΩB∗ − BKX − XK∗B∗

= AX + XA∗ + BH∗ + HB∗

= 0.

This shows that (2.4) generates a process u that is consistent with X.

As we elaborate next, compact representation (2.6) offers an equivalent interpretation of
colored-in-time stochastic input processes as a dynamical perturbation to system (2.1).

2.2.3 Stochastic control interpretation

The class of power spectra described by (2.4) is closely related to the covariance control
problem, or the covariance assignment problem, studied in [123,124]. To illustrate this,
let us consider

ẋ = Ax + B v + Bw (2.7a)

where w is again white with covariance Ω; see figure 2.1b. In the absence of a control
input (v = 0), the steady-state covariance satisfies the Lyapunov equation

AX + XA∗ + B ΩB∗ = 0.

A choice of a non-zero process v can be used to assign different values for X. Indeed,
for

v = −K x (2.7b)

and A−BK Hurwitz, X satisfies

(A − BK)X + X (A − BK)∗ + B ΩB∗ = 0. (2.8)

It is easy to see that any X � 0 satisfying (2.8) also satisfies (2.2b) with H = −XK∗+
1
2B Ω. Conversely, if X � 0 satisfies (2.2b), for K = 1

2ΩB∗X−1 −H∗X−1, then X also
satisfies (2.8) and A−BK is Hurwitz. Thus, the following statements are equivalent:

• A matrix X � 0 qualifies as the stationary state covariance of (2.7a) via a suitable
choice of state-feedback (2.7b).

• A matrix X � 0 is a state covariance of (2.1) for some stationary stochastic input
u.

To clarify the connection between K and the corresponding modeling filter for u, let

u = −K x + w. (2.9a)
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Substitution of (2.7b) into (2.7a) yields

ẋ = (A − BK)x + Bw (2.9b)

= Ax + B u

which coincides with (2.1). Thus, X can also be achieved by driving (2.1) with u given
by (2.9a). The equivalence of (2.4) and (2.9) is evident. Equation (2.9b) shows
that a colored-in-time stochastic input process u can be interpreted as a dynamical
perturbation to system (2.1). This offers advantages from a computational standpoint,
e.g., when conducting stochastic simulations; see Section 5.4.

In general, there is more than one choice of K that yields a given feasible X. A criterion
for the selection of an optimal feedback gain K, can be to minimize

lim
t→∞

E (v∗(t) v(t)) .

This optimality criterion relates to information theoretic notions of distance (Kullback-
Leibler divergence) between corresponding models with and without control [125–127].
Based on this criterion, the optimal feedback gain K can be obtained by minimizing
trace (KXK∗), subject to the linear constraint (2.8). This choice of K characterizes an
optimal filter of the form (2.9). This filter is used in Section 5.4 where we provide an
illustrative example.

2.3 Covariance completion and model complexity

In Section 2.2, we presented the structural constraints on the state covariance X of an
LTI system. We also proposed a method to construct a class of linear filters that generate
the appropriate input process u to account for the statistics in X. In many applications,
the dynamical generator A in (2.1) is known. For example, in turbulent fluid flows
the mean velocity can be obtained using numerical simulations of the Navier-Stokes
equations and linearization around this equilibrium profile yields A in (2.1). On the
other hand, stochastic excitation often originates from disturbances that are difficult to
model directly. To complicate matters, the state statistics may be only partially known,
i.e., only certain correlations between a limited number of states may be available. For
example, such second-order statistics may reflect partial output correlations obtained
in numerical simulations or experiments of the underlying physical system. Thus, we
now introduce a framework for completing unknown elements of X in a manner that is
consistent with state-dynamics and, thereby, obtaining information about the spectral
content and directionality of input disturbances to (2.1).

For colored-in-time disturbance u that enters into the state equation in all directions,
through the identity matrix, condition (2.2a) is trivially satisfied. Indeed, any sample
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covariance X can be generated by a linear model (2.1) with B = I. In this case, the
Lyapunov-like constraint (2.2b) simplifies to

AX + X A∗ = −H∗ − H.

Clearly, this equation is satisfied with H∗ = −AX. With this choice of the cross-
correlation matrix H, the dynamics represented by (2.9b) can be equivalently written
as

ẋ = −1

2
X−1 x + w

with a white disturbance w. This demonstrates that colored-in-time forcing u which
excites all degrees of freedom can completely overwrite the original dynamics. Thus,
such an input disturbance can trivially account for the observed statistics but provides
no useful information about the underlying physics.

In our setting, the structure and size of the matrix B in (2.1) is not known a priori ,
which means that the direction of the input disturbances are not given. In most physical
systems, disturbance can directly excite only a limited number of directions in the state
space. For instance, in mechanical systems where inputs represent forces and states
represent position and velocity, disturbances can only enter into the velocity equation.
Hence, it is of interest to identify a disturbance model that involves a small number of
input channels. This requirement can be formalized by restricting the input to enter
into the state equation through a matrix B ∈ Cn×m with m < n. Thus, our objective is
to identify matrices B and H in (2.2b) to reproduce a partially known X while striking
an optimal balance with the complexity of the model; the complexity is reflected in
the rank of B, i.e., the number of input channels. This notion of complexity is closely
related to the signature of Z, which we discuss next.

2.3.1 The signature of Z

As mentioned in Section 2.2, the matrix Z in (2.3) is not necessarily positive semidefinite.
However, it is not arbitrary. We next examine admissible values of the signature on Z,
i.e., the number of positive, negative, and zero eigenvalues. In particular, we show
that the number of positive and negative eigenvalues of Z impacts the number of input
channels in the state equation (2.1).

There are two sets of constraints on Z arising from (2.3a) and (2.3b), respectively. The
first one is a standard Lyapunov equation with Hurwitz A and a given Hermitian X � 0.
The second provides a link between the signature of Z and the number of input channels
in (2.1).

First, we study the constraint on the signature of Z arising from (2.3a) which we repeat
here,

AX + XA∗ = −Z. (2.10)
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The unique solution to this Lyapunov equation, with Hurwitz A and Hermitian X and
Z, is given by

X =

∫ ∞
0

eAt Z eA
∗t dt. (2.11)

Lyapunov theory implies that if Z is positive definite then X is also positive definite.
However, the converse is not true. Indeed, for a given X � 0, Z obtained from (2.10) is
not necessarily positive definite. Clearly, Z cannot be negative definite either, otherwise
X obtained from (2.11) would be negative semidefinite. We can thus conclude that (2.10)
does in fact introduce a constraint on the signature of Z. In what follows, the signature
is defined as the triple

In(Z) = (π(Z), ν(Z), δ(Z))

where π(Z), ν(Z), and δ(Z) denote the number of positive, negative, and zero eigenval-
ues of Z, respectively.

Several authors have studied constraints on signatures of A, X, and Z that are linked
through a Lyapunov equation [128–130]. Typically, such studies focus on the rela-
tionship between the signature of X and the eigenvalues of A for a given Z � 0. In
contrast, [131] considers the relationship between the signature of Z and eigenvalues of
A for X � 0 and we make use of these results.

Let {λ1, . . . , λl} denote the eigenvalues of A, µk denote the geometric multiplicity of λk,
and

µ(A) := max
1≤ k≤ l

µk.

The following result is a special case of [131, Theorem 2].

Proposition 1. Let A be Hurwitz and let X be positive definite. For Z = −(AX+XA∗),

π(Z) ≥ µ(A). (2.12)

To explain the nature of the constraint π(Z) ≥ µ(A), we first note that µ(A) is the least
number of input channels that are needed for system (2.1) to be controllable [132, p.
188]. Now consider the decomposition

Z = Z+ − Z−

where Z+, Z− are positive semidefinite matrices, and accordingly X = X+ −X− with
X+, X− denoting the solutions of the corresponding Lyapunov equations. Clearly, unless
the above constraint (2.12) holds, X+ cannot be positive definite. Hence, X cannot be
positive definite either. Interestingly, there is no constraint on ν(Z) other than

π(Z) + ν(Z) ≤ n
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which comes from the dimension of Z.

To study the constraint on the signature of Z arising from (2.3b), we begin with a
lemma, whose proof is provided in the appendix.

Lemma 1. For a Hermitian matrix Z decomposed as

Z = S + S∗

the following holds

π(Z) ≤ rank(S).

Clearly, the same bound applies to ν(Z), that is,

ν(Z) ≤ rank(S).

The importance of these bounds stems from our interest in decomposing Z into sum-
mands of small rank. A decomposition of Z into S + S∗ allows us to identify input
channels and power spectra by factoring S = BH∗. The rank of S coincides with the
rank of B, that is, with the number of input channels in the state equation. Thus, it
is of interest to determine the minimum rank of S in such a decomposition and this is
given in Proposition 2 (the proof is provided in the appendix).

Proposition 2. For a Hermitian matrix Z having signature (π(Z), ν(Z), δ(Z)),

min {rank(S)| Z = S + S∗} = max {π(Z), ν(Z)} .

We can now summarize the bounds on the number of positive and negative eigenvalues
of the matrix Z defined by (2.3). By combining Proposition 1 with Lemma 1 we show
that these upper bounds are dictated by the number of inputs in the state equation (2.1).

Proposition 3. Let X � 0 denote the steady-state covariance of the state x of a stable
linear system (2.1) with m inputs. If Z satisfies the Lyapunov equation (2.10), then

0 ≤ ν(Z) ≤ m

µ(A) ≤ π(Z) ≤ m.

Proof. From Section 2.2, a state covariance X satisfies

AX + XA∗ = −BH∗ − HB∗.

Setting S = BH∗,
Z = BH∗ + HB∗ = S + S∗.
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From Lemma 1,

max{π(Z), ν(Z)} ≤ rank(S) ≤ rank(B) = m.

The lower bounds follow from Proposition 1.

2.3.2 Decomposition of Z into BH∗ +HB∗

Proposition 2 expresses the possibility to decompose the matrix Z into BH∗+HB∗ with
S = BH∗ of minimum rank equal to max {π(Z), ν(Z)}. Here, we present an algorithm
that achieves this objective. Given Z with signature (π(Z), ν(Z), δ(Z)), we can choose
an invertible matrix T to bring Z into the following form1

Ẑ := T Z T ∗ = 2

 Iπ 0 0
0 −Iν 0
0 0 0

 (2.14)

where Iπ and Iν are identity matrices of dimension π(Z) and ν(Z) [133, pages 218–223].
We first present a factorization of Z for π(Z) ≤ ν(Z). With

Ŝ =


Iπ −Iπ 0 0
Iπ −Iπ 0 0
0 0 −Iν−π 0
0 0 0 0

 (2.15)

we clearly have Ẑ = Ŝ + Ŝ∗. Furthermore, Ŝ can be written as Ŝ = B̂Ĥ∗, where

B̂ =


Iπ 0
Iπ 0
0 Iν−π
0 0

 , Ĥ =


Iπ 0
−Iπ 0

0 −Iν−π
0 0

 .
In case ν(Z) = π(Z), Iν−π and the corresponding row and column are empty. Finally,
the matrices B and H are determined by B = T−1B̂ and H = T−1Ĥ.

Similarly, for π(Z) > ν(Z), Z can be decomposed into BH∗ + HB∗ with B = T−1B̂,
H = T−1Ĥ, and

B̂ =


Iπ−ν 0

0 Iν
0 Iν
0 0

 , Ĥ =


Iπ−ν 0

0 Iν
0 −Iν
0 0

 .
1The choice of T represents a standard congruence transformation that brings Z into canonical form.
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Note that both B and H are full column-rank matrices.

2.3.3 Covariance completion problem

Given the dynamical generator A and partially observed state correlations, we want to
obtain a low-complexity model for the disturbance that can explain the observed entries
of X. Here the complexity is reflected by the number of input channels, i.e., the rank of
the input matrix B. Clearly, rank(B) ≥ rank(S). Furthermore, any S can be factored
as S = BH∗ with rank(B) = rank(S) via, e.g., singular value decomposition. Thus, we
focus on minimizing the rank of S.

Rank minimization is a difficult problem because rank(·) is a non-convex function. Re-
cent advances have demonstrated that the minimization of the nuclear-norm (i.e., the
sum of the singular values)

‖S‖∗ :=
n∑

i= 1

σi(S)

represents a good proxy for rank minimization [45, 46, 60, 70, 72, 73, 115, 116]. We thus
formulate the following matrix completion problem:

Given a Hurwitz A and the matrix G, determine matrices X = X∗ and Z = S+S∗

from the solution to

minimize
S,X

‖S‖∗
subject to AX + XA∗ + S + S∗ = 0

(C X C∗) ◦ E − G = 0

X � 0.

(2.16)

In the above, the matrices A, C, E, and G represent problem data, while S, X ∈ Cn×n
are optimization variables. The entries of the Hermitian matrix G represent partially
known second-order statistics which reflect output correlations provided by numerical
simulations or experiments of the underlying physical system. The symbol ◦ denotes
elementwise matrix multiplication and the matrix E is the structural identity defined
by

Eij =

{
1, Gij is available

0, Gij is unavailable.

The constraint set in (2.16) represents the intersection of the positive semidefinite cone
and two linear subspaces. These are specified by the Lyapunov-like constraint, which
is imposed by the linear dynamics, and the linear constraint which relates X to the
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available entries of the steady-state output covariance matrix

lim
t→∞

E (y(t) y∗(t)) = C X C∗.

As shown in Proposition 2, minimizing the rank of S is equivalent to minimizing
max {π(Z), ν(Z)}. Given Z, there exist matrices Z+ � 0 and Z− � 0 with Z = Z+−Z−
such that rank(Z+) = π(Z) and rank(Z−) = ν(Z). Furthemore, any such decomposition
of Z satisfies rank(Z+) ≥ π(Z) and rank(Z−) ≥ ν(Z). Thus, instead of (2.16), we
can alternatively consider the following convex optimization problem, which aims at
minimizing max {π(Z), ν(Z)},

minimize
X,Z+, Z−

max {trace(Z+), trace(Z−)}

subject to AX + XA∗ + Z+ − Z− = 0

(C X C∗) ◦ E − G = 0

X � 0, Z+ � 0, Z− � 0.

(2.17)

Both (2.16) and (2.17) can be solved efficiently using standard SDP solvers [134,135] for
small- and medium-size problems. Note that (2.16) and (2.17) are obtained by relaxing
the rank function to the nuclear norm and the signature to the trace, respectively. Thus,
even though the original non-convex optimization problems are equivalent to each other,
the resulting convex relaxations (2.16) and (2.17) are not, in general.

In Chapter 3, we develop an efficient customized algorithm which solves the following
covariance completion problem

minimize
X,Z

− log detX + γ ‖Z‖∗
subject to AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0.

(2.18)

For any Z there exists a decomposition Z = Z+ − Z− with Z+, Z− � 0 such that

‖Z‖∗ = trace(Z+) + trace(Z−).

Since
trace(Z+) + trace(Z−) ≥ max{trace(Z+), trace(Z−)},

the solution to (2.18) provides a possibly suboptimal solution to (2.17).

We have also considered (2.18) in the absence of the logarithmic barrier function [136,
137]. However, in that case, the corresponding semidefinite X is not suitable for syn-
thesizing the input filter (2.4) because X−1 appears in the expression for K; cf. (2.4c).
Furthermore, as we show in Chapter 3, another benefit of using the logarithmic barrier
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is that it ensures strong convexity of the smooth part of the objective function in (2.18).
We exploit this property to develop efficient algorithms for solving optimization prob-
lem (2.18). To highlight the theoretical developments of this section we provide an
example in Section 3.6.



Chapter 3

Optimization algorithms for
structured covariance completion
problems

In this chapter, we first cast the covariance completion problem as a semidefinite pro-
gram that can be solved using general-purpose solvers. For problem sizes that these
solvers cannot handle, we develop two customized algorithms based on alternating di-
rection methods; the Alternating Minimization Algorithm (AMA) and the Alternating
Direction Method of Multipliers (ADMM). Our customized algorithms allow us to ex-
ploit the respective structure of the logarithmic barrier function and the nuclear norm,
thereby leading to an efficient implementation that is well-suited for large systems. We
interpret AMA as a proximal gradient for the dual problem and prove sub-linear conver-
gence for our customized AMA with fixed step-size. We conclude with an example that
illustrates the utility of our modeling and optimization framework and draw contrast
between AMA and the commonly used ADMM algorithm.

3.1 Introduction

The relaxed optimization problem (2.18) is convex and can be cast as a semidefinite
program (SDP) which is readily solvable by standard software for small-size problems.
A further contribution is to specifically address larger problems that general-purpose
solvers cannot handle. To this end, we first bring problem (2.18) into a form that is con-
venient for alternating direction methods. We exploit the problem structure, derive the
Lagrange dual, and develop an efficient customized Alternating Minimization Algorithm

31
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(AMA). Specifically, we show that AMA is a proximal gradient for the dual and estab-
lish convergence for the covariance completion problem. We utilize a Barzilai-Borwein
(BB) step-size initialization followed by backtracking to achieve sufficient dual ascent.
This enhances convergence relative to theoretically-proven sub-linear convergence rates
for AMA with fixed step-size. We also draw contrast between AMA and the commonly
used Alternating Direction Method of Multipliers (ADMM) by showing that AMA leads
to explicit, easily computable updates of both primal and dual optimization variables.

The alternating minimization algorithm was originally developed by Tseng [138] and
its enhanced variants have been recently presented in [139, 140] and used, in particu-
lar, for estimation of sparse Gaussian graphical models [140]. On the other hand, the
more commonly known ADMM has been effectively employed in low-rank matrix re-
covery [141], sparse covariance selection [142], image denoising and magnetic resonance
imaging [143], sparse feedback synthesis [144–146], system identification [54, 147, 148],
and many other applications [139,149–151].

We demonstrate that AMA, which effectively works as a proximal gradient algorithm
on the dual problem is more efficient in handling covariance completion problems of
large sizes.

In Section 3.2, we express the constraint set in a form amenable to alternating optimiza-
tion methods. In Section 3.3, we cast optimization problem (2.18) as a SDP, present the
optimality conditions and derive the dual problem. In Section 3.4, we provide details of
our customized AMA and show that AMA can be equivalently interpreted as a prox-
imal gradient algorithm on the dual problem. This also enables a principled step-size
selection aimed at achieving sufficient dual ascent. We also establish theoretical results
regarding the convergence of our customized algorithm in Section 3.4.7. In Section 3.5,
we develop a customized ADMM algorithm for solving problem (2.18) and draw contrast
between AMA and ADMM. To highlight the theoretical and algorithmic developments
of Chapters 2 and 3, we provide an example in Section 3.6.

3.2 Rearrangement of constraints

In (2.18), γ determines the importance of the nuclear norm relative to the logarithmic
barrier function. The convexity of (2.18) follows from the convexity of the objective
function

Jp(X,Z) := − log detX + γ ‖Z‖∗
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and the convexity of the constraint set. Problem (2.18) can be equivalently expressed
as follows,

minimize
X,Z

− log detX + γ ‖Z‖∗
subject to AX + BZ − C = 0,

(3.1)

where the constraints are now given by[
A1

A2

]
X +

[
I
0

]
Z −

[
0
G

]
= 0.

Here, A1 : Cn×n → Cn×n and A2 : Cn×n → Cp×p are linear operators, with

A1(X) := AX + XA∗

A2(X) := (C X C∗) ◦ E

and their adjoints, with respect to the standard inner product 〈M1,M2〉 := trace (M∗1M2),
are given by

A†
1(Y ) = A∗ Y + Y A

A†
2(Y ) = C∗(E ◦ Y )C.

3.3 SDP formulation and the dual problem

By splitting Z into positive and negative definite parts,

Z = Z+ − Z−, Z+ � 0, Z− � 0

it can be shown [72, Section 5.1.2] that (3.1) can be cast as an SDP,

minimize
X,Z+, Z−

− log detX + γ (trace (Z+) + trace (Z−))

subject to A1(X) + Z+ − Z− = 0

A2(X) − G = 0

Z+ � 0, Z− � 0.

(3.2)

We next use this SDP formulation to derive the Lagrange dual of the covariance com-
pletion problem (3.1).
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Proposition 4. The Lagrange dual of (3.2) is given by

maximize
Y1, Y2

log det
(
A†

1(Y1) + A†
2(Y2)

)
− 〈G, Y2〉 + n

subject to ‖Y1‖2 ≤ γ
(3.3)

where Hermitian matrices Y1, Y2 are the dual variables associated with the equality
constraints in (3.2).

Proof. The Lagrangian of (3.2) is given by

L(X,Z±;Y1, Y2,Λ±) = − log detX + γ trace (Z+ + Z−) − 〈Λ+, Z+〉 − 〈Λ−, Z−〉 +

〈Y1, A1(X) + Z+ − Z−〉 + 〈Y2, A2(X)−G〉
(3.4)

where Hermitian matrices Y1, Y2, and Λ± � 0 are Lagrange multipliers associated with
the equality and inequality constraints in (3.2). Minimizing the Lagrangian with respect
to Z+ and Z− yields

γ I − Λ+ + Y1 � 0, Z+ � 0

γ I − Λ− − Y1 � 0, Z− � 0.

Because of the positive semi-definiteness of the dual variables Λ+ and Λ−, we also have
that

Y1 + γ I � Λ+ � 0

−Y1 + γ I � Λ− � 0,

which yields the constraint in (3.3)

− γ I � Y1 � γ I ⇐⇒ ‖Y1‖2 ≤ γ. (3.5)

On the other hand, minimization of L with respect to X yields

X−1 = A†
1(Y1) + A†

2(Y2) � 0. (3.6)

Substitution of (3.6) into (3.4) in conjunction with complementary slackness conditions

〈γ I − Λ+ + Y1, Z+〉 = 0

〈γ I − Λ− − Y1, Z−〉 = 0

can be used to obtain the Lagrange dual function

Jd(Y1, Y2) = inf
X,Z+, Z−

L(X,Z±;Y1, Y2,Λ±)

= log det
(
A†

1(Y1) + A†
2(Y2)

)
− 〈G, Y2〉+ n.
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The dual problem (3.3) is a convex optimization problem with variables Y1 ∈ Cn×n
and Y2 ∈ Cp×p. These variables are dual feasible if the constraint in (3.3) is satisfied.
In the case of primal and dual feasibility, any dual feasible pair (Y1, Y2) gives a lower
bound on the optimal value J?p of the primal problem (3.2). As we show next, the
alternating minimization algorithm of Section 3.4 can be interpreted as a proximal
gradient algorithm on the dual problem and is developed to achieve sufficient dual
ascent and satisfy (3.6).

3.4 Alternating Minimization Algorithm (AMA)

The logarithmic barrier function in (2.18) is strongly convex over any compact subset of
the positive definite cone [152]. This makes it well-suited for the application of AMA,
which requires strong convexity of the smooth part of the objective function [138].

The augmented Lagrangian associated with (3.1) is

Lρ(X,Z;Y1, Y2) = − log detX + γ ‖Z‖∗ + 〈Y1, A1(X) + Z〉 + 〈Y2, A2(X)−G〉 +
ρ

2
‖A1(X) + Z‖2F +

ρ

2
‖A2(X) − G‖2F

where ρ is a positive scalar and ‖ · ‖F is the Frobenius norm.

AMA consists of the following steps:

Xk+1 := argmin
X

L0 (X, Zk; Y k
1 , Y

k
2 ) (3.7a)

Zk+1 := argmin
Z

Lρ (Xk+1, Z; Y k
1 , Y

k
2 ) (3.7b)

Y k+1
1 := Y k

1 + ρ
(
A1(Xk+1) + Zk+1

)
(3.7c)

Y k+1
2 := Y k

2 + ρ
(
A2(Xk+1) − G

)
. (3.7d)

These terminate when the duality gap

∆gap := − log detXk+1 + γ ‖Zk+1‖∗ − Jd

(
Y k+1

1 , Y k+1
2

)
and the primal residual

∆p := ‖AXk+1 + BZk+1 − C‖F

are sufficiently small, i.e., |∆gap| ≤ ε1 and ∆p ≤ ε2. In the X-minimization step (3.7a),
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AMA minimizes the Lagrangian L0 with respect to X. This step is followed by a Z-
minimization step (3.7b) in which the augmented Lagrangian Lρ is minimized with
respect to Z. Finally, the Lagrange multipliers, Y1 and Y2, are updated based on the
primal residuals with the step-size ρ.

In contrast to the Alternating Direction Method of Multipliers [150] (cf. Section 3.5),
which minimizes the augmented Lagrangian Lρ in both X- and Z-minimization steps,
AMA updates X via minimization of the standard Lagrangian L0. As shown below,
in (3.8), use of AMA leads to a closed-form expression for Xk+1. Another differenti-
ating aspect of AMA is that it works as a proximal gradient on the dual function; see
Section 3.4.6. This allows us to select the step-size ρ in order to achieve sufficient dual
ascent.

3.4.1 Solution to the X-minimization problem (3.7a)

At the kth iteration of AMA, minimizing the Lagrangian L0 with respect to X for fixed
{Zk, Y k

1 , Y
k

2 } yields

Xk+1 =
(
A†
(
Y k

1 , Y
k

2

))−1
=
(
A†

1(Y k
1 ) + A†

2(Y k
2 )
)−1

. (3.8)

3.4.2 Solution to the Z-minimization problem (3.7b)

For fixed {Xk+1, Y k
1 , Y

k
2 }, the augmented Lagrangian Lρ is minimized with respect to

Z,

minimize
Z

γ ‖Z‖∗ +
ρ

2
‖Z − V k‖2F . (3.9)

By computing the singular value decomposition of the symmetric matrix

V k := −
(
A1(Xk+1) + (1/ρ)Y k

1

)
= U ΣU∗,

where Σ is the diagonal matrix of the singular values σi of V k, the solution to (3.9) is
obtained by singular value thresholding [74],

Zk+1 = Sγ/ρ(V k).

The soft-thresholding operator Sτ is defined as

Sτ (V k) := U Sτ (Σ)U∗, Sτ (Σ) = diag
(
(σi − τ)+

)
with a+ := max {a, 0}.
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(a) M

=

(b) Tτ (M)

+

(c) Sτ (M)

Figure 3.1: The saturation operator Tτ is related to the soft-thresholding operator Sτ
via identity (3.10).

3.4.3 Lagrange multiplier update

The expressions for Xk+1 and Zk+1 can be used to bring (3.7c) and (3.7d) into the
following form

Y k+1
1 = Tγ

(
Y k

1 + ρA1(Xk+1)
)

Y k+1
2 = Y k

2 + ρ
(
A2(Xk+1) − G

)
.

For Hermitian matrix M with singular value decomposition M = U ΣU∗, Tτ is the
saturation operator,

Tτ (M) := U Tτ (Σ)U∗

Tτ (Σ) = diag (min (max(σi,− τ), τ))

which restricts the singular values of M between −τ and τ . As illustrated in figure 3.1,
the saturation and soft-thresholding operators are related via

M = Tτ (M) + Sτ (M). (3.10)

The above updates of Lagrange multipliers guarantee dual feasibility at each iteration,
i.e., ‖Y k+1

1 ‖2 ≤ γ for all k, which justifies the choice of stopping criteria in ensuring
primal feasibility of the solution.

3.4.4 Choice of step-size for the dual update (3.7c), (3.7d)

We follow an enhanced variant of AMA [140] which utilizes an adaptive BB step-size
selection [153] in (3.7b), (3.7c), and (3.7d) to guarantee sufficient dual ascent and posi-
tive definiteness of X. Our numerical experiments indicate that this heuristic provides
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substantial acceleration relative to the use of a fixed step-size. Since the standard BB
step-size may not always satisfy the feasibility or the sufficient ascent conditions, we
employ backtracking to determine an appropriate step-size.

At the kth iteration of AMA, an initial step-size,

ρk,0 =

2∑
i= 1

‖Y k+1
i − Y k

i ‖2F

2∑
i= 1

〈
Y k+1
i − Y k

i , ∇Jd(Y k
i ) − ∇Jd(Y k+1

i )
〉 , (3.11)

is adjusted through a backtracking procedure to guarantee positive definiteness of the
subsequent iterate of (3.7a) and sufficient ascent of the dual function,

A†
(
Y k+1

1 , Y k+1
2

)
� 0 (3.12a)

Jd

(
Y k+1

1 , Y k+1
2

)
≥ Jd

(
Y k
)

+
2∑

i= 1

(〈
∇Jd(Y k

i ), Y k+1
i − Y k

i

〉
+

1

2ρk
‖Y k+1

i − Y k
i ‖2F

)
.

(3.12b)
Here, ∇Jd is the gradient of the dual function and the right-hand-side of (3.12b) is a local
quadratic approximation of the dual objective around Y k

1 and Y k
2 . Furthermore, (3.12a)

guarantees the positive definiteness of Xk+1; cf. (3.8).

Our customized AMA is summarized as Algorithm 1.

3.4.5 Computational complexity

The X-minimization step in AMA involves a matrix inversion, which takes O(n3) opera-
tions. Similarly, the Z-minimization step amounts to a singular value decomposition and
it requires O(n3) operations. Since this step is embedded within an iterative backtrack-
ing procedure for selecting the step-size ρk (cf. Section 3.4.4), if the step-size selection
takes q inner iterations the total computational cost for a single iteration of AMA is
O(qn3). In contrast, the worst-case complexity of standard SDP solvers is O(n6).

3.4.6 AMA as a proximal gradient on the dual

In the follow up section, Section 3.4.7, we show that the gradient of the dual objective
function over a convex domain is Lipschitz continuous. In the present section, we denote
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Algorithm 1 Customized Alternating Minimization Algorithm

input: A, G, γ > 0, tolerances ε1, ε2, and backtracking constant β ∈ (0, 1).

initialize: k = 0, ρ0,0 = 1, ∆gap = ∆p = 2ε1, Y 0
2 = On×n, and choose Y 0

1 such that

A†
1(Y 0

1 ) = (γ/‖Y 0
1 ‖2)In×n.

while: |∆gap| > ε1 and ∆p > ε2,

Xk+1 = (A†(Y k
1 , Y

k
2 ))−1

compute ρk: Largest feasible step in {βjρk,0}j=0,1,...

such that Y k+1
1 and Y k+1

2 satisfy (3.12)

Zk+1 = argmin
Z

Lρk (Xk+1, Z, Y k
1 , Y

k
2 )

Y k+1
1 = Y k

1 + ρ
(
A1(Xk+1) + Zk+1

)
Y k+1

2 = Y k
2 + ρ

(
A2(Xk+1) − G

)
∆p = ‖AXk+1 + BZk+1 − C‖F

∆gap = − log detXk+1 + γ ‖Zk+1‖∗ − Jd

(
Y k+1

1 , Y k+1
2

)
k = k + 1

choose ρk,0 based on (3.11)

endwhile

output: ε-optimal solutions, Xk+1 and Zk+1.
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a bound on the Lipschitz constant by L, and prove that AMA with step-size ρ = 1/L
works as a proximal gradient on the dual problem. This implies that (3.7c) and (3.7d)
are equivalent to the updates obtained by applying the proximal gradient algorithm
to (3.3).

The dual problem (3.3) takes the following form

minimize
Y1,Y2

f(Y1, Y2) + g(Y1, Y2) (3.13)

where f(Y1, Y2) = − log detA†(Y1, Y2) − 〈G, Y2〉 and g(Y1, Y2) denotes the indicator
function

I(Y1) =

{
0, ‖Y1‖2 ≤ γ

+∞, otherwise.

Both f : (Cn×n,Cp×p)→ R and g: (Cn×n,Cp×p)→ R∪{+∞} are closed proper convex
functions and f is continuously differentiable. For Y1 ∈ Cn×n and Y2 ∈ Cp×p, the
proximal operator of g, proxg: (Cn×n,Cp×p)→ (Cn×n,Cp×p) is given by

proxg(V1, V2) = argmin
Y1,Y2

g(Y1, Y2) +
1

2

2∑
i= 1

‖Yi − Vi‖2F

where V1 and V2 are fixed matrices. For (3.13), the proximal gradient method [154]
determines the updates as(

Y k+1
1 , Y k+1

2

)
:= proxρg

(
Y k

1 − ρ∇Y1f(Y k
1 , Y

k
2 ), Y k

2 − ρ∇Y2f(Y k
1 , Y

k
2 )
)

where ρ > 0 is the step-size. For ρ ∈ (0, 1/L] this method converges with rate
O(1/k) [155].

Application of the proximal gradient method to the dual problem (3.13) yields

Y k+1
1 := argmin

Y1

〈
∇Y1(− log detA†(Y k

1 , Y
k

2 )), Y1

〉
+ I (Y1) +

L

2
‖Y1 − Y k

1 ‖2F (3.14a)

Y k+1
2 := argmin

Y2

〈
∇Y2(− log detA†(Y k

1 , Y
k

2 )), Y2

〉
+ 〈G, Y2〉 +

L

2
‖Y2 − Y k

2 ‖2F (3.14b)

The gradient in (3.14a) is determined by

∇Y1(− log detA†(Y k
1 , Y

k
2 )) = −A1(A†(Y k

1 , Y
k

2 )−1)

and we thus have

Y k+1
1 := argmin

Y1

I(Y1) +
L

2
‖Y1 − (Y k

1 +
1

L
A1(A†(Y k

1 , Y
k

2 )−1))‖2F . (3.15)
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Since Xk+1 = A†(Y k
1 , Y

k
2 )−1, it follows that the dual update Y k+1

1 given by (3.7c)
solves (3.15) with ρ = 1/L. This is because the saturation operator Tγ represents the
proximal mapping for the indicator function I (Y1) [154]. Finally, using the first order
optimality conditions for (3.14b) it follows that the dual update

Y k+1
2 = Y k

2 +
1

L
(A2(A†(Y k

1 , Y
k

2 )−1)−G)

is equivalent to (3.7d) with ρ = 1/L.

3.4.7 Convergence analysis

In this section we use the equivalence between AMA and the proximal gradient algorithm
(on the dual problem) to prove convergence of our customized AMA. Before doing so,
we first establish Lipschitz continuity of the gradient of the logarithmic barrier in the
dual objective function over a pre-specified convex domain, and show that the dual
iterates are bounded within this domain. These two facts allow us to establish sub-
linear convergence of AMA for (2.18). Proofs of all technical statements presented here
are provided in the appendix.

We define the ordered pair Y = (Y1, Y2) ∈ Hn ×Hp where

Hn ×Hp =
{

(Y1, Y2) | Y1 ∈ Hn and Y2 ∈ Hp
}
,

with Hn denoting the set of Hermitian matrices of dimension n. We also assume the
existence of an optimal solution Ȳ = (Ȳ1, Ȳ2) which is a fixed point of the dual up-
dates (3.7c) and (3.7d), i.e.,

Ȳ1 = Tγ
(
Ȳ1 + ρA1(X̄)

)
Ȳ2 = Ȳ2 + ρ

(
A2(X̄) − G

)
where X̄ = A†(Ȳ )−1. Since the proof of optimality for Ȳ follows a similar line of
argument made in [140], we refrain from including further details.

While the gradient of Jd is not Lipschitz continuous over the entire domain of Hn×Hp,
we show its Lipschitz continuity over the convex domain

Dαβ = {Y ∈ Hn ×Hp | 0 < αI � A†(Y ) � β I <∞} (3.16)

for any 0 < α < β < ∞. This is stated in the next lemma, and its proof given in the
appendix relies on showing that the Hessian of Jd is bounded from above.

Lemma 2. For Y ∈ Dαβ, the function log detA†(Y ) has a Lipschitz continuous gradient
with Lipschitz constant L = σ2

max(A†)/α2, where σmax(A†) is the largest singular value
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of the operator A†.

We next show that the dual AMA iterations (3.7c) and (3.7d) are contractive, which is
essential in establishing that the iterates are bounded within the domain Dαβ.

Lemma 3. Consider the map Y 7→ Y +

Y +
1 = Tγ

(
Y1 + ρA1(A†(Y )−1)

)
(3.17a)

Y +
2 = Y2 + ρ

(
A2(A†(Y )−1) − G

)
, (3.17b)

where Y = (Y1, Y2). Let 0 < α < β <∞ be such that

α I � A†(Ȳ ) � β I,

where Ȳ = (Ȳ1, Ȳ2) denotes a fixed point of (3.17). Then, for any 0 < ρ ≤ 2α4

β2 σ2
max(A)

,

the map (3.17) is contractive over Dαβ, that is,

‖Y + − Ȳ ‖F ≤ ‖Y − Ȳ ‖F for any Y ∈ Dαβ.

As noted above, it follows that the dual AMA iterates {Y k} belong to the domain Dαβ.
This is stated explicitly next in Lemma 4. In fact, the lemma establishes universal lower
and upper bounds on A†(Y k) for all k. These bounds guarantees that the dual iterates
{Y k} belong to the domain Dαβ and that Lipschitz continuity of the gradient of the
dual function is preserved through the iterations.

Lemma 4. Given a feasible initial condition Y 0, i.e., Y 0 satisfies A†(Y 0) � 0 and
‖Y 0

1 ‖2 ≤ γ, let α, β > 0

β = σmax(A†) ‖Y 0 − Ȳ ‖F + ‖A†(Ȳ )‖2

α = detA†(Y 0)β1−n e− 〈G,Y 0
2 〉− γ

√
nσmax(A†

1) trace(X̄).

Then, for any positive step-size ρ ≤ 2α4

β2 σ2
max(A)

, we have

α I � A†(Y k) � β I for all k ≥ 0.

Since AMA works as a proximal gradient on the dual problem its convergence prop-
erties follow from standard theoretical results for proximal gradient methods [155]. In
particular, it can be shown that the proximal gradient algorithm with step-size ρ = 1/L
(L being the Lipschitz constant in Lemma 2) falls into a general family of majorization-
minimization algorithms for which convergence properties are well-established [156].
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The logarithmic barrier in the dual function is convex and continuously differentiable.
Furthermore, its gradient is Lipschitz continuous over the domain Dαβ. Therefore,
starting from the pair Y 0 = (Y 0

1 , Y
0

2 ) a positive step-size

ρ ≤ min
{ 2α4

β2 σ2
max(A)

,
α2

σ2
max(A†)

}
guarantees that {Y k} converges to Ȳ at a sub-linear rate that is no worse than O(1/k),

Jd(Y
k) − Jd(Ȳ ) ≤ O(1/k).

Since A† is not an invertible mapping, − log detA†(Y ) cannot be strongly convex over
Dαβ. Thus, in general, AMA with a constant step-size cannot achieve a linear con-
vergence rate [157, 158]. In computational experiments, we observe that a heuristic
step-size selection (BB step-size initialization followed by backtracking) can improve
the convergence of AMA; see Section 3.6.

3.5 Alternating Direction Method of Multipliers (ADMM)

Another splitting method that can be used to solve the optimization problem (2.18) is
the Alternating Direction Method of Multipliers (ADMM). In contrast to AMA, ADMM
minimizes the augmented Lagrangian Lρ in each step of the iterative procedure,

Xk+1 := argmin
X

Lρ (X, Zk; Y k
1 , Y

k
2 ) (3.18a)

Zk+1 := argmin
Z

Lρ (Xk+1, Z; Y k
1 , Y

k
2 ) (3.18b)

Y k+1
1 := Y k

1 + ρ
(
A1(Xk+1) + Zk+1

)
(3.18c)

Y k+1
2 := Y k

2 + ρ
(
A2(Xk+1) − G

)
. (3.18d)

These terminate when the primal and dual residuals are sufficiently small [150, Section
3.3], i.e.,

‖AXk+1 + BZk+1 − C‖F ≤ ε

‖ρA†
1

(
Zk+1 − Zk

)
‖F ≤ ε.

In addition, ADMM does not have efficient step-size selection rules. Typically, either
a constant step-size is selected or the step-size is adjusted to keep the norms of primal
and dual residuals within a constant factor of one another [150].

While the Z-minimization step is equivalent to that of AMA, the X-update in ADMM
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is obtained by minimizing the augmented Lagrangian. This amounts to solving the
following optimization problem

minimize
X

− log detX +
ρ

2

2∑
i= 1

‖Ai(X) − Uki ‖2F (3.19)

where Uk1 := −
(
Zk + (1/ρ)Y k

1

)
and Uk2 := G − (1/ρ)Y k

2 . From first order optimality
conditions we have

−X−1 + ρA†
1(A1(X)− Uk1 ) + ρA†

2(A2(X)− Uk2 ) = 0.

Since A†
1A1 and A†

2A2 are not unitary operators, the X-minimization step does not have
an explicit solution.

In what follows, we use a proximal gradient method [154] to update X. By linearizing
the quadratic term in (3.19) around the current inner iterate Xi and adding a quadratic
penalty on the difference between X and Xi, Xi+1 is obtained as the minimizer of

− log detX + ρ
2∑

j= 1

〈
A†
j

(
Aj(Xi)− Ukj

)
, X
〉

+
µ

2
‖X − Xi‖2F . (3.20)

To ensure convergence of the proximal gradient method [154], the parameter µ has to
satisfy µ ≥ ρ λmax(A†

1A1 +A†
2A2), where we use power iteration to compute the largest

eigenvalue of the operator A†
1A1 +A†

2A2.

By taking the variation of (3.20) with respect to X, we obtain the first order optimality
condition

µX − X−1 = µXi − ρ

2∑
j= 1

A†
j

(
Aj(Xi)− Ukj

)
. (3.21)

The solution to (3.21) is given by

Xi+1 = V diag (g)V ∗,

where the jth entry of the vector g ∈ Rn is given by

gj =
λj
2µ

+

√(
λj
2µ

)2

+
1

µ
.

Here, λj ’s are the eigenvalues of the matrix on the right-hand-side of (3.21) and V is the
matrix of the corresponding eigenvectors. As it is typically done in proximal gradient
algorithms [154], starting with X0 := Xk, we obtain Xk+1 by repeating inner iterations
until the desired accuracy is reached.



45

3.5.1 Computational complexity

The above described method involves an eigenvalue decomposition in each inner iter-
ation of the X-minimization problem, which requires O(n3) operations. Therefore, if
the X-minimization step takes q inner iterations to converge, a single outer iteration
of ADMM requires O(qn3) operations. Thus, ADMM and AMA have similar compu-
tational complexity; cf. Section 3.4.5. However, in Section 3.6 we demonstrate that,
relative to ADMM, customized AMA provides significant speed-up via a heuristic step-
size selection (i.e., a BB step-size initialization followed by backtracking).

3.5.2 Accelerated ADMM

When both parts of the objective function are strongly convex, an accelerated variant
of ADMM can be employed [139]. The accelerated algorithm is simply ADMM with
a Nesterov-type (predictor-corrector) acceleration step. However, the presence of the
nuclear norm in (2.18) prevents us from using such techniques. For weakly convex
objective functions, restart rules in conjunction with acceleration techniques can be used
to reduce oscillations that are often encountered in first-order iterative methods [139,
159].

The accelerated ADMM algorithm is given by,

Xk := argmin
X

Lρ (X, Ẑk; Ŷ k
1 , Ŷ

k
2 )

Zk := argmin
Z

Lρ (Xk+1, Z; Ŷ k
1 , Ŷ

k
2 )

Y k
1 := Ŷ k

1 + ρ
(
A1(Xk+1) + Zk+1

)
Y k

2 := Ŷ k
2 + ρ

(
A2(Xk+1) − G

)
.

ck := 1
ρ ‖Y

k
1 − Ŷ k

1 ‖2F + 1
ρ ‖Y

k
2 − Ŷ k

2 ‖2F + ρ ‖Zk − Ẑk‖2F
if ck < η ck−1,

αk+1 := (1 +
√

1 + 4α2
k)/2

Ẑk+1 := Zk + αk−1
αk+1

(Zk − Zk−1)

Ŷ k+1
1 := Y k

1 + αk−1
αk+1

(Y k
1 − Y

k−1
1 )

Ŷ k+1
2 := Y k

2 + αk−1
αk+1

(Y k
2 − Y

k−1
2 )

else

αk+1 = 1, Ẑk+1 = Zk−1, Ŷ k+1
1 = Y k−1

1 , Ŷ k+1
2 = Y k−1

2

ck ← η−1 ck−1
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Figure 3.2: Mass-spring-damper system with n masses.

Following [139], the algorithm is initialized with Z−1 = Ẑ0, Y −1
1 = Ŷ 0

1 , Y −1
2 = Ŷ 0

2 ,
ρ > 0, α1 = 1, and terminated using similar criteria as in the ADMM algorithm.

Since our computational experiments do not suggest a significant improvement using
restart rules, we refrain from further discussing this variant of ADMM in Section 3.6
and refer the interested reader to our previously published conference paper [160].

3.6 Computational experiments

We provide an example to demonstrate the utility of our modeling and optimization
framework. This is based on a stochastically-forced mass-spring-damper (MSD) system;
see figure 3.2. Stochastic disturbances are generated by a low-pass filter,

low-pass filter: ζ̇ = −ζ + d (3.22a)

where d represents a zero-mean unit variance white process. The state space represen-
tation of the MSD system is given by

MSD system: ẋ = Ax + Bζ ζ (3.22b)

where the state vector x = [ p∗ v∗ ]∗, contains position and velocity of masses. Accord-
ingly, the state and input matrices are

A =

[
O I
−T −I

]
, Bζ =

[
0
I

]
where O and I are zero and identity matrices of suitable sizes, and T is a symmetric
tridiagonal Toeplitz matrix with 2 on the main diagonal and −1 on the first upper and
lower sub-diagonals.

The steady-state covariance of system (3.22) can be found as the solution to the Lya-
punov equation

ÃΣ + Σ Ã∗ + B̃ B̃∗ = 0
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Figure 3.3: Partially available correlations of the MSD system.

where

Ã =

[
A Bζ
O −I

]
, B̃ =

[
0
I

]
and

Σ =

[
Σxx Σxζ

Σζx Σζζ

]
.

The matrix Σxx denotes the state covariance of the MSD system, partitioned as,

Σxx =

[
Σpp Σpv

Σvp Σvv

]
.

We assume knowledge of one-point correlations of the position and velocity of masses,
i.e., the diagonal elements of matrices Σpp, Σvv, and Σpv. Thus, in order to account for
these available statistics, we seek a state covariance X of the MSD system which agrees
with the available statistics whose structure is displayed in figure 3.3.

Additional information about our computational experiments, along with Matlab
source codes, can be found at:

http://www.ece.umn.edu/users/mihailo/software/ccama/

Recall that in (2.18), γ determines the importance of the nuclear norm relative to the
logarithmic barrier function. While larger values of γ yield solutions with lower rank,
they may fail to provide reliable completion of the “ideal” state covariance Σxx. For
various problem sizes, minimum error in matching Σxx is achieved with γ ≈ 1.2 and
for larger values of γ the error gradually increases. For MSD system with 50 masses,
figure 3.4a shows the relative error in matching Σxx as a function of γ. The smallest error
is obtained for γ = 1.2, but this value of γ does not yield a low-rank input correlation
Z. For γ = 2.2 reasonable matching is obtained (82.7% matching) and the resulting Z

http://www.ece.umn.edu/users/mihailo/software/ccama/


48
‖X
−

Σ
x
x
‖ F
/‖

Σ
x
x
‖ F

γ

(a)

σ
i(
Z

)

i

(b)

Figure 3.4: (a) The γ-dependence of the relative error (percents) between the solution X
to (2.18) and the true covariance Σxx for the MSD system with 50 masses; (b) singular
values of the solution Z to (2.18) for γ = 2.2.

Table 3.1: Solve times (in seconds) for different number of masses and γ = 2.2.

n CVX ADMM AMA AMABB

10 28.4 2 1.3 0.5

20 419.7 54.7 30.7 2.2

50 – 3442.9 3796.7 52.7

100 – 40754 34420 5429.8

displays a clear-cut in its singular values with 62 of them being nonzero; see figure 3.4b.

For γ = 2.2, Table 3.1 compares solve times of CVX [134] and the customized algorithms
of Sections 3.4 and 3.5. All algorithms were implemented in Matlab and executed on a
3.4 GHz Core(TM) i7-2600 Intel(R) machine with 12GB RAM. Each method stops when
an iterate achieves a certain distance from optimality, i.e., ‖Xk − X?‖F /‖X?‖F < ε1
and ‖Zk − Z?‖F /‖Z?‖F < ε2. The choice of ε1, ε2 = 0.01, guarantees that the primal
objective is within 0.1% of Jp(X

?, Z?). For n = 50 and n = 100, CVX ran out of
memory. Clearly, for large problems, AMA with BB step-size initialization significantly
outperforms both regular AMA and ADMM.

For a MSD system with 50 masses and γ = 2.2, we now focus on the convergence of
AMA. Figure 3.5a shows monotonic increase of the dual objective function. The absolute
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iteration

(a) Jd(Y1, Y2)

iteration

(b) ∆gap

iteration

(c) ∆p

Figure 3.5: Performance of AMABB for the MSD system with 50 masses, γ = 2.2,
ε1 = 0.005, and ε2 = 0.05. (a) The dual objective function Jd(Y1, Y2) of (2.18); (b) the
duality gap, |∆gap|; and (c) the primal residual, ∆p.

|J
? d
−
J
d
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k 2
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|

iteration

(a)

solve time (seconds)

(b)

Figure 3.6: Convergence curves showing performance of ADMM (◦) and AMA with (−)
and without (4) BB step-size initialization vs. (a) the number of iterations; and (b)
solve times for the MSD system with 50 masses and γ = 2.2. Here, J?d is the value of
the optimal dual objective.
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(a) diag(Σpp), diag(Xpp) (b) diag(Σvv), diag(Xvv)

Figure 3.7: Diagonals of (a) position and (b) velocity covariances for the MSD system
with 50 masses; Solid black lines show diagonals of Σxx and red circles mark solutions
of optimization problem (2.18).

value of the duality gap |∆gap| and the primal residual ∆p demonstrate convergence of
our customized algorithm; see figures 3.5b and 3.5c. In addition, figure 3.6a shows that
regular AMA converges linearly to the optimal solution and that AMA with BB step-
size initialization outperforms both regular AMA and ADMM. Thus, heuristic step-
size initialization can improve the theoretically-established convergence rate. Similar
trends are observed when convergence curves are plotted as a function of time; see 3.6b.
Finally, figure 3.7 demonstrates feasibility of the optimization problem (2.18) and perfect
recovery of the available diagonal elements of the covariance matrix.

For γ = 2.2, the spectrum of Z contains 50 positive and 12 negative eigenvalues. Based
on Proposition 2, Z can be decomposed into BH∗+HB∗, where B has 50 independent
columns. In other words, the identified X can be explained by driving the state-space
model with 50 stochastic inputs u. The algorithm presented in Section 2.3.2 is used to
decompose Z into BH∗+HB∗. For the identified input matrix B, the design parameter
K is then chosen to satisfy the optimality criterion described in Section 2.2.3. This
yields the optimal filter (2.9) that generates the stochastic input u. We use this filter
to validate our approach as explained next.

We conduct linear stochastic simulations of system (2.9b) with zero-mean unit variance
input w. Figure 3.8 shows the time evolution of the state variance of the MSD sys-
tem. Since proper comparison requires ensemble-averaging, we have conducted twenty
stochastic simulations with different realizations of the stochastic input w to (2.9b). The
variance, averaged over all simulations, is given by the thick black line. Even though the
responses of individual simulations differ from each other, the average of twenty sample
sets asymptotically approaches the correct steady-state variance.
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time

Figure 3.8: Time evolution of the variance of the MSD system’s state vector for twenty
realizations of white-in-time forcing to (2.9b). The variance averaged over all simulations
is marked by the thick black line.

The recovered covariance matrix of mass positions Xpp resulting from the ensemble-
averaged simulations of (2.9b) is shown in figure 3.9b. We note that (i) only diagonal
elements of this matrix (marked by the black line) are used as data in the optimization
problem (2.18), and that (ii) the recovery of the off-diagonal elements is remarkably con-
sistent. This is to be contrasted with typical matrix completion techniques that require
incoherence in sampling entries of the covariance matrix. The key in our formulation
of structured covariance completion is the Lyapunov-like structural constraint (2.2b)
in (2.18). Indeed, it is precisely this constraint that retains the relevance of the system
dynamics and, thereby, the physics of the problem.

(a) Σpp (b) Xpp

Figure 3.9: The true covariance Σpp of the MSD system and the covariance Xpp resulting
from linear stochastic simulations of (2.9b). Available one-point correlations of the
position of masses used in (2.18) are marked along the main diagonals.



Chapter 4

The use of the r∗ heuristic in
covariance completion problems

As described in previous chapters, the covariance completion problem aims to complete
partially known sample statistics in a way that is consistent with the underlying linear
dynamics. The statistics of stochastic inputs are unknown and sought to explain the
given correlations. Such inverse problems admit many solutions for the forcing cor-
relations, but can be interpreted as an optimal low-rank approximation problem for
identifying forcing models of low complexity. On the other hand, the quality of com-
pletion can be improved by utilizing information regarding the magnitude of unknown
entries. In this chapter, we generalize theoretical results regarding the r∗ norm ap-
proximation and demonstrate the performance of this heuristic in completing partially
available statistics using stochastically-driven linear models.

4.1 Introduction

Matrix completion problems emerge in many applications (cf. [45,46,60]). In this chap-
ter, we are interested in a class of structured covariance completion problems which
arise as inverse problems in low-complexity modeling of complex dynamical systems. A
particular class of models that can be used for this purpose are stochastically-driven
linear models. Motivation for this choice arises in the modeling of fluid flows where the
stochastically-forced linearized Navier-Stokes equations have proven capable of replicat-
ing structural features of wall-bounded shear flows [28–30,33,34,113].

The problem of estimating covariances at the output of known linear systems has been
previously addressed [161–163]. More recently, a modeling and optimization framework
was proposed for designing stochastic forcing models of low complexity which account for

52
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partially observed statistical signatures [164]. In this setup, the complexity is related
to the rank of input correlation structures [164, 165]. This gives rise to a class of
structured covariance completion problems that aim to complete partially observed
statistical signatures in a way that is consisted with the assumed linear dynamics. In
addition, the use of the nuclear norm as a convex surrogate for rank minimization [72,73]
has allowed for the development of efficient customized algorithms that handle large-
size problems [160, 164]. This approach has particularly proven successful in the low-
complexity modeling of turbulent fluid flows [34,137,166].

Recently, various benefits and applications of the so-called “r∗ norm” (also called
“k-support-norm”), as a natural extension of the nuclear norm, have been demon-
strated [79–86]. In particular, its relation with the optimal rank r approximation under
convex constraints has been investigated [79, 85]. Herein, we utilize these theoretical
results to address the covariance completion problem as a special case of low-rank ap-
proximation. We demonstrate the ability of this approach in improving the quality of
completion while maintaining (or even lowering) the complexity of the required forcing
model compared to the nuclear norm relaxation.

The outline of this chapter is as follows. In Section 5.2, we provide a detailed background
of the considered covariance completion problem and motivate the use of the r∗ norm,
which is formally introduced in Section 4.3.1. Subsequently, we present two new convex
relaxations to our problem in Section 4.3.2. In Section 4.4, we provide illustrative
examples to support our theoretical developments.

4.2 Problem Formulation

Consider the linear time-invariant (LTI) system with state-space representation

ẋ = Ax + B u

y = Cx
(4.1)

where x(t) ∈ Cn is the state vector, y(t) ∈ Cp is the output, u(t) ∈ Cm is a zero-
mean stationary stochastic process, A ∈ Cn×n is Hurwitz, and B ∈ Cn×m is the input
matrix with m ≤ n. For controllable (A,B), a positive-definite matrix X qualifies as the
steady-state covariance matrix of the state vector x(t) if and only if the Lyapunov-like
equation

AX + X A∗ = − (BH∗ + H B∗) , (4.2)

is solvable for H ∈ Cn×m [121, 122]. Equation (4.2) provides an algebraic characteriza-
tion of state covariances of linear dynamical systems driven by white or colored stochas-
tic processes. For white noise u with covariance W , H = BW/2 and (4.2) simplifies to
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the standard algebraic Lyapunov equation

AX + X A∗ = −BWB∗. (4.3)

The main difference between (4.2) and (4.3) is that the right-hand-side, −BWB∗ in (4.3)
is negative semi-definite.

We are interested in the setup where the matrix A in (4.1) is known but due to ex-
perimental or numerical limitations, only partial correlations between a limited number
of state components are available. Moreover, it is often the case that the origin and
directionality of the stochastic excitation u is unknown. Interestingly, the solvability
of (4.2) can be shown to be equivalent to the following rank condition:

rank

[
AX + X A∗ B

B∗ 0

]
= rank

[
0 B
B∗ 0

]
.

This implies that any positive-definite matrix X is admissible as a covariance of the LTI
system (4.1) if the input matrix B is full row rank [121], which eliminates the role of
the dynamics inherent in A. Hence, it is desirable to limit the rank of the input matrix
B.

In [164], an optimization framework was developed to account for partially known sam-
pled second-order statistics using stochastically-forced LTI models. In this framework,
the complexity of the model is reflected by the rank of the input matrix B, which is
bounded by the rank of [164,165]

Z := − (AX + X A∗) .

Based on this, the structured covariance completion problem is given by

minimize
X,Z

rank(Z)

subject to AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0

X � 0,

(4.4)

in which matrices A, C, E, and G are problem data, and Hermitian matrices X, Z ∈
Cn×n are optimization variables. While the steady-state covariance matrix X is required
to be positive definite, the matrix Z may have both positive and negative eigenvalues.
This is in contrast to the case of white-in-time input u where the matrix Z is positive
semi-definite. Entries of G represent partially available second-order statistics and C,
the output matrix, establishes the relationship between entries of the matrix X and
partially available statistics resulting from experiments or simulations. The symbol ◦
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Figure 4.1: A cascade connection of an LTI system with a linear filter that is designed
to account for the sampled steady-state covariance matrix X.

denotes elementwise matrix multiplication and E is the structural identity matrix,

Eij =

{
1, if Gij is available

0, if Gij is unavailable.

Due to the non-convexity of the rank function, problem (4.4) is difficult to solve. Typi-
cally, the nuclear norm, i.e., the sum of singular values of a matrix, ‖Z‖∗ :=

∑
i σi(Z),

is used as a proxy for rank minimization [72, 73]. This prompts the following convex
reformulation:

minimize
X,Z

‖Z‖∗
subject to AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0

X � 0,

The solution is used to construct spatio-temporal filters that generate colored-in-time
forcing correlations that account for the observed statistics [121,122,164]; see Figure 4.1.

The nuclear norm is the convex envelope of the rank function over the unit ball ‖Z‖2 ≤ 1
and in conjunction with incoherence conditions has been utilized to provide theoretical
guarantees for standard matrix completion problems [73]. However, for problem (4.4),
the additional structural constraint that arises from the Lyapunov-like equation prevents
us from taking advantage of these standard theoretical results. In addition, even though
the nuclear norm heuristic achieves a low-rank solution for Z with a clear-cut in its
singular values, it may not give good completion of the covariance matrix X. It is
thus important to examine more refined convex relaxations that may result in better
completion.

In [85], it has been demonstrated that when the magnitudes of unknown entries are
significantly smaller than that of the known ones, the nuclear norm often creates regions
of large entries which deviate from the ground truth. In the next section, we demonstrate
that the r∗ norm is more suitable if the objective is to keep both the rank and the
Frobenius norm of the correlation structures small.
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4.3 Low-rank approximation

We next introduce the r∗ norm and provide a brief summary of its properties. A more
elaborate presentation of these theoretical developments can be found in [85].

4.3.1 Preliminaries

In the following, let σ1(M) ≥ · · · ≥ σmin{m,n}(M) denote the increasingly sorted singular
values of M ∈ Rn×m, counted with multiplicity. Moreover, given a singular value de-

composition M =
∑min{m,n}

i=1 σi(M)ui v
T
i of M , we define svdr(M) :=

∑r
i=1 σi(M)uiv

T
i .

Lemma 5. Let M ∈ Rn×m and 1 ≤ r ≤ q := min{m,n}. The r norm of the matrix M

‖M‖r :=

√√√√ r∑
i=1

σ2
i (M)

is unitarily-invariant and its dual-norm is the r∗ norm

‖M‖r∗ := max
‖X‖r≤1

〈M,X〉.

It holds that

• ‖M‖1 ≤ · · · ≤ ‖M‖q = ‖M‖F = ‖M‖q∗ ≤ · · · ≤ ‖M‖1∗

• rank(M) ≤ r if and only if ‖M‖r = ‖M‖F = ‖M‖r∗,

where ‖ · ‖F denotes the Frobenius norm.

The nuclear norm and the r∗ norm coincide for r = 1. Thus, minimizing ‖ · ‖r∗ with
r > 1 can have a more significant influence on decreasing ‖ · ‖F than ‖ · ‖1∗. This is also
motivated by the following Proposition.

Proposition 5. Let C ⊂ Rn×m be a closed convex set, then

inf
M∈C

rank(M)≤r

‖M‖2F ≥ max
D∈C∗

[
inf
M∈C
〈D,M〉 − ‖D‖2r

]
= min

M∈C
‖M‖2r∗

(4.5)

where C∗ := {D ∈ Rn×m : inf
M∈C
〈D,M〉 > −∞}. Let the maximum and the minimum

in (4.5) be achieved by D∗ ∈ C∗ and M∗, respectively.

• If σr(D
∗) 6= σr+1(D∗), then the infimum on the left equals the maximum on the

right and M∗ = svdr(D
∗).
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• If σr(D
∗) = · · · = σr+s(D

∗) > σr+s+1(D∗) 6= 0 for some s ≥ 1 then rank(M∗) ≤
r + s.

Proof. See [85].

Hence, in an ideal situation, i.e. σr(D
∗) 6= σr+1(D∗), r has a strong correlation with

the true rank of the matrix that one aims to complete. This will be seen in several
examples in Section 4.4.

We next concentrate on the case of σr(D
∗
r) = σr+1(D∗r), i.e., rank(M∗r ) > r where we

define

M∗r := argmin
M∈C

‖M‖2r∗

D∗r := argmax
D∈C∗

[
inf
M∈C
〈D,M〉 − ‖D‖2r

]
for 1 ≤ r ≤ min{m,n}. Assume that r + 1 ≤ rank(M∗r ) < rank(M∗r+1) and ‖M∗r ‖F >
‖M∗r+1‖F . In this very common situation (cf. Section 4.4), Mr may still be of sufficiently
small rank but too high cost. Conversely, Mr+1 may have sufficiently small cost but too
high rank. Therefore, a trade-off between these two solutions is desired, which can be
achieved by allowing for a non-integer valued r, i.e.

‖ · ‖r :=

√√√√ brc∑
i=1

σ2
i (·) + (r − brc)σ2

dre(·),

where brc := max{z ∈ Z : z ≤ r} and dre := min{z ∈ Z : z ≥ r}. Letting M∗r and D∗r
be also defined for r ∈ R, it remains true that rank(M∗r ) ≤ dre+ s if σdre(D

∗
r) = · · · =

σdre+s(D
∗
r) > σdre+s+1(D∗r). Moreover, for r ∈ N and α ∈ [0, 1], ‖ · ‖2r+1−α is given by

the convex combination of ‖ · ‖2r and ‖ · ‖2r+1,

‖ · ‖2r+1−α = α ‖ · ‖2r + (1 − α) ‖ · ‖2r+1.

This indicates the usefulness of the real-valued r norm to achieve the desired trade-off.
In conjunction with Lemma 5 it follows that

F (D, r) := inf
M∈C
〈D,M〉 − ‖D‖2r

is concave. Thus, Berge’s Maximum Theorem (see [167, page 116]) implies that the
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parameter depending set

C∗(r) := argmax
D∈C∗

[
inf
M∈C
〈D,M〉 − ‖D‖2r

]
is upper hemicontinuous in r, i.e. for all r ∈ [1,min{m,n}] and all ε > 0, there exists
δ > 0 such that for all t ≥ 1

|t − r| < δ ⇒ C∗(t) ⊂ Bε (C∗(r)) ,

where Bε (C∗(r)) := {X : ∃D ∈ C∗(r) : ‖X −D‖F < ε}. Assume for simplicity that
D∗r is unique, then it follows that a sufficiently small increase of r cannot increase s.
Therefore, as for the nuclear regularization [72], one often expects rank(M∗t ) to look like
a staircase function of t ∈ [r, r + 1].

4.3.2 Convex reformulation

Based on these theoretical developments, the r∗ norm can be employed as a convex proxy
for the rank function. This prompts the following convex relaxation of the covariance
completion problem (4.4),

minimize
X,Z

‖Z‖r∗
subject to AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0

X � 0.

(4.6)

which can be formulated as the semi-definite program (SDP)

minimize
X,Z

trace(W )

subject to

[
I − P Z
Z∗ W

]
� 0

trace(P ) − n + r = 0

AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0

X � 0 P � 0.

(4.7)

Problem (4.7) results from taking the Lagrange dual of the SDP characterization of the
r norm; see [79] for details.

In the next section we present illustrative examples which demonstrate the benefit of
using the r∗ norm over the nuclear norm. Based on the discussion in Section 4.3.1, and
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for a fair comparison, we also consider the alternative formulation

minimize
X,Z

‖Z‖2F + γ ‖Z‖∗
subject to AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0

X � 0.

(4.8)

This formulation has been discussed earlier in [74]. It intends to mimic the behavior of
the r∗ norm and allows us to achieve a trade-off using the tuning parameter γ. Here,
‖Z‖2F is regularized by the nuclear norm of Z and the parameter γ determines the weight
on the nuclear norm.

4.4 Examples

4.4.1 Two-dimensional heat equation

We provide an example to compare the performance of the relaxation in problem (4.6)
with the performance of the hybrid objective considered in problem (4.8). This is based
on the two-dimensional heat equation

Ṫ = ∆T =
∂2

∂x2
T +

∂2

∂y2
T

on the unit square. Inputs are introduced through the Dirichlet boundary conditions
of the four edges, i.e., ξ = [ ξ1 · · · ξ4 ]T . Finite difference discretization of the Laplacian
operator on a uniform grid with step-size h = 1

n+1 gives

∆Tij ≈ −
1

h2
(4Tij − Ti+1,j − Ti,j+1 − Ti−1,j − Ti,j−1),

where Tij is the temperature of the inner grid point on the ith row and jth column of
the mesh. Based on this, the dynamic matrix A denotes an n2×n2 Poisson-matrix and
the input matrix Bξ := [bij ] ∈ Rn2×4 models the boundary conditions as inputs into the
state dynamics. Here, bij = 0 except for the following cases:

bi1 := 1, for i = 1, 2, . . . , n

bi2 := 1, for i = n, 2n, . . . , n2

bi3 := 1, for i = n (n− 1) + 1, n (n− 1) + 2, . . . , n2

bi4 := 1, for i = 1, n+ 1, . . . , n (n− 1) + 1



60

Figure 4.2: Discretized mesh on the unit square. The input enters the state equations
through designated sides.

The dynamics of the discretized heat equation have the following state-space represen-
tation

ẋ =
1

h2
Ax +

1

h2
Bξ ξ, (4.9a)

where x ∈ Rn2
denotes the state. We assume that four input disturbances are generated

by the low-pass filter
ξ̇ = −ξ + d. (4.9b)

Here, d denotes a zero-mean unit variance white process.

The steady-state covariance of system (5.11) can be found as the solution to the Lya-
punov equation

ÃΣ + Σ Ã∗ + B̃ B̃∗ = 0

where

Ã =

[
A Bξ
O −I

]
, B̃ =

[
0
I

]
and

Σ =

[
Σxx Σxξ

Σξx Σξξ

]
.

Here, the sub-covariance Σxx denotes the state covariance of the discretized heat equa-
tion (4.9a).

We use 16 points to discretize the square region (n = 4), and restrict the input to
enter through two sides by setting the second and fourth columns of Bξ to zero. The
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Figure 4.3: Interpolated colormap of the true steady-state covariance Σxx of the dis-
cretized heat equation. Available correlations used in (4.7) and (4.8) are marked by
black lines.

covariance matrix of the state in (4.9a) is shown in figure 4.3 where black lines indicate
known correlations that are used as problem data. We conduct a parametric study to
determine the influence of r and γ on the solutions of (4.7) and (4.8).

Figures 4.4a and 4.4b respectively show the r-dependence and γ-dependence of the
relative error of solutions to (4.7) and (4.8). For problem (4.7), minimum relative error
is achieved with r = 2, as expected for a system with two inputs. On the other hand,
γ = 8.46 gives the best completion in problem (4.8). We note that the optimal solution
for (4.7) results in a relative error which is about a third smaller (4.83% vs. 7.26%)
with a corresponding matrix Z of lower rank (2 vs. 3).

Figure 4.5 shows the recovered covariance matrix of the discretized heat equation re-
sulting from problems (4.7) and (4.8) and for various values of r and γ. Figures 4.5a
and 4.5b correspond to the case of nuclear norm minimization (r = 1) and optimal co-
variance completion (r = 2) for problem (4.7). On the other hand, Figures 4.5c and 4.5d
correspond to the solution of the Frobenius norm minimization (γ = 0) and optimal
covariance completion (γ = 8.46) for problem (4.8). It is notable that the Frobenius
norm minimization does not result in reasonable completion of the covariance matrix.
Moreover, the nuclear norm creates off-diagonal spots of relatively large entries where
the true covariance matrix is close to zero.
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Figure 4.4: (a) The r-dependence of the relative Frobenius norm error (percents) be-
tween the solution X to (4.7) and the true covariance Σxx for the discretized 2D heat
equation discretized using 16 points. (b) The γ-dependence of the relative error between
the solution to (4.8) and the true covariance.

4.4.2 Mass-spring-damper system

We provide an example of a stochastically-forced mass-spring-damper (MSD) system
to demonstrate the utility of the r∗ norm in the completion of diagonally dominant
covariance matrices. The state space representation of the MSD system is given by

ẋ = Ax + Bξ ξ

A =

[
0 I
−T −I

]
, Bξ =

[
0
I

]
.

Here, the state vector contains the position and velocity of masses, x = [ pT vT ]T , 0
and I are zero and identity matrices of suitable sizes, and T is a symmetric tridiagonal
Toeplitz matrix with 2 on the main diagonal and −1 on the first upper and lower
sub-diagonals.

Stochastic disturbances are generated by a similar low-pass filter as in the previous
example and the steady-state covariance matrix of x is partitioned as

Σxx =

[
Σpp Σpv

Σvp Σvv

]
.

We assume that stochastic forcing affects all masses. For n = 20 masses, figure 4.6 shows
the covariance matrices of positions Σpp and velocities Σvv. We assume knowledge of
one-point correlations, i.e., diagonal entries of Σpp and Σvv. Note that in this example
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(a) r = 1 (b) r = 2

(c) γ = 0 (d) γ = 8.46

Figure 4.5: The recovered state covariance matrix of the heat equation resulting from
problem (4.7) (a, b), and problem (4.8) (c, d). (a) r = 1; (b) r = 2; (c) γ = 0; (d)
γ = 8.46.

the covariance matrices are diagonally dominant, especially Σvv.

Again, we study the respective effect of r and γ on the solutions of (4.7) and (4.8). As
shown in figure 4.7, these dependencies are monotonic and minimization of the Frobenius
norm, which corresponds to solving problem (4.7) with r = 2n and problem (4.8) with
γ = 0, results in the best covariance completion (77% recovery). However, in this case
the matrix Z is not rank deficient. On the other hand, nuclear norm minimization,
which corresponds to solving (4.7) with r = 1 and (4.8) with γ = ∞, results in the
worst completion (46%).

Figure 4.8 shows the recovered covariance matrices of position Xpp and velocity Xvv re-
sulting from optimization problems (4.7) and (4.8) with various values of r and γ. While
nuclear norm minimization yields poor recovery of the diagonally dominant covariance
matrix of velocities Σvv (cf. figure 4.8b), minimization of the Frobenius norm results in
best overall recovery (cf. figures 4.8e and 4.8f). However, as aforementioned, lack of a
surrogate for rank minimization leads to a full-rank matrix Z. An intermediate state
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(a) Σpp (b) Σvv

Figure 4.6: The steady-state covariance matrices of the (a) position Σpp, and (b) velocity
Σvv, of masses in the MSD system with n = 20 masses. Available one-point correlations
used in problems (4.7) and (4.8) are marked by black lines.

‖X
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Σ
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‖Σ
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Figure 4.7: (a) The r-dependence of the relative error between the solution X to (4.7)
and the true covariance Σxx for the MSD system with n = 20 masses. (b) The γ-
dependence of the error between the solution to (4.8) and the true covariance.
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with reasonable recovery (73%) can be achieved by solving (4.7) with r = 10 (figures 4.8c
and 4.8d) and (4.8) with γ = 0.19 (figures 4.8g and 5.4d). While the quality of recovery
is the same, the matrix Z which results from solving problem (4.7) is of lower rank (10
vs. 18). Moreover, if one intended to get a solution of rank 18, choosing r = 18 would
be successful here and by Proposition 5 there is no other solution of smaller Frobenius
norm.
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(a) Xpp, r = 1 (b) Xvv, r = 1

(c) Xpp, r = 10 (d) Xvv, r = 10

(e) Xpp, γ = 0 (f) Xvv, γ = 0

(g) Xpp, γ = 0.19 (h) Xvv, γ = 0.19

Figure 4.8: The recovered covariance matrices of position and velocity in the MSD
system with n = 20 masses resulting from problem (4.7) (a, b, c, d), and problem (4.8)
(e, f, g, h). (a, b) r = 1; (c, d) r = 10; (e, f) γ = 0; (g, h) γ = 0.19.



Chapter 5

Perturbation of system dynamics
and the covariance completion
problem

In this chapter, we again consider the problem of completing partially known sample
statistics in a way that is consistent with underlying stochastically driven linear dynam-
ics. Neither the statistics nor the dynamics are precisely known. Thus, our objective is
to reconcile the two in a parsimonious manner. Herein, we formulate a convex optimiza-
tion problem to match available covariance data while minimizing the energy required
to adjust the dynamics by a suitable low-rank perturbation. The solution to the op-
timization problem provides information about critical directions that have maximal
effect in bringing model and statistics in agreement.

5.1 Introduction

Our topic begins with a simplified model of a complex dynamical process together with
an incomplete set of covariance statistics. The observed partial statistical signature of
the process carries useful information about the underlying dynamics. Thus, our goal is
to reconcile the available covariance data with our model by an economical refinement
of both, the model and the estimated statistics.

The history and motivation for this subject root in the modeling of fluid flows. In
this, the stochastically-forced linearized Navier-Stokes equations around the mean ve-
locity profile have been shown to qualitatively replicate the structural features of shear
flows [28–30, 33]. This chapter represents an extension of the theoretical developments
presented in Chapter 2, where we introduced nontrivial (colored) stochastic forcing

67
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into linear dynamics in order to account for a partially known output covariance; also
see [34,137,160,164,165]. We were motivated by the fact that white-in-time stochastic
forcing is often insufficient to explain observed correlations [113,114]. However, insights
from that earlier work suggest that the effect of a colored-in-time input process is pre-
cisely equivalent to a perturbation of the system dynamics, without any need to increase
the state dimension [34,164].

Any perturbations in state dynamics can be equivalently represented by state-feedback
interactions. Parsimony in our methodology dictates that we penalize both the mag-
nitude as well as the directionality of corresponding correction terms. Thereby, we
formulate the problem to match available covariance data while minimizing the energy
required to adjust the dynamics by a suitable low-rank perturbation. The solution to
the convex optimization problem that we formulate provides information about critical
directions that have maximal effect in bringing model and statistics in agreement.

Starting from a pre-specified set of input channels our objective is to identify a small
subset that can explain partially-observed second-order statistics via suitable feedback
interactions. In general, this is a combinatorial optimization problem. To cope with the
combinatorial complexity, we utilize convex characterization that was recently used in
the context of optimal sensor and actuator selection [168, 169]. This allows us to cast
our problem as a semidefinite program.

Our problem can be viewed as having a dual interpretation. It can be considered as a
static state-feedback synthesis approach to an inverse problem that identifies dynamical
feedback interactions which account for available statistical signatures. On the other
hand, it can also be considered as an identification problem that aims to explain available
statistics via suitable low-rank perturbations of the linear dynamics.

The rest of this chapter is organized as follows. In Section 5.2, we provide a brief
summary of the covariance completion problem and draw connections to covariance
control problems. In Section 5.3, we pose the problem as a state-feedback synthesis
and provide a convex formulation. In Section 5.4, we offer an example to highlight the
utility of our approach.

5.2 Background

Consider a linear time-invariant (LTI) system with state-space representation

ẋ = Ax + B f

y = Cx
(5.1)
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where x(t) ∈ Cn is the state vector, y(t) ∈ Cp is the output, f(t) ∈ Cm is a stationary
zero-mean stochastic process, A ∈ Cn×n is the dynamic matrix, and B ∈ Cn×m is the
input matrix with m ≤ n. For Hurwitz A and controllable (A,B), a positive definite
matrix X qualifies as the steady-state covariance matrix of the state vector

X := lim
t→∞

E (x(t)x∗(t)) ,

if and only if the linear equation

AX + XA∗ = − (BH∗ + HB∗) , (5.2)

is solvable for H ∈ Cn×m [121,122]. Here, E is the expectation operator, H is a matrix
that contains spectral information about the stochastic input process and is related
to the cross-correlation between the input f and the state x [34, Appendix B], and ∗
denotes the complex conjugate transpose. For a white-in-time input f with covariance
W , the covariance X satisfies the algebraic Lyapunov equation

AX + X A∗ = −BWB∗. (5.3)

The main difference between (5.2) and (5.3) is that the right-hand-side in (5.2) is allowed
to be sign-indefinite, thereby allowing for colored-in-time stochastic inputs. Clearly, for
H = BW/2, (5.2) simplifies to the Lyapunov equation (5.3).

The algebraic relation between second-order statistics of the state and forcing can be
used to explain partially known sampled second-order statistics using stochastically-
driven LTI systems [164, 165]. While the dynamical generator A is known, the origin
and directionality of stochastic excitation f is unknown. It is also important to restrict
the complexity of the forcing model. This complexity is quantified by the number of
degrees of freedom that are directly influenced by stochastic forcing and translates into
the number of input channels or rank(B). It can be shown that the rank of B is closely
related to the signature of the matrix

Z := −(AX + XA∗)

= BH∗ + HB∗.

The signature of a matrix is determined by the number of its positive, negative, and
zero eigenvalues. In addition, the rank of Z bounds the rank of B [164,165].

Based on this, the problem of identifying low-complexity structures for stochastic forcing
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can be formulated as the following structured covariance completion problem [164]

minimize
X,Z

− log det (X) + γ ‖Z‖∗

subject to AX + XA∗ + Z = 0

(CXC∗) ◦ E − G = 0.

(5.4)

Here, γ is a positive regularization parameter, the matrices A, C, E, and G are problem
data, and the Hermitian matrices X, Z ∈ Cn×n are optimization variables. Entries
of G represent partially available second-order statistics of the output y, the symbol ◦
denotes elementwise matrix multiplication, and E is the structural identity matrix,

Eij =

{
1, if Gij is available

0, if Gij is unavailable.

Convex optimization problem (5.4) combines the nuclear norm with an entropy function
in order to target low-complexity structures for stochastic forcing and facilitate construc-
tion of a particular class of low-pass filters that generate colored-in-time forcing correla-
tions. The nuclear norm, i.e., the sum of singular values of a matrix, ‖Z‖∗ :=

∑
i σi(Z),

is used as a proxy for rank minimization [72, 73]. On the other hand, the logarithmic
barrier function in the objective is introduced to guarantee the positive definiteness of
the state covariance matrix X.

The solution to (5.4) can be translated into a dynamical representation for colored-
in-time stochastic forcing by designing linear filters that provide the suitable forcing
into system (5.1); see figure 5.1a. The filter dynamics are given by the state-space
representation

ξ̇ = (A−BK) ξ + B d (5.5a)

f = −K ξ + d, (5.5b)

where d is a white stochastic process with covariance Ω � 0 and

K =
1

2
ΩB∗X−1 − H∗X−1. (5.5c)

Here, the matrices B and H correspond to the factorization of the matrix Z (cf. (5.2))
which results from solving convex optimization problem (5.4); see [164,165] for details.

From an alternative viewpoint, the constructed class of filters described by (5.5) are
related to the covariance control problem studied in [123, 124]; see [164] for additional
details. In other words, the cascade interconnection of the filter and linear dynamics
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Figure 5.1: (a) A cascade connection of an LTI system with a linear filter that is designed
to account for the sampled steady-state covariance matrix X; (b) An equivalent feedback
representation of the cascade connection in (a).

can be equivalently represented by

ẋ = Ax + B u + B d, (5.6a)

where d is again white with covariance Ω, and u is given by

u = −K x. (5.6b)

Substitution of (5.6b) into (5.6a) yields the following state-space representation

ẋ = (A − BK)x + B d. (5.6c)

In this case, a choice of non-zero K can be used to assign different values to the covari-
ance matrix X; see figure 5.1b. For A−BK Hurwitz, X satisfies

(A−BK)X + X (A−BK)∗ + B ΩB∗ = 0. (5.7)

Any X � 0 satisfying (5.7) also satisfies (5.2) with H = −XK∗ + 1
2BΩ. Conversely,

if X � 0 satisfies (5.2), then it also satisfies (5.7) for K = 1
2ΩB∗X−1 − H∗X−1 and

A − BK is Hurwitz. Thus, for a stationary state covariance X � 0, the problem of
identifying the stochastic input f in (5.1) is equivalent to assigning the feedback gain
matrix K in (5.6).
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5.3 Covariance completion via minimum energy control

We next utilize representation (5.6) to propose an alternative method for completing
partially known second-order statistics using state-feedback synthesis. In general, there
is more than one choice of K that provides consistency with available steady-state
statistics. We propose to select an optimal feedback gain K that minimizes the control
energy in statistical steady-state

lim
t→∞

E (u∗(t)u(t)) .

Such K can be equivalently obtained by minimizing trace (KXK∗) subject to (5.7) and
a linear constraint that comes from the known output correlations,

(CXC∗) ◦ E − G = 0.

In addition, it is desired to limit the number of degrees of freedom that are directly
influenced by the state-feedback u and stochastic forcing d in (5.6). This also translates
into minimizing the number of input channels or columns of the input matrix B that
perturb the dynamical generator A in (5.7); see [34,164] for details.

Herein, we introduce a covariance completion framework which consists of two steps:
identification and polishing. In the identification step, we solve the minimum-energy
covariance completion problem augmented by a sparsity-promoting regularizer. This
allows us to identify a subset of input channels that strike a balance between control
energy and the number of used input channels (and thereby the rank of the dynamical
perturbation BK). In the polishing step, we further reduce the control energy and
improve the quality of completion. This is accomplished by solving the minimum-energy
covariance completion problem using the identified input channels.

5.3.1 Identification of essential input channels

As aforementioned, the covariance completion problem (5.4) uses a nuclear norm reg-
ularization in order to provide a bound on the least number of colored-in-time input
channels that are required to account for the known second-order statistics. Herein, we
consider the state-space representation

ẋ = (A − BK)x + B d

where d is a zero-mean white stochastic process with covariance Ω, B is the input
matrix, A is Hurwitz, and the pair (A,B) is controllable. Starting from a given matrix
B, we seek a subset of available input channels that are sufficient for the purpose of
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accounting for the observed second-order statistics. This is accomplished by formulating
an optimization problem in which the performance index trace (KXK∗) is augmented
with a term that promotes row-sparsity of the feedback gain matrix K. When the ith
row of K is identically equal to zero, the ith input channel in the matrix B is not used.
Therefore, we can identify a subset of critical input channels by promoting row-sparsity
of K. This approach not only reduces the number of colored-in-time input channels,
but it also uncovers the precise dynamical feedback interactions that are required to
reconcile the available covariance data with the given linear dynamics.

The regularized minimum-control-energy covariance completion problem can be formu-
lated as,

minimize
X,K,Ω

trace (KXK∗) + γ
n∑

i= 1

wi ‖e∗i K‖2

subject to (A−BK)X + X (A−BK)∗ + B ΩB∗ = 0

(CXC∗) ◦ E − G = 0

X � 0.

(5.8)

Here, matrices A, B, C, E, and G are problem data, and matrices X ∈ Cn×n, K ∈
Cm×n, and Ω ∈ Cm×m are optimization variables. The regularization parameter γ > 0
specifies the relative importance of the sparsity-promoting term, wi are nonzero weights,
and ei is the ith unit vector in Rm.

Since the hermitian matrix X is positive definite and therefore invertible, the standard
change of coordinates Y := KX brings problem (5.8) into the following form

minimize
X,Y,Ω

trace
(
Y X−1Y ∗

)
+ γ

n∑
i= 1

wi ‖e∗i Y ‖2

subject to AX + X A∗ − B Y − Y ∗B∗ + B ΩB∗ = 0

(CXC∗) ◦ E − G = 0

X � 0.

(5.9)

Here, we have utilized the equivalence between the row-sparsity of K and the row-
sparsity of Y [168]. The convexity of (5.9) follows from the convexity of its objective
function and the convexity of the constraint set [135]. Furthermore, this optimization
problem can be recast as an SDP by taking the Schur complement of Y X−1Y ∗ [170].
Finally, the optimal feedback gain matrix can be recovered as K = Y X−1.

The SDP characterization of problem (5.9) can be solved efficiently using general-
purpose solvers for small-size problems. We are currently developing customized al-
gorithms that exploit the structure of (5.9) in order to gain computational efficiency
and improve scalability.
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Iterative reweighting

In optimization problem (5.9) the weighted `2 norm is used to promote row sparsity of
the matrix Y . This choice is inspired by the exact correspondence between the weighted
`1 norm, i.e.,

∑
iwi|xi| with wi = 1/|xi| for xi 6= 0, and the cardinality function card (x).

Since this choice of weights cannot be implemented, the iterative reweighting scheme
was proposed instead in [171]. We follow a similar approach and update the weights
using

wj+1
i =

1

‖e∗iY j‖2 + ε
, (5.10)

where Y j denotes the solution to problem (5.9) in the jth reweighting step. The small
positive parameter ε ensures that the weights are well-defined.

5.3.2 Polishing step

In the polishing step, we consider the system

ẋ = (A − B2K)x + B d.

The matrix B2 ∈ Cn×q is obtained by eliminating the columns of B which correspond
to the identified row sparsity structure of Y , where q denotes the number of retained
input channels. For this system, we solve optimization problem (5.9) with γ = 0. This
step allows us to identify the optimal matrix Y ∈ Cq×n and subsequently the optimal
feedback gain K ∈ Cq×n for a system with a lower number of input control channels.
As we demonstrate in our computational experiments, polishing not only reduces the
energy of the control input but it can also improve the quality of completion of the
covariance matrix X.

5.4 An example

In an incompressible channel-flow, with geometry shown in figure 5.2, we study the
dynamics of infinitesimal fluctuations around the parabolic mean velocity profile, ū =
[U(x2) 0 0 ]T with U(x2) = 1 − x2

2. Here, x1, x2, and x3 denote the streamwise,
wall-normal and spanwise coordinates, respectively; see figure 5.2. Finite dimensional
approximation of the linearized Navier-Stokes equations around ū results in the following
state-space representation

ẋ(k, t) = A(k)x(k, t) + ξ(k, t),

y(k, t) = C(k)x(k, t).
(5.11a)
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Figure 5.2: Geometry of a three-dimensional pressure-driven channel flow.

Here, x = [ vT2 ηT ]T ∈ C2N is the state of the linearized model, v2 and η = ∂x3v1−∂x1v3

are the wall-normal velocity and vorticity, the output y = [ vT1 vT2 vT3 ]T ∈ C3N denotes
the fluctuating velocity vector, ξ is a stochastic forcing disturbance, k = [ kx kz ]T

denotes the vector of horizontal wavenumbers, and the input matrix is the identity
I2N×2N . A detailed description of the dynamical matrix A and output matrix C can be
found in [30].

We assume that the stochastic disturbance ξ is generated by a low-pass filter with
state-space representation

ξ̇(k, t) = −ξ(k, t) + d(t). (5.11b)

Here, d denotes a zero mean unit variance white process.

The steady-state covariance of system (5.11) can be found as the solution to the Lya-
punov equation

ÃΣ + Σ Ã∗ + B̃ B̃∗ = 0

where

Ã =

[
A I
O −I

]
, B̃ =

[
0
I

]
and

Σ =

[
Σxx Σxξ

Σξx Σξξ

]
.

Here, the sub-covariance Σxx denotes the state covariance of system (5.11a). At any
horizontal wavenumber pair k, the steady-state covariance matrices of the output y and
the state x are related by

Φ(k) = C(k) Σxx(k)C∗(k),

Figure 5.3 shows the structure of the output covariance matrix Φ.
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Figure 5.3: Structure of the output covariance matrix Φ. Available one-point velocity
correlations in the wall-normal direction represent diagonal entries of the blocks in the
velocity covariance matrix Φ.

For the horizontal wavenumber pair (kx, kz) = (0, 1), figure 5.4(a, c, e, g) shows the
color-plots of the streamwise Φ11, wall-normal Φ22, spanwise Φ33, and the
streamwise/wall-normal Φ12 two-point correlation matrices in the wall-normal direction
x2. In this example, we assume that the one-point velocity correlations, or diagonal
entries of these covariance matrices are available. We set the covariance of white noise
disturbances to the identity (Ω = I) and do not treat it as an optimization variable
in (5.9). For this example, we use N = 11 collocation points to discretize the differential
operators in the wall-normal direction x2.

Figure 5.5 shows the γ-dependence of the relative Frobenius norm error in recovering
the true covariance Σxx before and after polishing. As shown in figure 5.5, the polishing
step can indeed improve the quality of completion in the covariance matrix X. The
best completion is achieved for high values of γ (96% recovery). Figure 5.4(b, d, f, h)
shows the streamwise, wall-normal, spanwise, and the streamwise/wall-normal two-point
correlation matrices resulting from solving (5.9) with γ = 104 followed by polishing.

Figure 5.6 shows the configuration of input channels that are retained as γ is increased.
It is evident that as γ increases more control input channels are eliminated. In this
example, the initial input matrix is the identity I2N×2N . Since the state is formed as
x = [ vT ηT ]T , the first and last N input channels can be considered as entering into
the dynamics of wall-normal velocity and wall-normal vorticity, respectively. Notably,
input channels that enter the dynamics of wall-normal velocity are more important with
more emphasis placed on excitations that are located in the vicinity of channel walls.
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(g) (h)

x2

x2 x2

Figure 5.4: True covariance matrices of the output velocity field (a, c, e, g), and covari-
ance matrices resulting from solving optimization problem (5.9) with γ = 104 followed
by a polishing step (b, d, f, h). (a, b) Streamwise Φ11, (c, d) wall-normal Φ22, (e, f)
spanwise Φ33, and (g, h) the streamwise/wall-normal Φ12 two-point correlation matrices
at (kx, kz) = (0, 1). The one-point correlation profiles that are used as problem data
in (5.9) are marked by black lines along the main diagonals.



78

‖X
−

Σ
x
x
‖ F
/
‖Σ

x
x
‖ F

γ

Figure 5.5: The γ-dependence of the relative Frobenius norm error between the true
state covariance Σxx and the solution X to (5.9) before (#) and after (4) polishing, for
the channel flow with N = 11 collocation points in channel height.

input channel

Figure 5.6: Retained columns of the input matrix B as γ increases. A black dot indicates
the presence of the corresponding input channel. The top row (γ = 0) shows the use of
all channels, and the bottom row (γ = 104) shows the least number of channels required
for accounting for the observed statistics.
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Figure 5.7: The γ-dependence of the number of retained input channels after solving
problem (5.9) in the case of iterative reweighting (#) and in the case of constant weights
(4).

When the reweighting scheme is employed, for each value of γ, the optimization prob-
lem (5.9) is solved 10 times, updating the weights using (5.10) and retaining them as we
increase γ. Figure 5.7 illustrates the utility of the iterative reweighting scheme. When
constant and uniform sparsity-promoting weights are used, large values of γ are required
to eliminate input channels, and even with the highest values of the sparsity-promoting
parameter (γ = 104) only 5 input channels were eliminated from the second half of
columns of B. For the same value of γ, problem (5.9) with the iterative reweighting
scheme eliminates 11 input channels.



Chapter 6

Conclusions and future directions

Conclusions

We are interested in explaining partially known second-order statistics that originate
from experimental measurements or simulations using stochastic linear models. This
is motivated by the need for control-oriented models of systems with large number of
degrees of freedom, e.g., turbulent fluid flows. In our setup, the linearized approxi-
mation of the dynamical generator is known whereas the nature and directionality of
disturbances that can explain partially observed statistics are unknown. We thus for-
mulate the problem of identifying appropriate stochastic input that can account for the
observed statistics while being consistent with the linear dynamics.

This inverse problem is framed as convex optimization. We utilize nuclear norm mini-
mization to identify noise parameters of low rank and to complete unavailable covariance
data. Our formulation relies on drawing a connection between the rank of a certain ma-
trix and the number of disturbance channels into the linear dynamics. An important
contribution is the development of a customized alternating minimization algorithm
(AMA) that efficiently solves covariance completion problems of large size. In fact, we
show that our algorithm works as a proximal gradient on the dual problem and estab-
lish a sub-linear convergence rate for the fixed step-size. We also provide comparison
with ADMM and demonstrate that AMA yields explicit updates of all optimization
variables and a principled procedure for step-size selection. An additional contribution
is the design of a class of linear filters that realize suitable colored-in-time excitation to
account for the observed state statistics. These filters solve a non-standard stochastic
realization problem with partial covariance information.

In Chapter 4, we use the r∗ norm to approximate the rank function in the covariance
completion problem. Relative to the nuclear norm relaxation, the r∗ norm exploits an
additional degree of freedom which is useful in the completion of diagonally dominant
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covariances. While the nuclear norm relaxation yields forcing models of low-complexity,
in some cases it can result in unreasonable completion of second-order statistics. Our
numerical experiments show that the use of the r∗ norm can indeed improve the quality
of completion without increasing the rank of the input correlation structures.

In Chapter 5, we show that the covariance completion problem can be alternatively
formulated as a covariance control problem in which we identify the suitable feedback
interactions that explain the available statistics. We employ a convenient change of
variables through which the problem of minimizing the number of input channels trans-
lates into promoting sparsity on the rows of the feedback gain matrix. This allows for
the exact identification of critical input directions that have most profound effects in
bringing model and statistics in agreement.

Extensions and future directions

The use of the r∗ norm in the low-complexity modeling of turbulent flows.
While the r∗ norm formulation can be cast as an SDP and solved using general purpose
solvers, its utility for the purpose of turbulent flow modeling requires the development of
customized optimization algorithms that are able to handle larger-size problems. With
recent algorithmic developments that have determined the proximal operator for the r∗
norm [85, 86], the customized optimization algorithms developed in Chapter 3 can be
used in the context of modeling turbulent fluid flows. We anticipate that the additional
layer of flexibility introduced by this heuristic can potentially improve our ability to
capture statistical signatures of wall-bounded shear flows.

Feedback synthesis for actuator/sensor selection and covariance completion.
In addition to low-complexity stochastic modeling, the minimum energy covariance
completion problem (5.9) can be used for the purpose of optimal sensor and actuator
selection (e.g., see [169]). Our ongoing effort is directed toward the development of
customized optimization algorithms that efficiently solve these classes of optimal control
problems, particularly for large-scale systems.



Part II

Stochastic modeling of
wall-bounded shear flows
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Chapter 7

Stochastic modeling of turbulent
channel flow

In this chapter, we address the problem of how to account for second-order statistics
of turbulent flows using low-complexity stochastic dynamical models based on the lin-
earized Navier-Stokes equations. The complexity is quantified by the number of degrees
of freedom in the linearized evolution model that are directly influenced by stochastic
excitation sources. For the case where only a subset of velocity correlations are known,
we develop a framework to complete unavailable second-order statistics in a way that is
consistent with linearization around the turbulent mean velocity. In general, white-in-
time stochastic forcing is not sufficient to explain turbulent flow statistics. We develop
models for colored-in-time forcing using a maximum entropy formulation together with
a regularization that serves as a proxy for rank minimization. We show that colored-
in-time excitation of the Navier-Stokes equations can also be interpreted as a low-rank
modification to the generator of the linearized dynamics. Our method provides a data-
driven refinement of models that originate from first principles and captures complex
dynamics of turbulent flows in a way that is tractable for analysis, optimization, and
control design.

7.1 Introduction

The advent of advanced measurement techniques and the availability of parallel com-
puting have played a pivotal role in improving our understanding of turbulent flows.
Experimentally and numerically generated data sets are becoming increasingly available
for a wide range of flow configurations and Reynolds numbers. An accurate statistical
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description of turbulent flows may provide insights into flow physics and will be instru-
mental in model-based control design for suppressing or promoting turbulence. Thus, it
is increasingly important to understand how structural and statistical features of turbu-
lent flows can be embedded in models of low-complexity that are suitable for analysis,
optimization, and control design.

Nonlinear dynamical models of wall-bounded shear flows that are based on the Navier-
Stokes (NS) equations typically have a large number of degrees of freedom. This makes
them unsuitable for analysis and control synthesis. The existence of coherent structures
in turbulent wall-bounded shear flows [7–9] has inspired the development of data-driven
techniques for reduced-order modeling of the NS equations. However, control actua-
tion and sensing may significantly alter the identified modes in nonlinear reduced-order
modeling schemes. This introduces nontrivial challenges for model-based control de-
sign [26, 27]. In contrast, linearization of the NS equations around the mean-velocity
gives rise to models that are well-suited for analysis and synthesis using tools of mod-
ern robust control. Further, such linearized models, subject to white-in-time stochas-
tic excitation, have been shown to qualitatively replicate structural features of tran-
sitional [28–30] and turbulent [31–33] wall-bounded shear flows. However, it has also
been recognized that white-in-time stochastic excitation is insufficient to accurately
reproduce statistics of the fluctuating velocity field [113,114].

In this chapter, we build on the theoretical and algorithmic developments of Chap-
ters 2 and 3, and introduce colored-in-time stochastic excitation to the linearized NS
equations and develop an optimization framework to identify low-complexity models for
such excitation sources. We show that these models are suitable to replicate available
second-order statistics of wall-bounded shear flows. Our models contain the same num-
ber of degrees of freedom as the finite-dimensional approximation of the NS equations.
Moreover, they can be interpreted as low-rank perturbations of the linearized dynamics.

The linearized NS equations have been effectively used to capture the early stages of
transition in wall-bounded shear flows and to identify key mechanisms for subcritical
transition. It has been demonstrated that velocity fluctuations around a laminar base
flow exhibit high sensitivity to different sources of perturbations. This has provided
reconciliation with experimental observations [4, 172–175] that, even in the absence of
modal instability, bypass transition can be triggered by large transient growth [176–
180] or large amplification of deterministic and stochastic disturbances [29,30,112,181,
182]. The non-normality of the linearized dynamical generator introduces interactions
of exponentially decaying normal modes [181, 183], which in turn result in high flow
sensitivity. In the presence of mean shear and spanwise-varying fluctuations, vortex
tilting induces high sensitivity of the laminar flow and provides a mechanism for the
appearance of streamwise streaks and oblique modes [184].

Linear mechanisms also play an important role in the formation and maintenance of
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streamwise streaks in turbulent shear flows. Numerical simulations show that, even in
the absence of a solid boundary, streaky structures appear in homogeneous turbulence
subject to large mean shear [185]. The formation of such structures has been attributed
to the linear amplification of eddies that interact with background shear. In addition,
linear rapid distortion theory [186] can be used to predict the long time anisotropic
behavior as well as the qualitative features of the instantaneous velocity field in homo-
geneous turbulence [185].

The importance of linear mechanisms in maintaining near-wall streamwise vortices in
wall-bounded shear flows was highlighted by [187]. Furthermore, [188] used the lin-
earized NS equations to predict the spacing of near-wall streaks and relate their forma-
tion to a combination of lift-up due to the mean profile, mean shear, and viscous dissi-
pation. The linearized NS equations also reveal large transient growth of fluctuations
around turbulent mean velocity [189,190] and a high amplification of stochastic distur-
bances [191]. Later studies further identified a secondary growth (of the streaks) which
may produce much larger transient responses than a secondary instability [192,193]. All
of these studies support the relevance of linear mechanisms in the self-sustaining regen-
eration cycle [194, 195] and motivate low-complexity dynamical modeling of turbulent
shear flows.

Other classes of linear models have also been utilized to study the spatial structure
of the most energetic fluctuations in turbulent flows. In particular, augmentation of
molecular viscosity with turbulent eddy-viscosity yields the turbulent mean flow as the
exact steady-state solution of the modified NS equations [196,197]. The analysis of the
resulting eddy-viscosity-enhanced models reliably predicts the length scales of near-wall
structures in turbulent wall-bounded shear flows [198–200]. This model was also used
to study the optimal response to initial conditions and body forcing fluctuations in
turbulent channel [32] and Couette flows [31], and served as the basis for model-based
control design in turbulent channel flow [33].

Recently, a gain-based decomposition of fluctuations around the turbulent mean ve-
locity has been used to characterize energetic structures in terms of their wavelengths
and convection speeds [201–204]. For turbulent pipe flow, [201] used resolvent analysis
to explain the extraction of energy from the mean flow. Resolvent analysis provides
further insight into linear amplification mechanisms associated with critical layers. [204]
extended this approach to turbulent channel flow and studied the Reynolds number
scaling and geometric self-similarity of the dominant resolvent modes. In addition, they
showed that decomposition of the resolvent operator can be used to provide a low-order
description of the energy intensity of streamwise velocity fluctuations. Finally, [205]
used a weighted sum of a few resolvent modes to approximate the velocity spectra in
turbulent channel flow.

The nonlinear terms in the NS equations are conservative and, as such, they do not
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contribute to the transfer of energy between the mean flow and velocity fluctuations;
they only transfer energy between different Fourier modes [206, 207]. This observation
has inspired researchers to model the effect of nonlinearity via an additive stochastic
forcing to the equations that govern the dynamics of fluctuations. Early efforts focused
on homogeneous isotropic turbulence [208–211]. In these studies, the conservative na-
ture of the equations was maintained via a balanced combination of dynamical damp-
ing and stochastic forcing terms. However, imposing similar dynamical constraints in
anisotropic and inhomogeneous flows is challenging and requires significant increase in
computational complexity.

The NS equations linearized around the mean velocity capture the interactions between
the background flow and velocity fluctuations. In the absence of body forcing and neu-
trally stable modes, linearized models predict either asymptotic decay or unbounded
growth of fluctuations. Thus, without a stochastic source of excitation linearized mod-
els around stationary mean profiles cannot generate the statistical responses that are
ubiquitous in turbulent flows. For quasi-geostrophic turbulence, linearization around
the time-averaged mean profile was used to model heat and momentum fluxes as well
as spatio-temporal spectra [212–216]. In these studies, the linearized model was driven
with white-in-time stochastic forcing and the dynamical generator was augmented with
a source of constant dissipation. In [217], the ability of Markov models (of different
orders) subject to white forcing to explain time-lagged covariances of quasi-geostrophic
turbulence was examined. Furthermore, singular perturbation methods were employed
in an attempt to justify the use of stochastic models for climate prediction [218, 219].
This analysis suggests that more sophisticated models, which involve not only additive
but also multiplicative noise sources, may be required. All of these studies demon-
strate encouraging agreement between predictions resulting from stochastically driven
linearized models and available data and highlight the challenges that arise in modeling
dissipation and the statistics of forcing [220,221].

The authors of [191] examined the statistics of the NS equations linearized around
the Reynolds-Tiederman velocity profile subject to white stochastic forcing. It was
demonstrated that velocity correlations over a finite interval determined by the eddy
turnover time qualitatively agree with second-order statistics of turbulent channel flow.
In [113] the NS equations linearized around turbulent mean velocity were studied and
the influence of second-order spatial statistics of white-in-time stochastic disturbances
on velocity correlations were examined. It was shown that portions of one-point cor-
relations in turbulent channel flow can be approximated by the appropriate choice of
forcing covariance. This was done in an ad hoc fashion by computing the steady-state
velocity statistics for a variety of spatial forcing correlations. This line of work has in-
spired the development of optimization algorithms for approximation of full covariance
matrices using stochastically forced linearized NS equations [161, 222]. Moreover, [33]
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demonstrated that the energy spectrum of turbulent channel flow can be exactly repro-
duced using the linearized NS equations driven by white-in-time stochastic forcing with
variance proportional to the turbulent energy spectrum. This choice was motivated by
the observation that the second-order statistics of homogeneous isotropic turbulence can
be exactly matched by such forcing spectra [114,223].

Stochastically forced models were also utilized in the context of stochastic structural
stability theory to study jet formation and equilibration in barotropic beta-plane turbu-
lence [224–228]. Recently, it was demonstrated that a feedback interconnection of the
streamwise-constant NS equations with a stochastically driven streamwise-varying lin-
earized model can generate self-sustained turbulence in Couette and Poiseuille flows [229–
231]. Turbulence was triggered by the stochastic forcing and was maintained even af-
ter the forcing had been turned off. Even in the absence of stochastic forcing, certain
measures of turbulence, e.g., the correct mean velocity profile, are maintained through
interactions between the mean flow and a small subset of streamwise varying modes.
Even though turbulence can be triggered with white-in-time stochastic forcing, correct
statistics cannot be obtained without accounting for the dynamics of the streamwise av-
eraged mean flow or without manipulation of the underlying dynamical modes [232,233].

As already noted, the linearized NS equations with white-in-time stochastic forcing
have been used to predict coherent structures in transitional and turbulent shear flows
and to yield statistics that are in qualitative agreement with experiments and sim-
ulations. For homogeneous isotropic turbulence, this model can completely recover
second-order statistics of the velocity field [114, 223]. For turbulent channel flow, how-
ever, we demonstrate that the linearized NS equations with white-in-time stochastic
excitation cannot reproduce second-order statistics that originate from direct numerical
simulations (DNS). This observation exposes the limitations of the white-in-time forcing
model.

In the present chapter, we show that colored-in-time stochastic forcing provides sufficient
flexibility to account for statistical signatures of turbulent channel flow. We develop a
systematic method for identifying the spectral content of colored-in-time forcing to the
linearized NS equations that allows us to capture second-order statistics of fully devel-
oped turbulence. Most of our discussion focuses on channel flow, yet the methodology
and theoretical framework are applicable to more complex flow configurations.

We are interested in completing partially available second-order statistics of velocity
fluctuations in a way that is consistent with the known dynamics. The statistics of
forcing to the linearized equations around turbulent mean velocity are unknown and
sought to match the available velocity correlations and to complete any missing data.
Our approach utilizes an algebraic relation that characterizes steady-state covariances
of linear systems subject to colored-in-time excitation sources [121, 122]. This relation
extends the standard algebraic Lyapunov equation, which maps white-in-time forcing
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Figure 7.1: A spatio-temporal filter is designed to provide colored stochastic input to the
linearized NS equations in order to reproduce partially available second-order statistics
of turbulent channel flow.

correlations to state statistics, and it imposes a structural constraint on admissible co-
variances. We follow a maximum entropy formalism to obtain positive definite velocity
covariance matrices and use suitable regularization to identify forcing correlation struc-
tures of low rank. This restricts the number of degrees of freedom that are directly
influenced by the stochastic forcing and, thus, the complexity of the colored-in-time
forcing model [164,165].

Minimizing the rank, in general, leads to difficult non-convex optimization problems.
Thus, instead, we employ nuclear norm regularization as a surrogate for rank mini-
mization [45, 60, 72, 73]. The nuclear norm of a matrix is determined by the sum of its
singular values and it provides a means for controlling the complexity of the model for
stochastic forcing to the linearized NS equations. The covariance completion problem
that we formulate is convex and its globally optimal solution can be efficiently computed
using customized algorithms that we recently developed [160,164].

We use the solution to the covariance completion problem to develop a dynamical model
for colored-in-time stochastic forcing to the linearized NS equations (see figure 7.1) and
provide a state-space realization for spatio-temporal filters that generate the appropri-
ate forcing. These filters are generically minimal in the sense that their state dimension
coincides with the number of degrees of freedom in the finite-dimensional approxima-
tion of the NS equations. We also show that colored-in-time stochastic forcing can be
equivalently interpreted as a low-rank modification to the dynamics of the NS equa-
tions linearized around turbulent mean velocity. This dynamical perturbation provides
a data-driven refinement of a physics-based model (i.e., the linearized NS equations) and
it guarantees statistical consistency with fully developed turbulent channel flow. This
should be compared and contrasted to alternative modifications proposed in the litera-
ture, e.g., the eddy-viscosity-enhanced linearization [31, 32, 197–200] or the addition of
a dissipation operator [221]; see Chapter 9 for additional details.

We consider the mean velocity profile and one-point velocity correlations in the wall-
normal direction at various wavenumbers as available data for our optimization prob-
lem. These are obtained using DNS of turbulent channel flow [234–238]. We show
that stochastically forced linearized NS equations can be used to exactly reproduce all
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one-point correlations (including one-dimensional energy spectra) and to provide good
completion of unavailable two-point correlations of the turbulent velocity field. The
resulting modified dynamics have the same number of degrees of freedom as the finite-
dimensional approximation of the linearized NS equations. Thus, they are convenient
for conducting linear stochastic simulations. The ability of our model to account for the
statistical signatures of turbulent channel flow is verified using these simulations. We
also demonstrate that our approach captures velocity correlations at higher Reynolds
numbers. We close the chapter by employing tools from linear systems theory to analyze
the spatio-temporal features of our model in the presence of stochastic and deterministic
excitation sources.

The rest of this chapter is organized as follows. In Section 7.2, we introduce the stochas-
tically forced linearized NS equations and describe the algebraic relation that linear dy-
namics impose on admissible state and forcing correlations. In Section 7.3, we formulate
the covariance completion problem, provide a state-space realization for spatio-temporal
filters, and show that the linearized NS equations with colored-in-time forcing can be
equivalently represented as a low-rank modification to the original linearized dynam-
ics. In Section 7.4, we apply our framework to turbulent channel flow and verify our
results using linear stochastic simulations. In Section 7.5, we examine spatio-temporal
frequency responses of the identified model, visualize dominant flow structures, and
compute two-point temporal correlations.

7.2 Linearized Navier-Stokes equations and flow statistics

In this section, we present background material on stochastically forced linearized NS
equations and second-order statistics of velocity fluctuations. Specifically, we provide
an algebraic relation that is dictated by the linearized dynamics and that connects the
steady-state covariance of the state in the linearized evolution model to the spectral
content of the forcing. We focus on colored-in-time forcing inputs and extend the
standard algebraic Lyapunov equation, which maps white-in-time disturbances to state
statistics, to this more general case. Even though most of our discussion focuses on
turbulent channel flow, the methodology and theoretical framework presented herein
are applicable to other flow configurations.
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Figure 7.2: Geometry of a pressure-driven turbulent channel flow.

7.2.1 The Navier-Stokes equations and second-order statistics

The dynamics of incompressible Newtonian fluids are governed by the NS and continuity
equations,

ut = −(u · ∇)u − ∇P +
1

Rτ
∆u, (7.1a)

0 = ∇ · u, (7.1b)

where u is the velocity vector, P is the pressure, ∇ is the gradient, and ∆ = ∇ · ∇ is
the Laplacian. In channel flow with geometry shown in figure 7.2, the friction Reynolds
number is Rτ = uτh/ν, where h is the channel half-height, uτ =

√
τw/ρ is friction

velocity, ν is kinematic viscosity, τw is wall-shear stress (averaged over wall-parallel
directions and time), ρ is the fluid density, and t is time. In this formulation, spatial
coordinates are non-dimensionalized by h, velocity by uτ , time by h/uτ , and pressure
by ρu2

τ .

The velocity field in (7.1) can be decomposed into the sum of mean, ū, and fluctuating
parts, v = [u v w ]T ,

u = ū + v, ū = 〈u〉 , 〈v〉 = 0. (7.2)

The components of the velocity fluctuation vector in the streamwise, x, wall-normal, y,
and spanwise, z, directions are u, v, and w, and 〈·〉 is the temporal expectation operator.

For turbulent flows, the mean velocity field satisfies the Reynolds-averaged NS equa-
tions [186,206,207],

ūt = − (ū · ∇) ū − ∇〈P 〉 +
1

Rτ
∆ū − ∇ ·

〈
vvT

〉
, (7.3a)

0 = ∇ · ū, (7.3b)

where
〈
vvT

〉
is the Reynolds stress tensor that arises from the second-order statistics
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of velocity fluctuations. Such statistics quantify the transport of momentum and they
have profound influence on the mean velocity, and thereby on the resistance to flow
motion [206]. The difficulty in determining statistics of fluctuations comes from the
nonlinearity in the NS equations which makes the nth velocity moment depend on the
(n+1)th moment [206]. Statistical theory of turbulence combines physical intuition and
empirical observations with rigorous approximation of the flow equations to express the
higher-order moments in terms of the lower-order moments [186, 206, 207]. For exam-
ple, the turbulent viscosity hypothesis [186] relates turbulent fluxes to mean velocity
gradients, thereby allowing approximate solutions of (7.3) to be computed.

7.2.2 Stochastically forced linearized NS equations

Linearization around the turbulent mean velocity, ū, yields the equations that govern
the dynamics of velocity and pressure fluctuations,

vt = − (∇ · ū) v − (∇ · v) ū − ∇p +
1

Rτ
∆v + d, (7.4a)

0 = ∇ · v, (7.4b)

where d is an additive zero-mean stochastic body forcing. The presence of stochastic
forcing can be justified in different ways and there is a rich literature on the subject [28–
30, 112]. For our purposes, turbulent flows have a well-recognized statistical signature
which we want to reproduce, using perturbations around turbulent mean velocity, by
postulating the stochastic model given by (7.4).

A standard conversion yields an evolution form of the linearized equations [239], with
the state variable, ϕ = [ v η ]T , determined by the wall-normal velocity, v, and vorticity,
η = ∂zu− ∂xw. In turbulent channels the mean flow takes the form ū = [U(y) 0 0 ]T ,
thereby implying translational invariance of (7.4) in the x and z directions. Application
of the Fourier transform in the wall-parallel directions yields the evolution model,

ϕt(y,k, t) = [A(k)ϕ( · ,k, t)] (y) + [B(k) d( · ,k, t)] (y) (7.5a)

v(y,k, t) = [C(k)ϕ( · ,k, t)] (y), (7.5b)

which is parameterized by the spatial wavenumber pair k = (kx, kz). The operators A
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and C in (7.5) are given by

A(k) =

[
A11(k) 0

A21(k) A22(k)

]
, C(k) =

Cu(k)

Cv(k)

Cw(k)

 =
1

k2


ikx∂y −ikz

k2 0

ikz∂y ikx

 ,
A11(k) = ∆−1

(
(1/Rτ ) ∆2 + ikx (U ′′ − U∆)

)
,

A21(k) = −ikzU
′,

A22(k) = (1/Rτ ) ∆ − ikxU,

where prime denotes differentiation with respect to the wall-normal coordinate, i is the
imaginary unit, ∆ = ∂2

y − k2, ∆2 = ∂4
y − 2k2∂2

y + k4, and k2 = k2
x + k2

z . In addi-
tion, no-slip and no-penetration boundary conditions imply v(±1,k, t) = v′(±1,k, t) =
η(±1,k, t) = 0. Here, A11, A22, and A21 are the Orr-Sommerfeld, Squire, and coupling
operators [239], and the operator C(k), establishes a kinematic relationship between
the components of ϕ and the components of v. The operator B specifies the way the
external excitation d affects the dynamics; see [30] for examples of B in the case of
channel-wide and near-wall excitations.

Finite-dimensional approximations of the operators in (7.5) are obtained using a pseu-
dospectral scheme withN Chebyshev collocation points in the wall-normal direction [240].
In addition, we use a change of coordinates to obtain a state-space representation in
which the kinetic energy is determined by the Euclidean norm of the state vector; see
appendix B.1. The resulting state-space model is given by

ψ̇(k, t) = A(k)ψ(k, t) + B(k) d(k, t), (7.6a)

v(k, t) = C(k)ψ(k, t), (7.6b)

where ψ(k, t) and v(k, t) are vectors with complex-valued entries and 2N and 3N
components, respectively, and state-space matrices A(k), B(k), and C(k) are discretized
versions of the corresponding operators that incorporate the aforementioned change of
coordinates.

In statistical steady-state, the covariance matrix

Φ(k) = lim
t→∞

〈v(k, t) v∗(k, t)〉 (7.7)

of the velocity fluctuation vector, and the covariance matrix

X(k) = lim
t→∞

〈ψ(k, t)ψ∗(k, t)〉 (7.8)
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of the state in (7.6), are related as follows:

Φ(k) = C(k)X(k)C∗(k), (7.9)

where ∗ denotes complex-conjugate-transpose. The matrix Φ(k) contains information
about all second-order statistics of the fluctuating velocity field, including the Reynolds
stresses [241]. The matrix X(k) contains equivalent information and one can be com-
puted from the other. Our interest in X(k) stems from the fact that, as we explain
next, the entries of X(k) satisfy tractable algebraic relations that are dictated by the
linearized dynamics (7.6) and the spectral content of the forcing d(k, t).

7.2.3 Second-order statistics of the linearized Navier-Stokes equations

For the case where the stochastic forcing is zero-mean and white-in-time with covariance
W (k) = W ∗(k) � 0, i.e.,

〈d(k, t1) d∗(k, t2)〉 = W (k) δ(t1 − t2), (7.10)

where δ is the Dirac delta function, the steady-state covariance of the state in (7.6) can
be determined as the solution to the linear equation,

A(k)X(k) + X(k)A∗(k) = −B(k)W (k)B∗(k). (7.11)

Equation (7.11) is standard and it is known as the algebraic Lyapunov equation [242, sec-
tion 1.11.3]. It relates the statistics of the white-in-time forcing W (k) to the covariance
of the state X(k) via the system matrices A(k) and B(k).

For the more general case, where the stochastic forcing is colored-in-time, a correspond-
ing algebraic relation was more recently developed by [121,122]. The new form is

A(k)X(k) + X(k)A∗(k) = −B(k)H∗(k) − H(k)B∗(k), (7.12)

where H(k) is a matrix that contains spectral information about the colored-in-time
stochastic forcing and is related to the cross-correlation between the forcing and the
state in (7.6); see section 7.3.2 and appendix B.2 for details. For the special case where
the forcing is white-in-time, H(k) = (1/2)B(k)W (k) and (7.12) reduces to the standard
Lyapunov equation (7.11). It should be noted that the right-hand-side of (7.11) is sign-
definite, i.e., all eigenvalues of the matrixB(k)W (k)B∗(k) are nonnegative. In contrast,
the right-hand-side of (7.12) is in general sign-indefinite. In fact, except for the case
when the input is white noise, the matrix Z(k) defined by

Z(k) := − (A(k)X(k) + X(k)A∗(k)) (7.13a)

= B(k)H∗(k) + H(k)B∗(k) (7.13b)
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may have both positive and negative eigenvalues.

Both equations, (7.11) and (7.12), in the respective cases, are typically used to compute
the state covariance X(k) from the system matrices and forcing correlations. However,
these same equations can be seen as linear algebraic constraints that restrict the values
of the admissible covariances. It is in this sense that these algebraic constraints are used
in the current chapter. More precisely, while a state-covariance X(k) is positive definite,
not all positive-definite matrices can arise as state-covariances for the specific dynamical
model (7.6). As shown by [121, 122], the structure of state-covariances is an inherent
property of the linearized dynamics. Indeed, (7.12) provides necessary and sufficient
conditions for a positive definite matrix X(k) to be a state-covariance of (7.6). Thus,
given X(k), (7.12) has to be solvable for H(k). Equivalently, given X(k), solvability of
(7.12) amounts to the following rank condition:

rank

[
A(k)X(k) + X(k)A∗(k) B(k)

B∗(k) 0

]
= rank

[
0 B(k)

B∗(k) 0

]
. (7.14)

This implies that any positive-definite matrix X is admissible as a covariance of a linear
time-invariant system if the input matrix B is full row rank.

In the next section, we utilize this framework to depart from white-in-time restriction on
stochastic forcing and present a convex optimization framework for identifying colored-
in-time excitations that account for partially available turbulent flow statistics. We also
outline a procedure for designing a class of linear filters which generate the appropriate
colored-in-time forcing.

7.3 Completion of partially known turbulent flow statis-
tics

In high-Reynolds-number flows, only a finite set of correlations is available due to ex-
perimental or numerical limitations. Ideally, one is interested in a more complete set of
such correlations that provides insights into flow physics. This brings us to investigate
the completion of the partially known correlations in a way that is consistent with per-
turbations of the flow field around turbulent mean velocity. The velocity fluctuations
can be accounted for by stochastic forcing to the linearized equations. To this end, we
seek stochastic forcing models of low complexity where complexity is quantified by the
number of degrees of freedom that are directly influenced by stochastic forcing [164,165].
Such models arise as solutions to an inverse problem that we address using a regularized
maximum entropy formulation. Interestingly, the models we obtain can alternatively
be interpreted as a low-rank perturbation to the original linearized dynamics.
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7.3.1 Covariance completion problem

We begin with the Navier-Stokes equations linearized about the turbulent mean velocity
profile (7.6). As explained in Section 7.2.3, the covariance matrix X of the state ψ in
(7.6), in statistical steady-state, satisfies the Lyapunov-like linear equation

AX + XA∗ + Z = 0, (7.15)

where A is the generator of the linearized dynamics and Z is the contribution of the
stochastic excitation. For notational convenience, we omit the dependence on the
wavenumber vector in this section. A subset of entries of the covariance matrix Φ
of velocity fluctuations, namely Φij for a selection of indices (i, j) ∈ I, is assumed
available. This yields an additional set of linear constraints for the matrix X,

(CXC∗)ij = Φij , (i, j) ∈ I. (7.16)

For instance, these known entries of Φ may represent one-point correlations in the wall-
normal direction; see figure 7.3 for an illustration. Thus, our objective is to identify
suitable choices of X and Z that satisfy the above constraints.

It is important to note that X is a covariance matrix, and hence positive definite, while
Z is allowed to be sign indefinite. Herein, we follow a maximum entropy formalism
and minimize − log det(X) subject to the given constraints [243]. Minimization of this
logarithmic barrier function guarantees positive definiteness of the matrix X [135].

The contribution of the stochastic excitation enters through the matrix Z, cf. (7.13),
which is of the form

Z = BH∗ + HB∗, (7.17)

where color of the time-correlations and directionality of the forcing are reflected by the
choices of B and H. The matrix B specifies the preferred structure by which stochastic
excitation enters into the linearized evolution model while H contains spectral infor-
mation about the colored-in-time stochastic forcing. Trivially, when B is taken to be
the full rank, all degrees of freedom are excited and a forcing model that cancels the
original linearized dynamics becomes a viable choice; see remark 2. Without additional
restriction on the forcing model, minimization of − log det(X) subject to the problem
constraints yields a solution where the forcing excites all degrees of freedom in the lin-
earized model. Such an approach may yield a solution that obscures important aspects
of the underlying physics; see remark 2. It is thus important to minimize the number of
degrees of freedom that can be directly influenced by forcing. This can be accomplished
by a suitable regularization, e.g., by minimizing the rank of the matrix Z [164,165].

Minimizing the rank, in general, leads to difficult non-convex optimization problems.
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Instead, the nuclear norm, i.e., the sum of singular values of a matrix,

‖Z‖? :=
∑
i

σi(Z), (7.18)

can be used as a convex proxy for rank minimization [72,73]. This leads to the following
convex optimization problem

minimize
X,Z

− log det (X) + γ ‖Z‖?
subject to AX + XA∗ + Z = 0

(CXC∗)ij = Φij , (i, j) ∈ I,
(7.19)

where the matrices A and C as well as the available entries Φij of the velocity co-
variance matrix represent problem data, the Hermitian matrices X, Z ∈ Cn×n are the
optimization variables, and the regularization parameter γ > 0 reflects the relative
weight specified for the nuclear norm objective. While minimizing − log det(X) results
in the maximum entropy solution, we also confine the complexity of the forcing model
via nuclear norm minimization. The objective function in problem (7.19) thus provides
a trade-off between the solution to the maximum entropy problem and the complexity
of the forcing model.

Convexity of optimization problem (7.19) follows from the convexity of the objective
function (which contains entropy and nuclear norm terms) and the linearity of the
constraint set. Convexity is important because it guarantees a unique globally optimal
solution. In turn, this solution provides a choice for the completed covariance matrix
X and forcing contribution Z that are consistent with the constraints.

Although optimization problem (7.19) is convex, it is challenging to solve via conven-
tional solvers for large-scale problems that arise in fluid dynamics. To this end, we have
developed a scalable customized algorithm [160,164].

7.3.2 Filter design: dynamics of stochastic forcing

We now describe how the solution of optimization problem (7.19) can be translated
into a dynamical model for the colored-in-time stochastic forcing that is applied to the
linearized NS equations. We recall that, due to translational invariance in the channel
flow geometry, optimization problem (7.19) is fully decoupled for different wavenumbers
k = (kx, kz). For each such pair, the solution matrices X(k) and Z(k) provide informa-
tion about the temporal and wall-normal correlations of the stochastic forcing. We next
provide the explicit construction of a linear dynamical model (filter) that generates the
appropriate forcing.
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Figure 7.3: Structure of the matrix Φ in optimization problem (7.19). At each
pair of wavenumbers k = (kx, kz), available second-order statistics are given by
one-point correlations in the wall-normal direction, i.e., the diagonal entries of
the blocks in the velocity covariance matrix Φ. The data is obtained from
http://torroja.dmt.upm.es/channels/data/

The class of linear filters that we consider is generically minimal in the sense that the
state dimension of the filter coincides with the number of degrees of freedom in the
finite-dimensional approximation of the linearized NS equations (7.6). The input to the
filter represents a white-in-time excitation vector w(k, t) with covariance Ω(k) � 0. At
each k the filter dynamics are of the form

φ̇(k, t) = Af (k)φ(k, t) + B(k) w(k, t), (7.20a)

d(k, t) = Cf (k)φ(k, t) + w(k, t). (7.20b)

The generated output d(k, t) provides a suitable colored-in-time stochastic forcing to the
linearized NS equations that reproduces the observed statistical signature of turbulent
flow. As noted earlier, it is important to point out that white-in-time forcing to the
linearized NS equations is often insufficient to explain the observed statistics.

The parameters of the filter are computed as follows

Af (k) = A(k) + B(k)Cf (k), (7.21a)

Cf (k) =

(
H∗(k) − 1

2
Ω(k)B∗(k)

)
X−1(k), (7.21b)

where the matrices B(k) and H(k) correspond to the factorization of Z into Z(k) =
B(k)H∗(k)+H(k)B∗(k); see [164,165] for details. The spectral content of the excitation
d(k, t) is determined by the matrix-valued power spectral density

Πf (k, ω) = Tf (k, ω) Ω(k)T ∗f (k, ω), (7.22)
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Figure 7.4: (a) Spatio-temporal filter (7.20) is designed to provide colored stochas-
tic input to the linearized NS equations (7.6) in order to reproduce partially available
second-order statistics of turbulent channel flow. The dynamics of this cascade con-
nection are governed by the evolution model (7.24); (b) An equivalent reduced-order
representation of (7.24) is given by (7.27).

where Tf (k, ω) is the frequency response of the filter, namely,

Tf (k, ω) = Cf (k) (iωI − Af (k))−1B(k) + I, (7.23)

and I is the identity matrix.

As illustrated in figure 7.4a, the output d(k, t) of the linear filter (7.20) is the input to
the linearized NS equations (7.6). This cascade connection can be represented via the
evolution model[
ψ̇(k, t)

φ̇(k, t)

]
=

[
A(k) B(k)Cf (k)

0 A(k) +B(k)Cf (k)

] [
ψ(k, t)
φ(k, t)

]
+

[
B(k)
B(k)

]
w(k, t)

v(k, t) =
[
C(k) 0

] [ ψ(k, t)
φ(k, t)

]
,

(7.24)

which has twice as many degrees of freedom as the spatial discretization of the original
linearized NS model. As shown by [164], due to the presence of uncontrollable modes
in (7.24), the coordinate transformation[

ψ(k, t)
χ(k, t)

]
=

[
I 0
−I I

] [
ψ(k, t)
φ(k, t)

]
, (7.25)
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can be used to bring system (7.24) into the following form[
ψ̇(k, t)
χ̇(k, t)

]
=

[
A(k) +B(k)Cf (k) B(k)Cf (k)

0 A(k)

] [
ψ(k, t)
χ(k, t)

]
+

[
B(k)

0

]
w(k, t)

v(k, t) =
[
C(k) 0

] [ ψ(k, t)
χ(k, t)

]
.

(7.26)
Clearly, the input w(k, t) does not enter into the equation that governs the evolution
of χ(k, t). Thus, the reduced-order representation

ψ̇(k, t) = (A(k) + B(k)Cf (k))ψ(k, t) + B(k) w(k, t),

v(k, t) = C(k)ψ(k, t),
(7.27)

which has the same number of degrees of freedom as (7.6), completely captures the
influence of w(k, t) on ψ(k, t); see figure 7.4b for an illustration. Furthermore, stability
of A(k)+B(k)Cf (k) (see remark 3) implies that the initial conditionsψ(k, 0) and φ(k, 0)
only influence the transient response and do not have any impact on the steady-state
statistics. The corresponding algebraic Lyapunov equation in conjunction with (7.21b)
yields

(A + BCf )X + X (A + BCf )∗ + B ΩB∗

= AX + X A∗ + B ΩB∗ + BCf X + X C∗f B
∗

= AX + X A∗ + BH∗ + H B∗

= 0,

(7.28)

which shows that (7.20) generates a stochastic process d(k, t) that is consistent with
X(k). In what follows, without loss of generality, we choose the covariance matrix of
the white noise w(k, t) to be the identity matrix, Ω = I.

Remark 1. The compact representation (7.27) allows for alternative interpretations of
colored-in-time forcing and, at the same time, offers advantages from a computational
standpoint. First, the structure of (7.27) suggests that the colored-in-time forcing real-
ized by (7.20) can be equivalently interpreted as a modification of the dynamical gen-
erator of the linearized NS equations due to state-feedback interactions; see figure 7.5.
This interpretation allows seeking suitable “feedback gains” Cf (k) that may now be
optimal with respect to alternative design criteria [244]. Moreover, the term B(k)Cf (k)
can be seen as a low-rank modification of the dynamical generator A(k) of the linearized
NS equations. Finally, time-domain simulations require numerical integration of sys-
tem (7.27) which has half the number of states as compared to system (7.24), thereby
offering computational speedup.
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Figure 7.5: An equivalent feedback representation of the cascade connection in fig-
ure 7.4a.

Remark 2. Important aspects of the underlying physics may be obscured when the
forcing is allowed to excite all degrees of freedom in the linearized model. As discussed
above, if the nuclear norm of Z = BH∗ + HB∗ is not accounted for in (7.19), the
resulting input matrix B will be of full rank. In this case, without loss of generality, we
can choose B = I which simplifies equation (7.12),

A(k)X(k) + X(k)A∗(k) = −H∗(k) − H(k). (7.29)

Clearly, this equation is satisfied with H∗(k) = −A(k)X(k). With this choice of H(k),
the reduced-order representation (7.27) is given by

ψ̇(k, t) = −1

2
X−1(k)ψ(k, t) + w(k, t). (7.30)

This demonstrates that colored-in-time forcing of the linearized NS equations which
excites all degrees of freedom can lead to the complete cancelation of the linearized
dynamical generator A(k). It is thus crucial to restrict the number of input channels
via the nuclear norm penalty in the objective function of optimization problem (7.19).

Remark 3. It is known that for channel flow the linearized NS equations around the
turbulent mean velocity profile are stable [196,245]. Interestingly and independently of
this fact, the modified dynamical generator, A(k) +B(k)Cf (k) in (7.27), can be shown
to be stable by standard Lyapunov theory. More specifically, substituting the expression
for the matrix H(k) from (7.21b) into equation (7.12) yields

(A(k) +B(k)Cf (k))X(k) + X(k) (A(k) +B(k)Cf (k))∗ = −B(k) Ω(k)B∗(k).

This is a standard Lyapunov equation. Since (A,B) is a controllable pair, so is (A +
BCf , B), and therefore (A+BCf , BΩ1/2) is controllable as well. Standard Lyapunov
theory implies that the positive semi-definiteness of B(k)Ω(k)B∗(k) is sufficient to guar-
antee that all eigenvalues of A(k) +B(k)Cf (k) are in the left-half of the complex plane.
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7.4 Application to turbulent channel flow

In this section, we utilize the modeling and optimization framework developed in Sec-
tion 7.3 to account for partially observed second-order statistics of turbulent channel
flow. In our setup, the mean velocity profile and one-point velocity correlations in
the wall-normal direction at various wavenumber pairs k are obtained from DNS with
Rτ = 186 [234–237]; see figure 7.3 for an illustration. We show that stochastically
forced linearized NS equations can be used to exactly reproduce the available statistics
and to complete unavailable two-point correlations of the turbulent velocity field. The
colored-in-time forcing with the identified power spectral density is generated by lin-
ear filters that introduce low-rank perturbations to the linearization around turbulent
mean velocity; cf. (7.27). As a result of this modification to the linearized NS equations,
all one-point correlations are perfectly matched and the one-dimensional energy spectra
is completely reconstructed . In addition, we show that two-point velocity correlations
compare favorably with the result of DNS. As aforementioned, the modified dynamics
that result from our modeling framework have the same number of degrees of freedom
as the finite-dimensional approximation of the linearized NS dynamics and are thus
convenient for the purpose of conducting linear stochastic simulations. We utilize these
simulations to verify the ability of our model to account for the statistical signatures
of turbulent channel flow. Finally, we close this section by showing that our framework
can be also used to capture the velocity correlations at higher Reynolds numbers.

7.4.1 Necessity for the colored-in-time forcing

For homogeneous isotropic turbulence, [114] showed that the steady-state velocity cor-
relation matrices can be exactly reproduced by the linearized NS equations. This
can be achieved with white-in-time solenoidal forcing whose second-order statistics
are proportional to the turbulent energy spectrum; for additional details see [223,
Appendix C]. For turbulent channel flow, however, we next show that the matrix
A(k)Xdns(k) + Xdns(k)A∗(k) can fail to be negative semi-definite for numerically gen-
erated covariances Xdns(k) of the state ψ. Here, A(k) is the generator of the linearized
dynamics around the turbulent mean velocity profile and Xdns(k) is the steady-state
covariance matrix resulting from DNS of turbulent channel flow.

Figure 7.6 shows the eigenvalues of the matrix A(k)Xdns(k)+Xdns(k)A∗(k) for channel
flow with Rτ = 186 and k = (2.5, 7). The presence of both positive and negative
eigenvalues indicates that the second-order statistics of turbulent channel flow cannot
be exactly reproduced by the linearized NS equations with white-in-time stochastic
excitation. As we show in the next subsection, this limitation can be overcome by
departing from the white-in-time restriction.
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Figure 7.6: Positive eigenvalues of the matrix A(k)Xdns(k) +Xdns(k)A∗(k), for channel
flow with Rτ = 186 and k = (2.5, 7), indicate that turbulent velocity covariances cannot
be reproduced by the linearized NS equations with white-in-time stochastic forcing; cf.
equation (7.11).

7.4.2 Reproducing available and completing unavailable velocity cor-
relations

We next employ the optimization framework of Section 7.3 to account for second-order
statistics of turbulent channel flow with Rτ = 186 via a low-complexity model. We
use N = 127 collocation points in the wall-normal direction and show that all one-
point velocity correlations can be exactly reproduced using the linearized NS equations
with colored-in-time forcing. Grid convergence is ensured by doubling the number
of collocation points. In addition, we demonstrate that an appropriate choice of the
regularization parameter γ provides good completion of two-point correlations that are
not used as problem data in optimization problem (7.19). Appendix B.3 offers additional
insight into the influence of this parameter on the quality of completion.

Figures 7.7 and 7.8 show that the solution to optimization problem (7.19) exactly repro-
duces available one-point velocity correlations resulting from DNS at various wavenum-
bers. At each k, the constraint (7.16) restricts all feasible solutions of problem (7.19)
to match available one-point correlations. Our computational experiments demonstrate
feasibility of optimization problem (7.19) at each k. Thus, regardless of the value of the
regularization parameter γ, all available one-point correlations of turbulent flow can be
recovered by a stochastically forced linearized model.

Figures 7.7a and 7.7b display perfect matching of all one-point velocity correlations
that result from integration over wall-parallel wavenumbers. Since problem (7.19) is
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Figure 7.7: (a) Correlation profiles of normal and (b) shear stresses resulting from
DNS of turbulent channel flow with Rτ = 186 (–) and from the solution to (7.19); uu
(#), vv (2), ww (4), −uv (3). We observe perfect matching of all one-point velocity
correlations that result from integration over wall-parallel wavenumbers. Note: plot
markers are sparse for data presentation purposes and do not indicate grid resolution.

not feasible for Z � 0, this cannot be achieved with white-in-time stochastic forc-
ing; see Section 7.4.1. In contrast, colored-in-time forcing enables recovery of the one
dimensional energy spectra of velocity fluctuations resulting from DNS; in figure 7.8,
pre-multiplied spectra are displayed as a function of the wall-normal coordinate, stream-
wise (left plots), and spanwise (right plots) wavelengths. All of these are given in inner
(viscous) units with y+ = Rτ (1 + y), λ+

x = 2πRτ/kx, and λ+
z = 2πRτ/kz.

Our results should be compared and contrasted to [205], where a gain-based low-order
decomposition was used to approximate the velocity spectra of turbulent channel flow.
Twelve optimally weighted resolvent modes approximated the Reynolds shear stress,
streamwise, wall-normal, and spanwise intensities with 25%, 20%, 17%, and 6% error,
respectively. While the results presented here are at a lower Reynolds number (Rτ = 186
vs. Rτ = 2003), our computational experiments demonstrate feasibility of optimization
problem (7.19) at all wavenumber pairs. Thus, all one-point correlations can be perfectly
matched with colored-in-time stochastic forcing. As we show in Section 7.4.4, this holds
even at higher Reynolds numbers.

We next demonstrate that the solution to optimization problem (7.19) also provides
good recovery of two-point velocity correlations. We examine the wavenumber pair
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Figure 7.8: Pre-multiplied one-dimensional energy spectrum of streamwise (a,b), wall-
normal (c,d), spanwise (e,f) velocity fluctuations, and the Reynolds stress co-spectrum
(g,h) in terms of streamwise (left) and spanwise (right) wavelengths and the wall-normal
coordinate (all in inner units). Color plots: DNS-generated spectra of turbulent channel
flow with Rτ = 186. Contour lines: spectra resulting from the solution to (7.19).
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Figure 7.9: Covariance matrices resulting from DNS of turbulent channel flow with
Rτ = 186 (left plots); and the solution to optimization problem (7.19) with γ = 300
(right plots). (a, b) Streamwise Φuu, (c, d) wall-normal Φvv, (e, f) spanwise Φww, and
the streamwise/wall-normal Φuv two-point correlation matrices at k = (2.5, 7). The
one-point correlation profiles that are used as problem data in (7.19) are marked by
black lines along the main diagonals.
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Figure 7.10: Quadrant II of the spanwise covariance matrices resulting from (a) DNS
of turbulent channel flow with Rτ = 186, and (b) the solution to optimization prob-
lem (7.19) with γ = 300 at k = (2.5, 7). The horizontal black lines mark y+ = 15.
(c) Comparison of the two-point correlation Φww at y+ = 15 with other wall-normal
locations: DNS (–); solution of (7.19) (4).

k = (2.5, 7) at which the premultiplied energy spectrum at Rτ = 186 peaks. The left
column in figure 7.9 displays the streamwise Φuu, wall-normal Φvv, spanwise Φww, and
the streamwise/wall-normal Φuv covariance matrices resulting from DNS. The right
column in figure 7.9 shows the same covariance matrices that are obtained from the
solution to optimization problem (7.19). Although only diagonal elements of these
matrices (marked by black lines in figure 7.9) were used as data in (7.19), we have
good recovery of the off-diagonal entries as well. In particular, for γ = 300, we observe
approximately 60% recovery of the DNS-generated two-point correlation matrix Φdns(k).
The quality of approximation is assesed using (see appendix B.3),

‖Φ(k) − Φdns(k)‖F
‖Φdns(k)‖F

,

where ‖ · ‖F denotes the Frobenius norm of a given matrix and Φ(k) = C(k)X(k)C∗(k)
represents the two-point correlation matrix of the velocity fluctuations resulting from
our optimization framework.

We note that the solution of optimization problem (7.19) also captures the presence
of negative correlations in the covariance matrix of spanwise velocity; cf. figures 7.9e
and 7.9f. Figures 7.10a and 7.10b show the second quadrants of the covariance matrices
Φww,dns and Φww. In addition to matching the diagonal entries, i.e., one-point corre-
lations of the spanwise velocity, the essential trends of two-point correlations resulting
from DNS are also recovered. Figure 7.10c illustrates this by showing the dependence
of the auto-correlation of the spanwise velocity at y+ = 15 on the wall-normal coor-
dinate. This profile is obtained by extracting the corresponding row of Φww and is
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Figure 7.11: Singular values of the solution Z to (7.19) in turbulent channel flow with
Rτ = 186, k = (2.5, 7), and N = 127 for (a) γ = 300; and (b) γ = 104.

marked by the black dashed line in figures 7.10a and 7.10b. Clearly, the solution to
optimization problem (7.19) recovers the basic features (positive-negative-positive) of
the DNS results. These features are indicators of coherent structures that reside at
various wall-normal locations in the channel flow [9,246].

It is worth noting that such high-quality recovery of two-point correlations would not
have been possible without incorporating the physics of the linearized NS equations as
the structural constraint (7.15) into optimization problem (7.19).

Remark 4. In optimization problem (7.19), the regularization parameter γ determines
the importance of the nuclear norm relative to the logarithmic barrier function. Larger
values of γ yield Z(k) of lower rank, but may compromise quality of completion of
two-point correlations; see appendix B.3. For turbulent channel flow with Rτ = 186
and k = (2.5, 7), figure 7.11 shows the singular values of Z for two values of γ, γ = 300
and 104. Clearly, the higher value of γ results in a much lower rank of the matrix Z,
with 6 positive and 2 negative eigenvalues. [165] showed that the maximum number
of positive or negative eigenvalues of the matrix Z bounds the number of inputs into
the linearized NS model (7.6). This implies that partially available statistics can be
reproduced with 6 colored-in-time inputs. However, as discussed in appendix B.3, the
quality of completion is best for γ = 300. In this case, the matrix Z has 225 non-zero
eigenvalues, 221 positive and 4 negative. Thus, for γ = 300 and a spatial discretization
with N = 127 collocation points in y, 221 colored-in-time inputs are required to account
for partially available statistics.
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Figure 7.12: Time evolution of fluctuation’s kinetic energy for twenty realizations of the
forcing to the modified linearized dynamics (7.27) with Rτ = 186 and k = (2.5, 7); the
energy averaged over all simulations is marked by the thick black line.

7.4.3 Verification in stochastic linear simulations

We next conduct stochastic simulations of the linearized flow equations and compare the
resulting statistics with DNS at Rτ = 186. Filter (7.20) that generates colored-in-time
forcing d(k, t) is obtained from the solution to (7.19) with k = (2.5, 7) and γ = 104.
This filter in conjunction with the linearized dynamics (7.6) yields representation (7.27)
which is driven by white-in-time Gaussian process w(k, t) with zero mean and unit
variance. We recall that this reduced-order representation is equivalent to the original
NS equations subject to the colored-in-time stochastic forcing d(k, t) with properly
identified power spectrum. As shown in Section 7.3.2, system (7.24) can be equivalently
represented by a low-rank modification to the linearized NS dynamics (7.27), which has
the same number of degrees of freedom as the finite-dimensional approximation of the
original linearized NS dynamics. Here, we consider a spatial discretization with N = 127
collocation points in the wall-normal direction. Thus, at each wavenumber pair, linear
system (7.27) that results from our modeling framework has 254 degrees of freedom.

Stochastic linear simulations that we present next confirm that one-point correlations
can indeed be recovered by stochastically forced linearized dynamics. Since the proper
comparison with DNS or experiments requires ensemble-averaging, rather than com-
parison at the level of individual stochastic simulations, we have conducted twenty
simulations of system (7.27). The total simulation time was set to 400 viscous time
units.
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Figure 7.13: Normal stress profiles in the (a) streamwise, (b) wall-normal, (c) spanwise
direction, and (d) shear stress profile resulting from DNS of turbulent channel flow with
Rτ = 186 at k = (2.5, 7) (–) and stochastic linear simulations (#).

Figure 7.12 shows the time evolution of the energy (variance) of velocity fluctuations,
for twenty realizations of white-in-time forcing w(k, t) to system (7.27). The variance
averaged over all simulations is marked by the thick black line. Even though the re-
sponses of individual simulations differ from each other, the average of twenty sample
sets asymptotically approaches the correct value of turbulent kinetic energy in the statis-
tical steady-state, trace (Φ(k)). Figure 7.13 displays the normal and shear stress profiles
resulting from DNS and from stochastic linear simulations. We see that the averaged
output of twenty simulations of the linearized dynamics agrees well with DNS results.
This close agreement can be further improved by running additional linear simulations
and by increasing the total simulation times.
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7.4.4 Reproducing statistics at higher Reynolds numbers

We next apply our optimization framework to channel flows with higher Reynolds num-
bers [236–238]. We use N = 201 collocation points to discretize differential operators for
turbulent flows with Rτ = 549, 934, and 2003. We focus on a pair of wavelengths that
are relevant to the study of near-wall structures, i.e., λ+

x = 1000 and λ+
z = 100. This

wavelength pair is associated with the near-wall system of quasi-streamwise streaks and
counter-rotating vortices which is responsible for large production of turbulent kinetic
energy [247,248]. For all Reynolds numbers, optimization problem (7.19) is solved with
γ = 300 and up to the same accuracy.

Figure 7.14 shows the normal and shear stress profiles for the aforementioned Reynolds
numbers and selected wavelength pair. For illustration, these profiles have been normal-
ized by their largest values and are presented in inner units. We see that the solution
to optimization problem (7.19) achieves perfect recovery of all one-point velocity corre-
lations.

Figure 7.15 shows the singular values of the matrix Z resulting from the solution
to (7.19). At this pair of wall-parallel wavelengths, we observe that higher Reynolds
numbers result in matrices Z of similar rank. For Rτ = 547, 934, and 2003, matrix Z
has 84, 80, and 76 significant positive and 2, 5, and 8 significant negative eigenvalues,
respectively. We thus conclude that, at higher Reynolds numbers, a similar number
of inputs can be utilized to recover turbulent statistics by the linearized NS equations
with colored-in-time stochastic forcing. Equivalently, the modification to the dynamical
generator of the linearized NS equations which is required to capture partially available
second-order statistics at higher Reynolds numbers is of similar rank.

7.5 Spatio-temporal analysis of the linear model

System (7.27) provides a linear model that captures second-order statistics of turbulent
channel flow in statistical steady-state. As illustrated in Section 7.4.3, this model can
be advanced in time by conducting linear stochastic simulations. More importantly, it
can be analyzed using tools from linear systems theory. For example, dominant spatio-
temporal flow structures can be easily identified and two-point correlations in time can
be readily computed. These tools have provided useful insight into the dynamics of
both laminar [28–30, 112, 177, 178, 181, 249] and turbulent [31, 32, 198, 200, 201, 203, 204]
wall-bounded shear flows.
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Figure 7.14: Normalized normal (left) and shear (right) stress profiles resulting from
DNS (–) and from the solution to (7.19) with γ = 300 at λ+

x = 1000 and λ+
z = 100 (in

inner units); uu (#), vv (2), ww (4), −uv (3). (a, b) Rτ = 547; (c, d) Rτ = 934; (e,
f) Rτ = 2003.
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Figure 7.15: Singular values of the matrix Z resulting from the solution to (7.19) with
γ = 300 at Rτ = 549 (#), 934 (3), and 2003 (�).

Application of the temporal Fourier transform on system (7.27) yields

v(k, ω) = Tvw(k, ω) w(k, ω), (7.31)

where ω is the temporal frequency and Tvw(k, ω) is the spatio-temporal frequency re-
sponse,

Tvw(k, ω) = −C(k) (iωI + Af (k))−1B(k). (7.32)

Here, Af (k) is the generator of linear dynamics (7.27) which result from the modeling
and optimization framework of Section 7.3. Equation (7.31) facilitates decomposition
of the fluctuating velocity field v(k, ω) into the sum of spatio-temporal Fourier modes
which correspond to physical structures with streamwise and spanwise wavelengths λx =
2π/kx and λz = 2π/kz. These structures convect at speed c = ω/kx in the streamwise
direction. Since the dominant waves in turbulent channel flow travel downstream [201],
the sign of the temporal frequency in (7.32) is changed relative to the convention used
in (7.23). With proper definition of the matrices A, B, and C the spatio-temporal
frequency response analysis can be conducted for different linear approximations of the
NS equations, e.g., the original linearized NS model (7.6) or an eddy-viscosity-enhanced
linearized NS model [32,197–200].

Singular value decomposition of the frequency response (7.32) brings input-output rep-
resentation (7.31) into the following form,

v(k, ω) = Tvw(k, ω) w(k, ω) =
r∑

j= 1

σj(k, ω) aj(k, ω) ξ̃j(k, ω), (7.33)
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where σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of Tvw(k, ω), ξ̃j(k, ω) is the jth left
singular vector of Tvw(k, ω), and aj(k, ω) is the projection of the forcing w(k, ω) onto
the jth right singular vector. The left and right singular vectors provide insight into
coherent structures of velocity and forcing fluctuations [183]. In particular, symmetries
in the wall-parallel directions can be used to express velocity components as

uj(x, z, t) = 4 cos(kzz) Re
(
ũj(k, ω) ei(kxx−ωt)

)
, (7.34a)

vj(x, z, t) = 4 cos(kzz) Re
(
ṽj(k, ω) ei(kxx−ωt)

)
, (7.34b)

wj(x, z, t) = −4 sin(kzz) Im
(
w̃j(k, ω) ei(kxx−ωt)

)
. (7.34c)

Here, Re and Im denote real and imaginary parts, and ũj(k, ω), ṽj(k, ω), and w̃j(k, ω)
are the streamwise, wall-normal, and spanwise components of the jth left singular vector
ξ̃j(k, ω) in (7.33).

The power spectral density (PSD) of v(k, ω) quantifies amplification of white-in-time
stochastic forcing w(k, t), across temporal frequencies ω and spatial wavenumbers k,

Πv(k, ω) = trace (Tvw(k, ω)T ∗vw(k, ω)) =
∑
i

σ2
i (Tvw(k, ω)). (7.35)

The integration of Πv(k, ω) over temporal frequency yields the H2 norm or, equivalently,
the energy spectrum as a function of wavenumbers k [30]. While the PSD is given by
the sum of squares of the singular values, the maximum singular value of Tvw(k, ω)
quantifies the worst-case amplification of finite energy disturbances,

Gv(k, ω) := sup
‖w‖2≤1

‖v(k, ω)‖2

‖w(k, ω)‖2
= σ2

max(Tvw(k, ω)).

Here, ‖ · ‖2 is the standard energy norm and the largest amplification over temporal fre-
quencies determines the H∞ norm [250], supω σmax(Tvw(k, ω)). For any k, the H∞ norm
quantifies the worst-case amplification of purely harmonic (in x, z, and t) deterministic
(in y) disturbances [112].

Temporal two-point correlations of linear model (7.27) can be also computed without
running stochastic simulations. For example, the autocovariance of streamwise velocity
fluctuations is given by

Φuu(k, τ) = lim
t→∞

〈u(k, t+ τ)u∗(k, t)〉 ,
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Figure 7.16: (a) Power spectral density Πv(k, ω) and (b) worst-case amplification
Gv(k, ω) as a function of temporal frequency ω in turbulent channel flow with Rτ = 186
and k = (2.5, 7), resulting from the linearized NS model (7.6) (black curve), an eddy-
viscosity-enhanced linearized NS model (blue curve), and the modified linearized dy-
namics (7.27) (red curve).

where u(k, t+ τ) is computed from (7.27),

u(k, t+ τ) = Cu(k) eAf (k)τψ(k, t) +

∫ t+τ

t
Cu(k) eAf (k)(t+τ−ζ)B(k) w(k, ζ) dζ.

Since the state ψ(k, t) and the white-in-time input w(k, t) are not correlated, we have

Φuu(k, τ) = lim
t→∞

〈
Cu(k) eAf (k)τψ(k, t)ψ∗(k, t)C∗u(k)

〉
= Cu(k) eAf (k)τX(k)C∗u(k),

where X(k) is the steady-state covariance matrix of ψ. Correlations between other
velocity components can be obtained in a similar way. Note that, at any k and τ , the
diagonal entries of the matrix Φuu(k, τ) provide information about two-point temporal
correlations at various wall-normal locations.

7.5.1 Spatio-temporal frequency responses

Figure 7.16a compares the power spectral densities of three linear approximations of
the NS equations in turbulent flow with Rτ = 186 and k = (2.5, 7). These are respec-
tively given by the linearized NS equations (7.6), an eddy-viscosity-enhanced linearized
NS equations, and the low-rank modification of the linearized dynamics (7.27). For
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Figure 7.17: The one-dimensional energy density Evv as a function of y+ and c computed
using the linearized NS equations (7.6) (a, d), an eddy-viscosity-enhanced linearized NS
model (b, e), and the modified dynamics (7.27) (c, f) for turbulent channel flow with
Rτ = 186. Plots (d-f) show the energy density normalized by its maximum value over
y for fixed values of c. The colors are in logarithmic scale. The turbulent mean velocity
is marked by the black curve in (d-f).

the standard and eddy-viscosity-enhanced linearizations, the input matrix B(k) excites
all degrees of freedom in the evolution model [30]; for the modified dynamics (7.27),
the input matrix B(k) comes from the framework of Section 7.3. While the tempo-
ral frequency at which the PSD peaks is similar for the linearized NS equations and
the modified dynamics (ω = 45), it is smaller for the eddy-viscosity-enhanced model
(ω = 27). Compared to the linearization around turbulent mean profile, both the eddy-
viscosity-enhanced model and our model attenuate amplification of disturbances at all
temporal frequencies. Thus, the low-rank modification of the linearized NS equation in-
troduces eddy-viscosity-like features and provides additional damping across temporal
frequencies.

Figure 7.16b illustrates similar trends for the worst-case amplification to harmonic forc-
ing, Gv(k, ω). We recall that the PSD quantifies the total energy amplification,

∑
i σ

2
i ,

and that the worst case amplification is determined by the largest singular value of the
frequency response, σ2

max. Clearly, in both cases, the low-rank modification reduces am-
plification of disturbances relative to the linearization around turbulent mean velocity
but does not modify the temporal frequency at which the energy amplification peaks.
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Figure 7.17 shows the one-dimensional energy density Evv as a function of propagation
speed c = ω/kx and y+ for turbulent channel flow with Rτ = 186. This quantity is
obtained by integrating diag (Tvw(k, ω)T ∗vw(k, ω)) over 50× 51 logarithmically spaced
wavenumbers with 0 < kx < kx,max and 0 < kz < kz,max, and for a range of wave
speeds 0 < c < Uc, where Uc is the mean centerline velocity. Here, kx,max = 42.5
and kz,max = 84.5 are the largest wavenumbers used in the DNS of [236] and [237];
they capture the energetically significant portion of the premultiplied turbulent energy
spectrum of channel flow with Rτ = 186. In contrast to the PSD, Evv provides insight
into the wall-normal variation of the energy amplification in stochastically forced flows.
For a fixed value of c, the energy density is localized in a narrow wall-normal region;
see figures 7.17(a-c). To highlight this localization, we normalize the energy density
by its maximum value over y for fixed values of c. As shown in figures 7.17(d-f), the
normalized energy density peaks in the vicinity of the wall-normal location where the
turbulent mean velocity, marked by the thick black lines, equals the wave speed; [201]
argued that the emergence of critical layers is because the resolvent norm peaks for
c ≈ U(y). Our observations are in agreement with [204] where the contribution of
the principal resolvent mode to the streamwise energy density was studied for the NS
equations linearized around turbulent mean velocity in channel flow with Rτ = 2003.

Figure 7.17 shows that at each wall-normal location y the modes that convect at the
critical speed c = U(y) are most amplified. This observation holds in almost the entire
channel and, with slight disparity, is valid for all three models. Based on Taylor’s frozen
turbulence hypothesis [251], flow structures in turbulent flows propagate downstream at
a speed that is close to the local mean velocity. For a large extent of the channel height
our observation is in agreement with this hypothesis. However, for all three models, the
scatter in the energy density increases as the wall is approached. In addition, near-wall
modes peak at y+ ≈ 10 and they travel at speeds that are smaller than the local mean
velocity. Similar observations were made in analytical [204], experimental [252,253] and
numerical studies [254, 255], thereby suggesting that application of Taylor’s hypothesis
can yield inaccurate energy spectra close to the wall.

From figure 7.17b it is evident that while eddy-viscosity enhancement reduces the scatter
close to the wall, the energy density resulting from this model is less concentrated away
from the wall. Even though the low-rank modification does not significantly alter the
general trend in the energy density, figure 7.17f illustrates that, for y+ < 15, the scatter
in the normalized energy density increases. Namely, the highest energy amplification
no longer occurs at velocities that are close to the local mean velocity near the wall.

Principal output and forcing directions

We now utilize the singular value decomposition to analyze the principal output and
forcing directions for flow with Rτ = 2003 and k = (1, 6). This wavenumber pair
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Figure 7.18: Contribution of the response directions ξ̃j to the total energy in turbulent
channel flow with Rτ = 2003 and k = (1, 6). The modified dynamics (7.27) are driven
by harmonic excitation with temporal frequency (a) ω = 21.4 and (b) ω = 26.5.

is associated with the energetic length scale of Very Large Scale Motions (VLSM) in
canonical flows [246, 256, 257] and it has been previously considered in the study of
coherent structures in turbulent pipes [203].

For N = 201 wall-normal collocation points, the matrix Z(k) that results from optimiza-
tion problem (7.19) with γ = 103 has 7 positive and 5 negative eigenvalues. Therefore,
the input matrix B(k), which introduces colored-in-time forcing into the linearized NS
dynamics, has 7 columns. This choice of γ provides a balance between the number
of colored-in-time inputs and quality of completion of the two-point correlations. We
examine temporal frequencies ω = 21.4 and 26.5 which correspond to the streamwise
propagation speed c = ω/kx of structures that reside in the middle of the logarithmic
region [258] and the peak of PSD (not shown here), respectively.

Figure 7.18 shows the contribution of each output direction ξ̃j in (7.33) to the energy
amplification, σ2

j /(
∑

i σ
2
i ). Since B(k) is a tall matrix with 7 columns, the frequency

response Tvw(k, ω) has only 7 non-zero singular values. For ω = 21.4, the principal
output direction, which corresponds to the largest singular value σmax, approximately
contains 58% of the total energy. The second largest singular value contributes an
additional 34%. Thus, the two most amplified output directions account for 92% of the
total energy. For ω = 26.5, the largest singular value contains more than 95% of the total
energy. This further supports the finding that the turbulent velocity spectra and the
Reynolds stress co-spectrum can be approximated with a few resolvent modes [204,205].
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Figure 7.19: Spatial structure of the principal response directions of the frequency
response Tvw(k, ω) in turbulent channel flow with Rτ = 2003, k = (1, 6), at t = 0 for
(a,b) ω = 21.4 and (c,d) ω = 26.5. (a,c) Isosurfaces of the streamwise velocity; red and
blue colors denote regions of high and low velocity at 60% of their largest values. (b,d)
Spatial structure of the streamwise velocity (color plots) and vorticity (contour lines).
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Relations (7.34) can be used to visualize the spatial structure of each output direction ξ̃j .
Figures 7.19(a,b) show the spatial structure of the streamwise component of the principal
output response in turbulent channel flow at t = 0 and for ω = 21.4. These streamwise
elongated structures are sandwiched between counter-rotating vortical motions in the
cross-stream plane (cf. figure 7.19b) and they contain alternating regions of fast- and
slow-moving fluid (which are slightly inclined to the wall). We see that they reside
in the logarithmic region with their largest values roughly taking place in the middle
of this region. Even though these structures do not capture the full complexity of
turbulent flows, they are reminiscent of VLSMs that form at large Reynolds numbers.
Figures 7.19(c,d) show the spatial structure of the principal output response for the
temporal frequency ω = 26.5. Compared to ω = 21.4, these streamwise elongated
structures are longer and reside in the outer region of the channel with no protrusion
to the logarithmic layer.

A similar approach can be used to study the spatial structure of colored-in-time forc-
ing to the linearized NS equations. This is accomplished by passing the output of
filter (7.23) through the input matrix B(k) and examining the resulting frequency re-
sponse, B(k)Tf (k, ω). For ω = 21.4 and 26.5, the principal output directions respec-
tively contain 62% and 88% of the total energy of the forcing to the linearized NS
equations.

Figures 7.20(a,b) show the spatial structure of the principal wall-normal forcing com-
ponent at t = 0 and ω = 21.4. We see that the forcing to the Orr-Sommerfeld equation
affects regions of the channel that begin in the logarithmic layer and extend to the
middle of the channel. The color plot in figure 7.20b shows that the largest value of
the normal forcing component is in the outer layer. This suggests that the turbulent
flow structures that reside in the logarithmic layer are induced by a forcing which is not
limited to the logarithmic layer. Similarly, for ω = 26.5, figures 7.20(c,d) illustrate that
the most energetic component of the wall-normal forcing begins in the logarithmic layer
and extends to the outer region of the channel. Compared to ω = 21.4, these structures
are shorter and do not influence the middle of the channel.

7.5.2 Temporal two-point correlations

Figure 7.21a shows the dependence of the main diagonal of the steady-state autocovari-
ance of streamwise velocity Φuu on the wall-normal coordinate y and the time lag τ
in flow with Rτ = 186 and k = (2.5, 7). Furthermore, figure 7.21b illustrates changes
with τ at y+ = 15. We observe attenuated oscillatory τ -dependence where the period
of oscillations increases as the wall is approached. For any wall-normal location y, the
fundamental frequency f0 of the corresponding diagonal entry of Φuu(k, τ) can be used
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Figure 7.20: Spatial structure of the principal response of the operator B(k)Tf (k, ω)
in turbulent channel flow with Rτ = 2003, k = (1, 6), at t = 0 for (a,b) ω = 21.4 and
(c,d) ω = 26.5. (a,c) Isosurfaces of the streamwise velocity; red and blue colors denote
regions of high and low velocity at 60% of their largest values. (b,d) Spatial structure
of the streamwise component of the response (color plots) and vorticity (contour lines).
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Figure 7.21: (a) The steady-state autocovariance Φuu(k, τ) resulting from the modified
dynamics (7.27) for turbulent channel flow with Rτ = 186 and k = (2.5, 7). (b) The
same quantity plotted at y+ = 15.

to estimate the streamwise convection velocity,

cu(k, y) =
2πf0

kx
. (7.36)

Figure 7.22 compares this estimate of cu(k, y) to an estimate proposed by [255],

cu(k, y) =

∫ 1

−1
W (η,k, y)U(η) dη, (7.37)

where U is the mean velocity and W is a Gaussian convolution window that accounts
for the wall-normal structure of eddies with wavelength λx = 2π/kx and λz = 2π/kz.
The convolution window is tuned so that the resulting approximation agrees well with
measurements of the convection velocity over a range of two-dimensional wavelengths,
wall-normal distances, and Reynolds numbers [255]. The convection velocity resulting
from temporal correlations of the linear dynamics (7.27) is within 12% of cu(k, y) com-
puted from (7.37). Even though optimization problem (7.19) constrains our model to
only match one-point steady-state correlations, the modified dynamics (7.27) reproduce
the essential features of the convection velocity of the most energetic modes. In partic-
ular, the deviation from Taylor’s frozen turbulence hypothesis as the wall is approached
is captured. This is a consequence of retaining the physics of the NS equations in our
modeling and optimization framework.
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Figure 7.22: (a) Estimates of the streamwise convection velocity for k = (2.5, 7) com-
puted using (7.36) (#) and (7.37) (4) as a function of wall distance y+ for turbulent
channel flow with Rτ = 186. The mean velocity profile is plotted for comparison (−).
(b) Enlargement of the same plot for y+ < 40.



Chapter 8

Stochastic modeling of spatially
evolving flows

Low-complexity approximations of the Navier-Stokes (NS) equations are commonly used
for analysis and control of turbulent flows. In particular, stochastically forced linearized
models have been successfully employed to capture structural and statistical features ob-
served in experiments and high-fidelity simulations. In this chapter, we utilize stochasti-
cally forced linearized NS equations and the parabolized stability equations to study the
dynamics of flow fluctuations in transitional boundary layers. The parabolized model
can be used to efficiently propagate statistics of stochastic disturbances into statistics of
velocity fluctuations. Our study provides insight into interactions of slowly-varying base
flow with streamwise streaks and Tollmien-Schlichting waves. It also offers a systematic,
computationally efficient framework for quantifying the influence of stochastic excita-
tion sources (e.g., free-stream turbulence and surface roughness) on velocity fluctuations
in weakly non-parallel flows.

8.1 Introduction

The analysis, optimization, and control of dynamical models that are based on the
Navier-Stokes (NS) equations is often hindered by their complexity and large num-
ber of degrees of freedom. While the existence of coherent structures in wall-bounded
shear flows [9] has inspired the development of reduced-order models using data-driven
techniques, the important features of such models can be crucially altered by control
actuation and sensing. This gives rise to nontrivial challenges for model-based control
design [26].

In contrast, linearization of the NS equations around mean-velocity is well-suited for
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analysis and synthesis using tools of modern robust control. Linearized models sub-
ject to stochastic excitation, have been employed to replicate structural and statistical
features of transitional [28–30] and turbulent [32–34] wall-bounded shear flows. How-
ever, most studies have focused on parallel flow configurations in which translational
invariance allows for the decoupling of the dynamical equations across streamwise and
spanwise wavenumbers. This offers significant computational advantages for analysis,
optimization, and control.

In the flat-plate boundary layer, streamwise and normal inhomogeneity leads to a tem-
poral eigenvalue problem for PDEs with two spatial variables. This problem is com-
putationally more difficult to solve than the corresponding problem for parallel flows.
Previously, tools from sparse linear algebra and iterative schemes have been employed
to analyze the spectra of the governing equations and provide insight into the dynam-
ics of transitional flows [259–261]. Efforts have also been made to conduct non-modal
analysis of spatially evolving flows including transient growth [260, 262] and resolvent
analysis [42]. In spite of these successes, many challenges remain.

The Parabolized Stability Equations (PSE) result from the removal of elliptic compo-
nents from the NS equations. The PSE respect inhomogeneity in the streamwise direc-
tion but do not propagate information upstream, which makes them computationally
more efficient than conventional flow simulations based on the NS equations [263]. In
particular, the resulting set of equations are convenient for marching in the downstream
direction [264–266]. They are thus routinely used to compute the spatial evolution of
instability modes in a wide range of engineering problems.

Despite their popularity, parabolized equations have been utilized in a rather narrow
context. We revisit the modeling of spatially evolving boundary layer flow by examining
the utility of such models in assessing the receptivity to different types of flow distur-
bances. This lays the groundwork for a systematic, computationally efficient framework
for quantifying the influence of stochastic excitation sources on velocity fluctuations in
weakly non-parallel flows.

The rest of this chapter is organized as follows. In Section 8.2, we describe stochastically
forced linearization of the NS equations around Blasius boundary layer flow and char-
acterize the structural constraints that the linearized equations impose on second-order
statistics. In Section 8.3, we study the receptivity of the boundary layer to stochastic
excitation using a parallel base flow assumption. We also perform a global stability
analysis on the discretized model in two spatial directions. In Section 8.4, we adopt
stochastic forcing to model the effect of excitations in the PSE.
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Figure 8.1: Geometry of a transitional boundary layer flow subject to stochastic forcing.

8.2 Background

In this section, we present the equations that govern the dynamics of flow fluctuations
in incompressible flows of Newtonian fluids and characterize the structural constraints
that are imposed on the second-order statistics by the linearized dynamics.

8.2.1 Stochastically forced linearized NS equations

In a flat-plate boundary layer, with geometry shown in figure 8.1, the dynamics lin-
earized around the Blasius boundary layer profile ū = [U(x, y) V (x, y) 0 ]T are

vt = − (∇ · ū) v − (∇ · v) ū − ∇p +
1

Re0
∆v + f ,

0 = ∇ · v,
(8.1)

where v = [ v1 v2 v3 ]T is the vector of velocity fluctuations, p denotes pressure fluctua-
tions, and v1, v2 and v3 represent components of the fluctuating field in the streamwise
(x), wall-normal (y) and spanwise (z) directions, respectively. The Reynolds number is
defined as Re0 = U∞δ0/ν, where δ0 is the initial Blasius length scale δ0 =

√
νx0/U∞,

U∞ is the free-stream velocity, and ν is the kinematic viscosity. Spatial coordinates
are non-dimensionalized by δ0, velocities by U∞, time by δ0/U∞, and pressure by ρU2

∞,
where ρ is the fluid density. The presence of the additive zero-mean stochastic body
forcing f can be justified in different ways and there is a rich literature on the subject
[28–30]. For our purposes, we wish to compensate for the role of the neglected nonlinear
interactions by introducing stochastic sources of excitation that perturb the otherwise
linearly developing velocity field.

After proper spatial discretization, the dynamics of velocity and pressure fluctuations
are governed by the following evolution form

ψ̇(t) = Aψ(t) + B f(t),
v(t) = C ψ(t),

(8.2)
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where ψ(t) is the state and f(t) is the stochastic forcing. The matrix A is the generator of
the dynamics, the matrix C establishes a kinematic relationship between the components
of ψ and the components of v, and the matrix B specifies the way the external excitation
f affects the dynamics [30].

8.2.2 Second-order statistics and computation of energy amplification

In statistical steady-state, the covariance matrix Φ = lim
t→∞

E (v(t) v∗(t)) , of the velocity

fluctuation vector, and the covariance matrix X = lim
t→∞

E (ψ(t)ψ∗(t)) , of the state

in (8.2), are related as follows:

Φ = C X C∗,

where ∗ denotes complex-conjugate-transpose and E is the expectation operator. The
matrix Φ contains information about all second-order statistics of the fluctuating veloc-
ity field.

For a stable dynamical generator A, the steady-state covariance of the state in (8.2)
subject to zero-mean and white-in-time stochastic forcing with covariance Ω = Ω∗ � 0,
i.e.,

〈f(t1) f∗(t2)〉 = Ω δ(t1 − t2),

is determined as the solution to the standard Lyapunov equation,

AX + X A∗ = −B ΩB∗. (8.3)

The Lyapunov equation relates covariance Ω of white-in-time forcing to the state co-
variance X via system matrices A and B. The energy spectrum of velocity fluctuations
that obey (8.2) can be computed from the H2 norm as

E = trace (C X C∗) .

8.3 Local and global analysis of stochastically forced lin-
earized NS equations

In this section, we first examine the dynamics of flow fluctuations in the stochastically
forced Blasius boundary layer under a locally parallel base flow assumption. This as-
sumption entails linearization around the Blasius profile evaluated at a fixed streamwise
location x0. Since the resulting base flow only depends on the wall-normal coordinate
y, this also allows for the parameterization of the corresponding evolution model over
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horizontal wavenumbers and reduces the computational complexity of studying the am-
plification of streamwise streaks and Tollmien-Schlichting (TS) waves. We then repeat
the same exercise for the NS equations linearized around a base flow which is a function
of both streamwise and wall-normal coordinates. In fluids literature this approach is
called global analysis and it is typically a computationally challenging problem. For the
initial study presented here, we use a coarse grid to discretize the differential operators
in the streamwise and wall-normal coordinates and provide insight into the results that
can come out of global analysis.

8.3.1 Parallel Blasius boundary layer flow subject to free-stream tur-
bulence

We perform an input-output analysis to quantify the energy amplification of velocity
fluctuations subject to free-stream turbulence. This excitation is modeled as white-in-
time stochastic forcing into the linearized NS equations around the parallel Blasius base
flow profile, i.e., the Blasius profile evaluated at one streamwise location x0 with no
dependence on the streamwise coordinate. This choice is motivated by previous studies
which show that transient growth exhibits similar trends for parallel and non-parallel
boundary layer flows [267,268].

Under the assumption of a parallel base flow, translational invariance allows us to apply
Fourier transform in the plate-parallel directions, which brings the state-space repre-
sentation of the linearized NS around the nominal base profile to the form

ψ̇(k, t) = A(k)ψ(k, t) + B(k) f(k, t),
v(k, t) = C(k)ψ(k, t).

(8.4)

Here, ψ = [ vT2 ηT ]T ∈ C2N is the state, which contains the wall-normal velocity v2 and
vorticity η = ∂zv1 − ∂xv3, and v ∈ C3N with N being the number of collocation points
in the finite dimensional approximation of the differential operators. Equations (8.4)
are parameterized by the spatial wavenumber pair k = (kx, kz); see [30] for the expres-
sions of A, B, and C. We consider no-slip and no-penetration boundary conditions.
The receptivity to external forcing that enters at various wall-normal locations can be
evaluated by computing the energy spectrum of the velocity fluctuations. To specify the
wall-normal region in which the forcing enters, we define f := f(y)fs where fs represents
the forcing from free-stream turbulence and f(y) is the smooth function defined as

f(y) :=
1

π
(atan(y − y1) − atan(y − y2)) , (8.5)

where y1 and y2 determine the shape of f(y). The energy amplification of the stochas-
tically forced flow can be computed using the solution to the Lyapunov equation (8.3)
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Figure 8.2: Plots of log10(E(k)) in the Blasius boundary layer flow with Re0 = 400
subject to white-in-time stochastic excitation in different wall-normal regions; (a) y1 =
0, y2 = 5 (b) y1 = 5, y2 = 10 in equation (8.5).

with Ω being the covariance of the filtered stochastic forcing f .

We present results obtained by computing the energy spectrum of stochastically excited
parallel Blasius boundary layer flow with Re0 = 400. This implies that the Blasius
profile is computed at x0 = 400. Here, we consider a wall-normal region of Ly = 25.
A solenoidal white-in-time excitation is first introduced to the region in the immediate
vicinity of the wall by choosing y1 = 0 and y2 = 5 in equation (8.5). Figure 8.2a shows
that the energy of velocity fluctuations is most amplified at low streamwise wavenumbers
(kx ≈ 0) with a global peak at kz ≈ 0.42. Clearly, the energy spectrum is dominated by
streamwise elongated flow structures, with a trace of TS waves observed at kx ≈ 0.35. As
the forcing region moves away from the wall the amplification of streamwise elongated
structures persists while the amplification of the TS waves weakens; see figure 8.2b.
It is also observed that as the region of excitation moves away from the wall, energy
amplification becomes weaker and the peak of the energy spectrum shifts to lower values
of kz. These observations are in agreement with the global analysis of boundary layer
flow presented next.

8.3.2 Global analysis of stochastically forced linearized NS equations

We consider the linearized NS equations around a spatially evolving Blasius boundary
layer profile and introduce forcing at various wall-normal locations. To capture the
spatially evolving nature of the boundary layer, we employ finite dimensional spatial
discretization using a pseudospectral scheme [240] in both streamwise and wall-normal
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directions. The linearized NS generator is globally stable for the particular Reynolds
number and spanwise wavenumbers we consider in this study. Thus, the steady-state
covariance of the perturbation field of the stochastically forced system (8.2) can be
obtained from the solution to the Lyapunov equation (8.3).

The computational region is a rectangular box with Lx × Ly = 900 × 25 and the ini-
tial Reynolds number is set to Re0 = 400. We consider the linearized dynamics (8.2),
homogenous Dirichlet boundary conditions on η and Dirichlet/Neumann boundary con-
ditions on v2, and we also introduce sponge layers in the streamwise direction [269,270].
Similar to Section 8.3.1, we assume that white-in-time stochastic forcing is filtered by
the function f(y) in (8.5).

Our computational experiments show that the energy amplification increases as the
region of influence for the external forcing approaches the wall; the principal eigenvalues
of the steady-state covariance matrices X for perturbations that enter in the vicinity
of the wall (y1 = 0 and y2 = 5 in equation (8.5)) and away from the wall (y1 = 5 and
y2 = 10) are 3.1 × 105 and 4.9 × 104, respectively. This suggests that perturbations
entering in the vicinity of the wall are the most amplified. Figures 8.3a and 8.3b
show the spatial structure of the streamwise component of the principal response when
white-in-time stochastic forcing enters in the vicinity of the wall and away from the wall,
respectively. The streamwise growth of the streak structure can be observed in these
figure. Figures 8.3c and 8.3d display the cross-section of these streamwise elongated
structures at z = 0. As figures 8.3e and 8.3f demonstrate, these streaky structures are
sandwiched between counter-rotating vortical motions in the cross-stream plane; and
they contain alternating regions of fast- and slow-moving fluid that are slightly inclined
to the wall.

8.4 Stochastically forced linear parabolized stability equa-
tions

While it is customary to use the parallel-flow approximation to study the stability of
boundary layer flows to small amplitude perturbations, this approximation does not
accurately capture the effect of the spatially evolving base flow on the stability of the
boundary layer. This issue can be addressed by examining the spatial growth of specific
wave structures. Furthermore, in the absence of body forcing and neutrally stable
modes, linearized models that do not account for the spatial evolution of the base flow,
predict either asymptotic decay or unbounded growth of fluctuations. On the other
hand, the global analysis and direct numerical simulation of spatially evolving flows
may be prohibitively expensive for analysis and control purposes.
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Figure 8.3: Principal modes with kz = 0.4, resulting from exitation in the vicinity (a,c,e)
(y1 = 0 and y2 = 5 in (8.5)) and away from the wall (b,d,f) (y1 = 5 and y2 = 10 in (8.5)).
(a,b) Streamwise velocity components; (c,d) streamwise velocity at z = 0; (e,f) y-z slice
of streamwise velocity (color plots) and vorticity (contour lines) at x = 1150.
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To refine predictions of parallel flow analysis, we utilize the Parabolized Stability Equa-
tions (PSE) to study the dynamics of flow fluctuations in flat-plate boundary layers.
These equations are obtained by removing elliptic components from the NS equations
and they can be easily advanced downstream via marching procedure. This approach
is significantly more efficient than conventional flow simulations based on the NS equa-
tions. In contrast to standard PSE-based analysis, we introduce a stochastic forcing
term and show that linear PSE can be used to march covariance matrices downstream
in a computationally efficient manner.

We next provide a brief overview of the stochastically forced linear PSE. Additional
details regarding the PSE can be found in [264,265].

8.4.1 Linear parabolized stability equations

In weakly non-parallel flows, e.g. the pre-transitional boundary layer, flow fluctuations
can be separated into slowly and rapidly varying components [264]. This is achieved
by considering the following decomposition for the fluctuation field q̂ = [ v1 v2 v3 p ]T

in (8.1),
q̂(x, y, z, t) = q(x, y)χ(x, z, t),

χ(x, z, t) = exp (i (θ(x) + kz z − ω t)) ,

θ(x) =

∫ x

x0

α(ξ) dξ,

where q(x, y) and χ(x, z, t) are the shape and phase functions, kz and ω are the spanwise
wavenumber and temporal frequency, and α(x) is the streamwise varying generalization
of the wavenumber [264]. The ambiguity arising from the streamwise variation of both
q and α is resolved by imposing the condition

∫
Ωy

q∗qx dy = 0 [264]. The PSE approxi-

mation assumes that the streamwise variation of q and α are sufficiently small to neglect
qxx, αxx, αxqx, and their higher order derivates with respect to x. The stochastically
forced linear PSE thus take the form

Lq + M qx + αxN q = f , (8.6)

with

L =


C + Ux + V ∂y U ′ 0 iα

0 C + V ′ + V ∂y 0 ∂y
0 0 C + V ∂y ikz

iα ∂y ikz 0

 ,

C = − 1

Re0
(∂yy − α2 − k2

z) + i (αU − ω),
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and

M =



U − 2 iα

Re0
0 0 1

0 U − 2 iα

Re0
0 0

0 0 U − 2 iα

Re0
0

1 0 0 0


, N =



− i

Re0
0 0 0

0 − i

Re0
0 0

0 0 − i

Re0
0

0 0 0 0


.

Matrices L, M and N result from applying PSE assumptions to the operators in the
linearized NS equations (8.2); see [239,265] for additional details.

In what follows, we use the PSE to propagate the spatially evolving state covariance,

X(x) = E (q(x) q∗(x)) ,

via the Lyapunov equation

Xk+1 = Āk+1Xk Ā
∗
k+1 + B̄ Ωk+1B̄

∗, (8.7)

where E is the expectation operator, k identifies the streamwise location, and Ωk rep-
resents the covariance of the white stochastic disturbance f . The dynamical matrix Ā
and the input matrix B̄ result from a rearrangement of the stochastically forced linear
PSE (8.6) with a constant streamwise wavenumber α,

qx = (−M−1L)︸ ︷︷ ︸
Ā

q + (−M−1)︸ ︷︷ ︸
B̄

f .

These equations provide a good approximation of perturbations with slowly-varying
streamwise wavenumbers [271]. The streamwise dependence of our equations follows
from the dependence of the state q, and matrices L and M on the streamwise location
xk. Propagation of the state covariance Xk using equation (8.7) offers significant com-
putational advantage over computation of the covariance from the ensemble average of
many stochastic simulations.

We next consider the streamwise evolution of a two-dimensional TS wave and provide a
comparison of the results obtained using linear PSE with and without stochastic forcing
and nonlinear PSE.

8.4.2 Streamwise evolution of a two-dimensional TS wave

We study the streamwise evolution of a two-dimensional TS wave (kz = 0) with an
initial amplitude of 2.5 × 10−3 and temporal frequency ω = 0.0344. All computations
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Figure 8.4: Amplitude of TS waves at ω = 0.0344 in a flat-plate boundary layer flow;
nonlinear PSE (solid), linear PSE without forcing (dashed), linear PSE with white
forcing (4), and linear PSE with white, but x-dependent forcing designed using the
procedure explained in Section 8.4.2 (#).

are initialized at x0 = 400 with the streamwise wavenumber α and shape function
corresponding to the TS-mode which is identified by the eigenvalue with the largest
imaginary part in the spatial eigenvalue problem. This problem studies the stability of
the linearized NS equations around the base flow profile at x0, for a particular Reynolds
number, spanwise wavenumber, and temporal frequency. The initial Reynolds number
is 400 and the computational domain is Lx×Ly = 2400×60 with homogenous Dirichlet
boundary conditions applied in the wall-normal direction. We have conducted 400
simulations of stochastically forced linear PSE (8.6), with different realizations of white
stochastic forcing. As in Section 8.3.1, we filter the forcing using the function f(y)
in (8.5) with y1 = 0 and y2 = 10. The resulting velocity profiles and covariances are
compared with the results of linear PSE with no stochastic forcing and nonlinear PSE
under the same parameter space and initial conditions.

Figure 8.4 shows the peak amplitude of the streamwise velocity component of the TS
wave. Relative to nonlinear PSE, linear PSE with and without a white stochastic forcing
with covariance that is a scalar multiple of the identity underestimates the streamwise
location of the peak. Figure 8.5 shows the covariance matrices of the streamwise and
streamwise/wall-normal velocity components at the outflow (x = 2800). These are
obtained using simulations of nonlinear PSE and propagation of equation (8.7). We
see that the outflow velocity covariances resulting from linear PSE with white forcing
capture the essential trends observed in nonlinear PSE.

Our computations show that it is not feasible to exactly match velocity correlations
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and growth trends with white stochastic excitation of the linear PSE with a covariance
that is a scalar multiple of identity. This necessitates the use of x-dependent and/or
colored stochastic forcing. As an example, we consider a forcing field which is streamwise
dependent but uncorrelated in the wall-normal direction. This allows us to better predict
the location of the peak amplitude in figure 8.4.

In order to obtain this stochastic forcing, we first use Xk and Xk+1 resulting from
nonlinear PSE to compute the covariance Zk := B̄ ΩkB̄

∗. This covariance corresponds
to a spatially correlated process in the streamwise direction and is thus x-dependent and
not necessarily positive semi-definite. We then project these forcing correlations onto
the positive-definite cone to achieve uncorrelated noise. The result of incorporating this
white, but x-dependent, stochastic forcing is also shown in figure 8.4. Clearly, the peak
amplitude resulting from this model matches the curve from nonlinear PSE simulations.

To further evaluate the performance of this model, we examine the error in matching the
full state covariance matrix X and the amplitude of the streamwise velocity profile |v1| as
a function of the streamwise location x; see figure 8.6. Although we are able to reliably
approximate the location of the peak, exact amplitudes and velocity covariances cannot
be achieved. Figures 8.7a and 8.7b show the amplitude of the streamwise velocity |v1|
at the location with highest error (x = 1840) and the outflow (x = 2800), respectively.
While the profiles perfectly match for y < 30, the profiles resulting from linear PSE
with x-dependent forcing experience significant deviations in the outer flow region.
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Figure 8.5: Velocity covariance matrices at x = 2800 resulting from (a,c) simulation of
nonlinear PSE, and (b,d) from propagation of equation (8.7) in Blasius boundary layer
flow with TS mode initialization. (a,b) The streamwise correlation matrix Xv1v1 , and
(c,d) the streamwise/wall-normal cross correlation matrix Xv1v2 .
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Figure 8.6: Relative error in matching the amplitude of streamwise velocity (solid) and
in matching the state covariance X(x) (dashed) using the linear PSE with x-dependent
white stochastic forcing in the spatial evolution of a 2D TS wave with ω = 0.0344.
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Figure 8.7: The amplitude of the streamwise component of a 2D TS waves with ω =
0.0344 at (a) x = 1840 and (b) x = 2800, which results from nonlinear PSE (solid) and
linear PSE with x-dependent stochastic forcing (dashed).



Chapter 9

Conclusions and future directions

Conclusions

We are interested in accounting for statistical signatures of turbulent flows using low-
complexity linear stochastic models. The complexity is quantified by the number of
degrees of freedom in the NS equations that are directly influenced by stochastic forc-
ing. Models for colored-in-time forcing are obtained using a maximum entropy formu-
lation together with a regularization that serves as a penalty for model complexity. We
show that colored-in-time excitation of the NS equations can also be interpreted as a
low-rank modification to the generator of the linearized dynamics. Schematically, the
correspondence between the nonlinear and stochastically-driven linearized NS equations
is shown in figure 9.1. The modified dynamics are designed to be equivalent, at the level
of second-order statistics, to DNS of turbulent channel flow.

Our motivation has been to develop a framework to complete unavailable statistics in
a way that is consistent with the linearized dynamics around turbulent mean veloc-
ity. The resulting dynamical model can be used for time-dependent linear stochastic
simulations and analyzed using tools from linear systems theory. We have verified the
ability to match statistics of turbulent channel flow using such simulations. We have
also analyzed the spatio-temporal responses to stochastic and deterministic excitation
sources. In particular, by examining the power spectral density of velocity fluctuations,
we have shown that the dynamical modification attenuates the amplification over all
temporal frequencies. A similar effect has been observed in eddy-viscosity-enhanced
linearization of the NS equations. Although our models are based on one-point correla-
tions in statistical steady-state, we have computed two-point temporal correlations to
demonstrate that the essential features of the convection velocities of individual modes
are reproduced.

Full scale physics-based models are often prohibitively complex. An advantage of our
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linearized dynamics

nonlinear terms

−(v · ∇) v

v
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ψ̇ = Aψ + Bw + B d

v = C ψ
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w
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v
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Figure 9.1: (a) Nonlinear NS equations as a feedback interconnection of the linearized
dynamics with the nonlinear term; (b) Stochastically-driven linearized NS equations
with low-rank state-feedback modification. The two representations can be made equiv-
alent, at the level of second-order statistics, by proper selection of B and Cf .

method is that it provides a data-driven refinement of models that originate from first
principles. The method captures complex dynamics in a way that is tractable for analy-
sis, optimization and control design. We have focused on a canonical flow configuration
to demonstrate the ability to generate statistically consistent velocity fluctuations. The
framework opens up the possibility to guide experimental data collection in an eco-
nomic manner that, at the same time, allows faithful representation of structural and
statistical flow features.

In Chapter 8, we have utilized stochastically forced linearized NS equations and stochas-
tically forced linear PSE to study the dynamics of flow fluctuations in the Blasius bound-
ary layer. In particular, we have examined the receptivity of the spatially-evolving
Blasius boundary layer flow to free-stream disturbances which we model as stochastic
excitations that enter at specific wall-normal locations. We also incorporate stochastic
forcing into the linear PSE to study the streamwise evolution of TS waves. While white
stochastic excitation with a covariance that is a scalar multiple of the identity matrix
is not able to improve predictions relative to the conventional linear PSE, we achieve
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better predictions of transient peaks using an x-dependent white stochastic forcing.

Extensions and future directions

Higher-order statistics and sub-scale modeling. The colored-in-time stochastic
noise modeling framework presented in this thesis allows for the matching of second-
order statistics of the fluctuating velocity field using the linearized NS model. However,
the extension of this framework for explaining higher-order statistics that are of rele-
vance in a broader context, e.g., acoustic source modeling [272, 273], is still an open
problem.

Apart from accounting for partially-observed flow statistics, which are typically con-
strained to a narrow region of the spectrum, the predictive capability of such stochastic
models should also be examined. In particular, it would be of interest to explore the
utility of this modeling framework in developing new classes of subgrid-scale models.

The role of the colored-in-time forcing. As noted in Chapter 7, the colored-in-
time forcing introduces a low-rank modification to the dynamics of the linearized NS
equations around turbulent mean velocity. This should be compared and contrasted
to alternative modifications proposed in the literature. For instance, one such mod-
ification is obtained by augmenting molecular viscosity with turbulent eddy viscos-
ity [31,32,197–200]. Another modification adds a source of constant [212,215,216,221]
or dynamical [208, 209] dissipation. The colored-in-time forcing similarly alters the
dynamics but rather than postulating relations between Reynolds stresses and mean
velocity gradients, it generates perturbations in a data-driven manner.

More specifically, in the linearized NS model, the generator A(k) is lower block tri-
angular. This means that wall-normal vorticity does not influence the dynamics of
wall-normal velocity [239]. In the context of channel flow, standard eddy-viscosity and
dissipation models do not alter this structural feature. In contrast, the low-rank term
B(k)Cf (k) not only modifies the structure of the Orr-Sommerfeld, Squire, and coupling
operators but it also introduces an additional feedback term Ã12 as illustrated in fig-
ure 9.2. Thereby, besides an interpretation of colored-in-time forcing as a data-driven
generalized eddy-viscosity refinement, the new framework points to potentially missing
dynamical interactions in the linearized model. The nature and physical basis for such
interactions calls for additional in-depth examination.

Closure of the mean flow equations. It is well known that the nonlinear nature of
the NS equations makes the nth velocity moment depend on the (n + 1)th. Colored-
in-time forcing provides an alternative mechanism for developing a new class of data-
driven turbulence closure models. More specifically, as shown in figure 9.3, the turbulent
mean velocity enters as a coefficient into the linearized flow equations. In turn these
equations are used to compute second-order statistics which feed back into the mean
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(iωI − Ã11)−1 Ã21 (iωI − Ã22)−1

Ã12

+ +
fv v

fη
η

Figure 9.2: Partitioning the state in (7.27) as ψ = (v, η), and conformably the forcing
Bw as (fv, fη), the term BCf in (7.27) modifies the Orr-Sommerfeld, Squire, and cou-
pling operators into Ã11, Ã22, and Ã21, respectively. It also introduces an additional
feedback term Ã12.

flow equations.

A contribution of this work is to identify power spectra of forcing to the linearized NS
equations that yield velocity fluctuation statistics that are consistent with the DNS
data in statistical steady state. The output of our model can be used to drive the mean
flow equations in time-dependent simulations. Thus, a correction to the mean velocity
profile can be sought which perturbs the linearized NS dynamics. This completes the
loop by incorporating a two-way interaction between the mean flow and second-order
statistics of the fluctuating velocity field. An important topic is to identify conditions
under which the feedback connection of mean flow equations with stochastically-forced
linearized equations, shown in figure 9.3, converges.

Our methodology is conceptually related to recent work where streamwise-constant NS
equations are combined with linearized flow equations driven by white-in-time forc-
ing [229–231]. It was demonstrated that self-sustained turbulence can indeed be main-
tained with such a model, although, correct statistics are not necessarily obtained.
In this context, our approach offers a systematic framework for embedding data into
physics-based models in order to capture correct turbulent statistics.

Kinematic simulation of turbulent flow and turbulent inflow generation.
Kinematic simulations of fully developed turbulence have been extensively used to gen-
erate synthetic flow fields. These typically involve the superposition of randomized
Fourier modes that obey prescribed one- and two-point correlations [274–279]. Likewise,
generating statistically consistent turbulent inflow conditions for numerical simulations
of transitional/turbulent flows as well as flow control has been a topic of great inter-
est [280,281]. A common theme in these studies is that, in contrast to direct simulations,
prescribed spatial and temporal correlations are used to generate statistically consistent
flow fields.

Our approach is in line with this general theme in that it provides a data-driven method
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Figure 9.3: For the linearized dynamics of fluctuations around turbulent mean velocity,
the appropriate forcing is sought to reproduce partially available velocity correlations
and complete the statistical signature of the turbulent flow field. Completed second-
order statistics can then be brought into the mean flow equations in order to give
turbulent mean velocity and provide equilibrium configuration.

to generate statistically consistent velocity fluctuations using stochastically-driven lin-
earized NS equations. The output of our modeling framework is a velocity field which
can be calculated via inexpensive stochastic linear simulations. While we only use one-
point correlations as problem data, we have demonstrated that two-point spatial and
temporal features are reasonably recovered. This can be attributed to two elements of
our framework. First, the underlying physics are intrinsic in the problem formulation
and, second, the sought modifications of the linearized NS equations around turbulent
mean velocity are of low rank .

Extension to complex geometries. Channel and pipe flows allow Fourier trans-
form techniques to exploit translational invariance in the homogeneous directions and,
thereby, simplify computational aspects of the problem. In such cases, the govern-
ing equations for fluctuations around mean velocity can be decoupled across spatial
wavenumbers. As a result, the optimization step in our theory deals with one pair
of wall-parallel wavenumbers at a time; cf. (7.19). Non-parallel flows are spatially-
developing and flows in more complex geometries may not be homogeneous in even a
single spatial direction. One such example is that of boundary layer flows where experi-
ments [257,258,282–284] and simulations [285–288] have provided insight into coherent
flow structures and statistics.

Non-parallel flows and flows in complex geometries require treating a much higher num-
ber of degrees of freedom. Although our framework is pertinent to refining physics-based
models of low complexity using data-driven methods, our current algorithms require
O(n3) computations for an n-state discretized evolution model and fall short of dealing
with the added computational overhead. At this point, development of more efficient
optimization algorithms appears challenging. Thus, a possible direction is to examine
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approximations of the governing equations. Examples of such approximations, that have
been used for the control and stability analysis of boundary layer flow, can be found
in [264, 266, 289, 290]. In general, model reduction techniques [10–13, 15–17, 19–21] can
also be used for this purpose.

Stochastic modeling of spatially-evolving flows. The results of Chapter 8 demon-
strate the necessity of spatially correlated stochastic excitation of the linear PSE for
the purpose of capturing transient peaks in the streamwise intensity of the flow. The
predictive power of our approach can be further improved by utilizing the theoretical
framework developed for identifying the spatio-temporal spectrum of stochastic excita-
tion sources; see Chapters 2, 3 and 7 as well as [34, 164]. On the other hand, while the
spatial evolution of the base flow is prominent in the laminar region of the transitional
boundary layer, this is not the case in the turbulent region. In fact, a parallel flow
assumption can be utilized to develop low-complexity stochastic models that are statis-
tically consistent with the result of nonlinear simulations in this region of the flow. The
problem of employing such a framework in order to recover partially-observed statistical
signatures of spatially-evolving flows via low-complexity stochastic models is an open
problem and will be studied in our future work.
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Flow control
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Chapter 10

Turbulent drag reduction by
streamwise traveling waves

For a turbulent channel flow with zero-net-mass-flux surface actuation in the form of
streamwise traveling waves we develop a model-based approach to design control pa-
rameters that can reduce skin-friction drag. In contrast to the traditional approach
that relies on numerical simulations and experiments, we use turbulence modeling in
conjunction with stochastically forced linearized equations to determine the effect of
small amplitude traveling waves on the drag. Our simulation-free approach is capable
of identifying drag reducing trends in traveling waves with various control parameters.
High-fidelity simulations are used to verify the quality of our theoretical predictions.

10.1 Introduction

Sensor-free flow control strategies are capable of reducing drag in turbulent flows; exam-
ples of these strategies include spanwise wall oscillations [291], riblets, and streamwise
traveling waves [292, 293]. Recently, numerical simulations of turbulent channel flows
were used to demonstrate that upstream traveling waves can provide sustained levels of
drag that are lower than in the laminar flow [292]. These numerical simulations have
provided motivation for the development of a model-based framework for designing
traveling waves to control the onset of turbulence [108, 109]. Furthermore, the results
of [108,109] have recently been extended to turbulent channel flows subject to spanwise
wall-oscillations [33]. Theoretical predictions obtained in [33] were able to capture the
behavior of the controlled turbulent flow which was previously observed in high fidelity
simulations [291]. In this chapter, we utilize a similar computationally efficient model-
based method to study the effects of streamwise traveling waves on turbulent channel
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flows. This is achieved by combining turbulence modeling with stochastically forced
linearized dynamics to determine the effect of small amplitude traveling waves on skin-
friction drag. Our approach is capable of identifying drag reducing trends in traveling
waves with various control parameters. We use high fidelity numerical simulations as a
means for verifying trustworthiness of our theoretical predictions.

The rest of this chapter is organized as follows: in Section 10.2, we present the governing
equations along with the turbulent viscosity model; in Section 10.3, we describe the
procedure for determining an approximation to the turbulent mean velocity in flow
with control using turbulent viscosity of the uncontrolled flow; in Section 10.4, we use
linearized Navier-Stokes (NS) equations to obtain second-order statistics of velocity
fluctuations in controlled flow and to show how they influence the turbulent viscosity
and skin-friction drag; and finally, in Section 10.4.4, we demonstrate the utility of our
method in capturing drag-reducing trends of streamwise traveling waves.

10.2 Problem formulation

10.2.1 Governing equations

We consider a three-dimensional turbulent channel flow of an incompressible viscous
Newtonian fluid; see figure 10.1a for geometry. The flow is driven by a pressure gradient
and is governed by the NS and continuity equations

ut = −(u · ∇)u − ∇P + (1/Rτ ) ∆u,

0 = ∇ · u,
(10.1)

where u is the velocity vector, P is the pressure, ∇ is the gradient, ∆ = ∇ · ∇ is the
Laplacian. The streamwise, wall-normal, and spanwise coordinates are represented by
x̄, ȳ, and z̄, and time is denoted by t̄. Equation (10.1) has been non-dimensionalized
by scaling spatial coordinates with the channel half-height h, velocity with the friction
velocity uτ =

√
τw/ρ, time with inertial time scale h/uτ , and pressure with ρu2

τ . The
important parameter in (10.1) is the friction Reynolds number, Rτ = uτh/ν, which
determines the ratio of inertial to viscous forces. Here, ρ is the fluid density and ν is
the kinematic viscosity.

In addition to pressure gradient, the flow with control is subject to a zero-net-mass-flux
surface blowing and suction; see figure 10.1b. This imposes the following boundary
conditions on the velocity fields,

u (x̄, ȳ = ±1, z̄, t̄) = [ 0 ∓ 2α cos (ωx(x̄ − c t̄)) 0 ]T , (10.2)
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(a) (b)

Figure 10.1: (a) Pressure driven turbulent channel flow. (b) Boundary actuation of
blowing and suction along the walls.

where ωx, c, and α denote the frequency, speed, and amplitude of the traveling wave.
Positive (negative) values of c define a wave that travels in the downstream (upstream)
direction. We can eliminate the time dependence in (10.2) using a simple coordinate
transformation, (x = x̄ − ct̄, y = ȳ, z = z̄, t = t̄), which adds an additional convective
term to (10.1)

ut = cux − (u · ∇) u − ∇P + (1/Rτ ) ∆u,

0 = ∇ · u.
(10.3)

10.2.2 Navier-Stokes equations augmented with turbulent viscosity

Following a similar procedure as in [33], we augment the molecular viscosity in (10.3)
with turbulent viscosity νT

ut = cux − (u · ∇) u − ∇P + (1/Rτ )∇ ·
(
(1 + νT )

(
∇u + (∇u)T

))
,

0 = ∇ · u.
(10.4)

This model has been used in [33] for model-based design of transverse wall oscillations
for the purpose of drag reduction. Moarref and Jovanović [33] showed that this model is
capable of capturing the essential features of the turbulent flow with control that were
previously observed in high fidelity numerical simulations.

In order to determine the influence of traveling waves on skin-friction drag we need to
develop robust models for approximating the turbulent viscosity, νT , in the presence of
control. Several studies [196, 245, 294] have attempted to find expressions for νT that
yield the turbulent mean velocity in flows without control. For example, the following
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model for the turbulent viscosity was developed in [196],

νT0(y) =
1

2

((
1 +

(c2

3
Rτ (1− y2) (1 + 2y2) (1− e−(1− |y|)Rτ/c1)

)2
)1/2

− 1

)
(10.5)

where the parameters c1 and c2 are selected to minimize least squares deviation between
the mean streamwise velocity obtained with τw = 1 and turbulent viscosity (10.5), and
the mean streamwise velocity obtained in experiments and simulations.

Our model-based design of streamwise traveling waves for drag reduction involves two
tasks:

(i) [Section 10.3] Mean flow analysis: assuming that (10.5) reliably approximates
turbulent viscosity in the controlled flow, we determine the turbulent mean velocity
in the flow subject to traveling waves;

(ii) [Section 10.4] Fluctuation dynamics: we quantify the effect of fluctuations
around the mean velocity determined in (i) on turbulent viscosity and drag re-
duction.

In Section 10.3, we use perturbation analysis to determine the steady-state solution
to (10.4) with turbulent viscosity given by (10.5) in the presence of small-amplitude
boundary actuation (10.2). Using high-fidelity simulations of nonlinear flow dynamics
we show that this approximation to turbulent mean velocity does not reliably pre-
dict the drag reducing effects of streamwise traveling waves. In Section 10.4, we then
demonstrate that predictive capability of our analysis can be improved by examining
stochastically forced linearization of system (10.4)-(10.5) around its steady-state solu-
tion.

10.3 Turbulent mean velocity in flow with νT0

The first step in our analysis requires determination of an approximation to the turbulent
mean velocity,

U =
[
U(x, y) V (x, y) 0

]T
,

in the presence of blowing and suction along the walls. This is achieved by finding the
steady-state solution to (10.4)-(10.5),

0 = cUx − (U · ∇) U − ∇P + (1/Rτ )∇ ·
(
(1 + νT0)

(
∇U + (∇U)T

))
,

0 = ∇ ·U,
(10.6)
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Figure 10.2: Second-order correction to the skin-friction drag D2 as a function of travel-
ing wave speed c and frequency ωx: (a) upstream traveling waves; and (b) downstream
traveling waves. Predictions are obtained using the solution to (10.6)-(10.7) with tur-
bulent viscosity determined by (10.5).

with boundary conditions

V (x, y = ±1) = ∓ 2α cos (ωx x) , U(x,±1) = 0. (10.7)

For small amplitude actuation, α � 1, a perturbation analysis can be employed to
solve (10.6) subject to (10.7) and determine the corrections to the mean velocities,

U(x, y) = U0(y) + αU1(x, y) + α2 U2(x, y) + O(α3),

V (x, y) = αV1(x, y) + α2 V2(x, y) + O(α3).
(10.8)

Here, U0(y) represents the base velocity in the uncontrolled turbulent flow and it is
determined from the solution to

0 = (1 + νT0)U ′′0 + ν ′T0 U
′
0 + Rτ ,

0 = U0(y = ±1),
(10.9)

where prime denotes differentiation with respect to the wall-normal coordinate y. Higher
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harmonics of the mean velocity can be represented as

U1(x, y) = U1,−1(y) e−iωxx + U1,1(y) eiωxx,

V1(x, y) = V1,−1(y) e−iωxx + V1,1(y) eiωxx,

U2(x, y) = U2,0(y) + U2,−2(y) e−2iωxx + U2,2(y) e2iωxx,

V2(x, y) = V2,−2(y) e−2iωxx + V2,2(y) e2iωxx.

Under the assumption of the fixed bulk,∫ 1

−1
U(x, y) dy =

∫ 1

−1
U0(y) dy,

the skin-friction drag is determined by the slope of the streamwise mean velocity at the
walls,

D =
1

2

(
dU

dy

∣∣∣∣
−1

− dU

dy

∣∣∣∣
1

)
, (10.10)

where the overline denotes the average value obtained by integration in the x-direction.
Thus, up to a second-order in α, the only terms that influence D are U0 and U2,0,

D = D0 + α2D2 + O(α4),

D0 :=
1

2
(U ′0(−1) − U ′0(1)) ,

D2 :=
1

2

(
U ′2,0(−1) − U ′2,0(1)

)
,

Figure 10.2 shows the second order correction to skin-friction drag D2, as a function
of the traveling wave speed and frequency. We observe that both upstream and down-
stream traveling waves increase drag. This is in contrast to the results obtained using
simulations of the nonlinear flow dynamics [109, 292] where it was shown that drag
reduction can be obtained for certain values of traveling wave parameters. For an up-
stream traveling wave with c = −2 and ωx = 0.5, figure 10.3 also demonstrates increase
in drag for all values of the wave amplitude α. We observe close correspondence between
the results obtained from the solution to (10.6)-(10.7) with νT0 determined by (10.5)
using terms up to a second order in α, fourth order in α, and Newton’s method.

The results of this section show the inability of the above conducted mean flow analysis
to capture the drag reducing effects of streamwise traveling waves. In Section 10.4, we
demonstrate that the gap between our predictions and the results of high-fidelity numer-
ical simulations can be significantly reduced by analyzing the dynamics of fluctuations
around the mean velocity profile determined here.



150

10.4 Dynamics of velocity fluctuations

In this section, we use a framework for the input-output analysis of PDEs with spatially-
periodic coefficients developed in [295] to examine the dynamics of fluctuations around
the turbulent mean profile U determined in Section 10.3. The second-order statistics of
the flow with control are obtained using stochastically forced NS equations. For small
amplitude actuation, we employ perturbation analysis to determine turbulent viscosity
and the resulting correction to the skin-friction drag from these statistics.

10.4.1 Linearized Navier-Stokes equations

The dynamics of infinitesimal velocity fluctuations v =
[
u v w

]T
around the tur-

bulent mean velocity U are governed by

vt = cvx − (U · ∇) v − (v · ∇) U − ∇p + f

+ (1/Rτ )∇ ·
(
(1 + νT0)

(
∇v + (∇v)T

))
,

0 = ∇ · v.

(10.11)

Equation (10.11) is driven by zero-mean temporally white stochastic forcing f . Since
the boundary conditions (10.2) are satisfied by turbulent mean velocity, the velocity
fluctuations v assume no-slip boundary conditions. Following a similar procedure as
in [108], we can bring the set of spatially periodic PDEs (10.11) into the following
evolution form

∂tψθ(y, kz, t) = Aθ(kz)ψθ(y, kz, t) + fθ(y, kz, t),

vθ(y, kz, t) = Cθ(kz)ψθ(y, kz, t),
(10.12)

where ψ = [ v η ]T is the state vector with η = ∂zu − ∂xw being the wall-normal vor-
ticity. Homogenous Dirichlet boundary conditions are imposed on η, while homogeneous
Dirichlet and Neumann boundary conditions are imposed on v.

We note that ψ, v, and f are bi-infinite column vectors parameterized by θ and kz,
e.g., ψθ(y, kz, t) = col{ψ(θn, y, kz, t)}n∈N. Furthermore, for each θ and kz, Aθ(kz) and
Cθ(kz) are bi-infinite matrices whose elements are integro-differential operators in y.
The operator Aθ can be written as Aθ = A0θ +

∑∞
`=1 α

`A`θ where the definition of A`θ
can be found in [108]. In the next section, we exploit the structure of the operator Aθ
and use perturbation analysis to determine the auto-correlation operator of ψθ for small
values of the traveling wave amplitude, α.
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Figure 10.3: Drag variation, ∆D = D −D0, as a function of wave amplitude α for an
upstream traveling wave with c = −2 and ωx = 0.5. Predictions are obtained from the
solution to (10.6)-(10.7) with turbulent viscosity determined by (10.5) using terms up
to a second order in α (◦), fourth order in α (O), and Newton’s method (solid curve).

10.4.2 Second-order statistics of velocity fluctuations

Consider the linearized system (10.12) driven by zero-mean temporally white stochastic
forcing with second-order statistics,

E (f( · ,κ, t1)⊗ f( · ,κ, t2)) = M(κ) δ(t1 − t2).

Here, κ = (θ, kz) denotes the wave-numbers, δ is the Dirac delta function, f ⊗ f is the
tensor product of f with itself, and M(κ) is the spatial spectral-density of forcing. We
follow [33] and select M so that the two-dimensional energy spectra of the stochastically
forced linearized NS equations match those of the uncontrolled turbulent flow. For this
purpose, we use the energy spectrum of the uncontrolled flow E(y,κ) resulting from
numerical simulations of the nonlinear flow dynamics [236,237] to define

M(κ) =
Ē(κ)

Ē0(κ)
M0(κ),

M0(κ) =

[ √
E I 0

0
√
E I

] [ √
E I 0

0
√
E I

]†

,

where Ē(κ) = (1/2)
∫ 1
−1E(y,κ) dy represents the two-dimensional energy spectrum of

the uncontrolled flow and Ē0 is the energy spectrum obtained from the linearized NS
equations subject to white-in-time forcing with spatial spectrum M0(κ). The † sign
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denotes the adjoint of an operator which should be determined with respect to the
appropriate inner product; for additional details see [30].

For the linearized system (10.12), the steady-state auto-correlation operator of ψθ can
be determined from the solution to the Lyapunov equation,

Aθ(kz)Xθ(kz) + Xθ(kz)A+
θ (kz) + M0(θ, kz) = 0,

and the energy spectrum is given by

E0(κ) = trace(Xθ(kz)) =
∞∑

n=−∞
trace(Xd(θn, kz)),

where Xd(θn, kz) represents the elements on the main diagonal of Xθ. For small ampli-
tude actuation, perturbation analysis in conjunction with the special structure of the
operator Aθ can be used to express Xθ(kz) as

Xθ(kz) = Xθ,0(kz) + α2Xθ,2(kz) + O(α4),

where Xθ,0(kz) and Xθ,2(kz) are the solutions to a set of coupled operator-valued Lya-
punov and Sylvester equations [296]. The auto-correlation operator Xθ,0(kz) contains
the contribution of the flow with no control, and Xθ,2(kz) captures the effect of control
(up to second-order in α).

10.4.3 Influence of fluctuations on turbulent viscosity and skin-friction
drag

We next show how velocity fluctuations in the flow with control introduce a second
order correction to turbulent viscosity and skin-friction drag. We use the kinetic energy
of velocity fluctuations, k, and its rate of dissipation, ε, to determine the influence of
fluctuation on the turbulent viscosity,

νT = CµR
2
τ

(
k2/ε

)
, (10.13)

where Cµ = 0.09 is a model constant. Both k and ε are determined by the second-order
statistics of velocity fluctuations,

k(y) = (1/2) (uu + vv + ww) ,

ε(y) = 2 (ux ux + vy vy + wz wz + uy vx + uz wx + vz wy) + uy uy + wy wy

+ vx vx + wxwx + uz uz + vz vz.
(10.14)

The overline in (10.14) denotes averaging in the streamwise and spanwise directions.
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In the flow subject to small amplitude traveling waves, k and ε can be expressed as

k = k0 + α2 k2 + O(α4),

ε = ε0 + α2 ε2 + O(α4),
(10.15)

where the subscript 0 denotes the corresponding quantities in the uncontrolled flow, and
the subscript 2 denotes the influence of fluctuations at the level of α2.

By substituting (10.15) into (10.13) and applying the Neumann series expansion we
obtain an expression that establishes the dependence of the second-order correction to
νT on k2 and ε2,

νT = νT0 + α2 νT2 + O(α4),

νT2 = νT0

(
2k2

k0
− ε2

ε0

)
.

(10.16)

The influence of fluctuations on turbulent mean velocity (and consequently the skin-
friction drag) can be obtained by substituting νT from (10.16) into (10.4) and finding
the resulting steady-state solution.

10.4.4 Results: turbulent drag reduction and net efficiency

We next examine the effect of an upstream traveling wave with c = −2 and ωx = 0.5
on the skin-friction drag in a turbulent channel flow with Rτ = 186. For this choice of
traveling wave parameters, numerical simulations of nonlinear flow dynamics at Rτ ≈ 63
have demonstrated the drag-reducing ability of upstream traveling waves [109,292].

Figure 10.4 shows the time dependence of the skin-friction drag for the uncontrolled
turbulent flow and for the flow subject to an upstream traveling wave with c = −2,
ωx = 0.5, and three wave amplitudes (α = 0.01, α = 0.05, and α = 0.125). The
solid lines are obtained using simulations of the nonlinear NS equations, and the black
dots indicate the corresponding steady-state values of drag resulting from the model-
based approach of Section 10.4. Compared to the flow with no control, from figure 10.4
it appears that the traveling wave with α = 0.01 slightly increases drag. However,
numerical simulation conducted over longer time horizon (not shown here) indicates a
very small discrepancy between the uncontrolled flow results and the results obtained
for the upstream traveling wave with α = 0.01. For α = 0.05, our results (obtained using
perturbation analysis up to second-order in α) show that upstream traveling waves are
able to reduce turbulent drag. More interestingly, for traveling waves with amplitude
α = 0.125, our predictions from perturbation analysis capture the ability of upstream
traveling waves in reducing skin-friction drag to sub-laminar levels. This is in agreement
with the results of [292].

Even though our predictions are verified in numerical simulations of the nonlinear NS
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Figure 10.4: Drag in a turbulent channel flow obtained from high-fidelity simulations
with Rτ = 186 subject to an upstream traveling wave (c = −2, ωx = 0.5) at three
wave amplitudes, α = 0.01 (blue), α = 0.05 (red), and α = 0.125 (green). The black
dots denote the drag computed using the model-based framework of Section 10.4. Also
shown are the laminar drag (dashed line) and turbulent drag in the absence of control
(black solid line).

equations (see red and green curves in figure 10.4), we observe a mismatch between
numerically obtained values of the drag and those resulting from our analysis. However,
the effect of higher-order corrections to the turbulent viscosity in our perturbation
analysis remains to be examined.



Chapter 11

Model-based analysis of the effect
of spanwise wall oscillations on
drag reduction at high Reynolds
numbers

Experiments and numerical simulations have shown that the drag-reducing ability of
spanwise wall oscillations in turbulent channels deteriorates as the Reynolds number
increases. Recent work by Moarref and Jovanovic [33] has demonstrated the predictive
power of a model-based approach for controlling turbulent channel flow using spanwise
wall oscillations. In the present chapter, we use a linearized stochastically-forced model
to reveal the Reynolds number independent effects of wall oscillations on drag reduction.
This allows us to extend the predictive capability of our simulation-free approach to
high Reynolds numbers. We show that the influence of wall oscillations at low Reynolds
numbers is confined to the streamwise and spanwise wavelengths that correspond to the
universal inner-scaled eddies in wall turbulence. Since wall oscillations do not suppress
large-scale eddies, which are responsible for increased drag in the uncontrolled flow,
we conclude that wall oscillations have weaker influence on drag reduction at higher
Reynolds numbers. In addition, our observations enable predictions of drag reduction
trends at high Reynolds numbers.

11.1 Introduction

In the last two decades, an extensive amount of research has been dedicated to un-
derstanding the mechanisms that are responsible for maintaining the laminar flow and
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reducing skin-friction drag via active and passive control [1, 2]. In particular, experi-
ments and numerical simulations of turbulent channel flows have respectively recorded
up to 40 and 45% drag reduction using transverse wall oscillations [297–301]. The basic
setup for this flow control strategy involves oscillation of channel walls, which can be
characterized by the amplitude α and period of oscillations T ; see figure 11.1b. In this
vein, an interesting observation is that as the Reynolds number in the channel flow
setup increases, the drag reducing ability of spanwise wall oscillations gradually deteri-
orates [33,302–304]. Although many have provided useful insight into this phenomenon,
few have provided an analytical framework for quantifying such an effect. In this chap-
ter, we utilize the recently developed model-based framework for the design of spanwise
wall oscillations in turbulent channel flow [33] to study the drag reducing trends of this
control strategy as higher Reynolds number flows are considered.

In [33], the second-order statistics of a stochastically forced linearized model of turbu-
lent channel flow were used to determine the modification to turbulent viscosity in the
presence of control via perturbation analysis. This study considers an eddy-viscosity
enhanced variation of the linearized NS equations. In addition, the spatial power spec-
trum of white-in-time forcing is selected to ensure that in the absence of control, the
stochastically forced linear model reproduces the energy spectrum resulting from DNS
of a turbulent channel flow [236,237]. The second-order flow statistics that are collected
from the stochastically forced linearized dynamics of the flow subject to wall oscillation
are used, via perturbative methods, to compute second-order corrections (in control
amplitude α) to the kinetic energy and dissipation of kinetic energy. These corrections
are subsequently utilized to compute the influence of control on the turbulent eddy
viscosity and approximately quantify the effect of control on turbulent drag.

The rest of this chapter is organized as follows. In Section 11.2, we present the govern-
ing equations along with the turbulent viscosity model. We also briefly overview how
perturbation analysis can be used to predict the influence of control on the turbulent
eddy viscosity, the streamwise mean velocity, and the turbulent drag. In Section 11.3,
we examine some common trends observed in the energy spectrum of turbulent channel
flow at high Reynolds numbers. We also quantify the effect of spanwise wall oscillations
at high Reynolds numbers by computing the production and dissipation of turbulent
kinetic energy. Based on the observations made in Section 11.3, we predict the drag
reducing trends of spanwise wall oscillations at high Reynolds numbers in Section 11.4.

11.2 Background

We consider a pressure-driven turbulent channel flow of an incompressible viscous New-
tonian fluid; see figure 11.1a for geometry. The flow is driven by a pressure gradient
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(a) (b)

Figure 11.1: (a) Pressure driven turbulent channel flow, and (b) channel flow subject
to spanwise wall oscillations of amplitude α and period T .

and is governed by the NS and continuity equations

ut = −(u · ∇)u − ∇P + (1/Rτ ) ∆u,

0 = ∇ · u,
(11.1)

where u = [u v w ]T is the velocity vector, P is the pressure, ∇ is the gradient,
∆ = ∇ · ∇ is the Laplacian. Equation (11.1) has been non-dimensionalized by scaling
spatial coordinates with the channel half-height h, velocity with the friction velocity
uτ =

√
τw/ρ, time with inertial time scale h/uτ , and pressure with ρu2

τ . The friction
Reynolds number, Rτ = uτh/ν, determines the ratio of inertial to viscous forces. Here,
ρ is the fluid density and ν is the kinematic viscosity.

In addition to pressure gradient, the flow is subject to zero-mean spanwise wall oscilla-
tions; see figure 11.1b. This imposes the following boundary conditions on the velocity
field,

u (x, y = ±1, z, t) = [ 0 0 2α sin(
2π

T
t) ]T , (11.2)

where α denotes the amplitude of oscillations and the period of oscillations is given
by T when computed in outer units (normalized by h/uτ ) and by T+ = RτT when
computed in viscous units (normalized by ν/u2

τ ). While the uniform pressure gradient
Px balances the wall-shear stress [186,206] and induces a streamwise mean velocity U(y),
wall oscillations give rise to a spanwise mean velocity component W (y); see [33] for the
governing equations of the mean velocity ū = [U(y) 0 W (y, t) ]T .

The skin-friction coefficient can be computed as [206,305]

Cf = 2 |Px|/U2
B. (11.3)
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We consider a constant bulk flux UB. As a result, reduction (increase) in |Px| results
in drag reduction (increase). Changes to the skin-friction coefficient relative to the
uncontrolled flow can be quantified as

%Cf = 100
Cf,u − Cf,c

Cf,u
= 100 (1 + Px,c) , (11.4)

where the subscripts c and u respectively represent quantities in the controlled and
uncontrolled flows. As a result, our control strategy leads to drag reduction in cases
which Px,c > −1.

The dynamics of fluctuations around the time-periodic mean velocity u is governed by
the evolution form of the linearized NS (7.6), with operator A given by

A(k, t) = A0(k) + α
(
A−1(k) e−i 2π

T
t + A1(k) ei 2π

T
t
)
, (11.5)

where, A0 is the generator of the eddy-viscosity enhanced linearized NS equations in the
absence of control, and A−1 and A1 represent modifications induced by the harmonic
boundary conditions. Expressions for A0, A−1 and A1 can be found in [33, Appendix
B].

In order to determine the influence of wall oscillations on skin-friction drag we need to
develop robust models for approximating the turbulent viscosity, νT , in the presence of
control. Several studies [196, 245, 294] have attempted to find expressions for νT that
yield the turbulent mean velocity in flows without control. For example, the following
model for the turbulent viscosity was developed in [196],

νT0(y) =
1

2

((
1 +

(c2

3
Rτ (1− y2) (1 + 2y2) (1− e−(1− |y|)Rτ/c1)

)2
)1/2

− 1

)
(11.6)

where the parameters c1 and c2 are selected to minimize the least squares deviation be-
tween the mean streamwise velocity obtained with τw = 1 and turbulent viscosity (11.6),
and the mean streamwise velocity obtained in experiments and simulations; see [33] for
values of c1 and c2 at various Reynolds numbers.

11.2.1 Second-order statistics of velocity fluctuations in the presence
of control

For small-amplitude wall oscillations, perturbation analysis in α can be used to quantify
the average effect of forcing (over one period T ) on the the auto-correlation operator of
the state ψ, i.e,

X(k) = X0(k) + α2X2(k) + O(α4). (11.7)
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While X0 contains the second-order statistics of uncontrolled flow, X2 represents the
influence of control at the level of α2 and can be obtained from a set of decoupled
Lyapunov equations [107,306]; also see [33, Appendix D] for additional details.

11.2.2 Turbulent viscosity model and drag reduction

While we utilize the Reynolds-Tiederman turbulent eddy-viscosity profile for the equa-
tions with no control (cf. (11.6)), we quantify the effect of velocity fluctuations in the
flow with control on the turbulent viscosity and skin-friction drag via the steps outlined
in Section 10.4.3. A perturbation series for the turbulent viscosity is thus deduced from
the perturbation series (11.7),

νT = νT0 + α2 νT2 + O(α4). (11.8)

Here, νT2 represents the second-order correction to the turbulent viscosity, which de-
pends on second-order corrections to the kinetic energy k2 and dissipation of kinetic
energy ε2, i.e.,

νT2 = 2 k2

(
νT0

k0

)
+

(
ε2
R2
τ

)(
νT0

k0

)2

. (11.9)

This equation separates the dependence of νT2 on the turbulent viscosity and kinetic
energy of the uncontrolled flow via the ratio νT0/k0, and the second-order correction
to the kinetic energy k2 and the scaled correction to the dissipation of kinetic energy
ε2/R

2
τ in the presence of control.

Following the perturbation series considered for νT in (11.8), the mean streamwise
velocity and the pressure gradient can be written as

U(y) = U0(y) + α2 U2(y) + O(α4), (11.10a)

Px = −1 + α2 Px,2 + O(α4). (11.10b)

Here, U0 is the turbulent mean velocity of the channel flow in the absence of control,
and U2 and Px,2 are correction terms to the mean streamwise velocity and the pressure
gradient at the level of α2. These correction terms can be computed by substituting the
perturbation series (11.8) into the governing equations for the streamwise mean velocity
U(y). By substituting equation (11.10b) into (11.4), we arrive at the the second-order
correction to turbulent drag Cf

Cf,2 = − 1

2UB

∫ 1

−1

∫ y

−1

νT2(ξ)U ′0(ξ)

1 + νT0
dξ dy. (11.11)

See [33, Appendix E] for additional details.
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11.3 High Reynolds number trends

Recent improvements in high-fidelity numerical simulations [236,237,285–288,307] and
the construction of high Reynolds number facilities for gathering experimental mea-
surements [257, 258, 282–284, 308–316] have provided the opportunity to answer many
questions regarding the structural features of wall turbulence at high Reynolds numbers.
This has led to an improved understanding of the physics of energetically relevant tur-
bulent length-scales as well as universality laws for the trends observed in the turbulent
mean velocity profile in a variety of shear flow configurations [9, 257].

In this section, we first examine the DNS-generated energy spectrum of a turbulent
channel flow with Rτ = 186, 547, 934, and 2003 [236, 237]. We then explore the spec-
trum of kinetic energy and its dissipation in the controlled channel flow and use these
observations to predict drag reducing trends of this control strategy at higher Reynolds
numbers.

11.3.1 Turbulent energy spectrum of uncontrolled flow

Figure 11.2 shows the premultiplied energy spectrum of uncontrolled flow from numerical
simulations [236, 237] of the turbulent channel flow at various Reynolds numbers. The
spectra are displayed in terms of the streamwise and spanwise wavelengths and the
wall-normal coordinate (all in inner units). The energy is concentrated within a certain
range of wavelengths and in a certain wall-normal region and away from the wall. As the
Reynolds number is increased, flow structures with longer wavelengths that form farther
away from the wall become more significant. This observation is in agreement with
experimental measurements that have shown that as the Reynolds number increases,
the contribution to the production of turbulent kinetic energy shifts from fluid structures
that reside in the near-wall region (0 < y+ < 30) to ones that are farther away from
the wall and within the logarithmic region (70 < y+ < 0.15Rτ ) [315]; see figure 11.3.

11.3.2 Effect of control on the production and dissipation of turbulent
kinetic energy at high Reynolds numbers

In this subsection, we use the model-based framework described in Section 11.2 to
examine the effect of control on the turbulent kinetic energy and the dissipation of
kinetic energy. We focus on wall oscillations with a period of T+ = 100 for which
numerical studies at Rτ = 200 have shown largest drag reduction for control amplitudes
of α = 3.1 and 6.2 [291].
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Figure 11.2: Premultiplied energy spectrum of uncontrolled flow from DNS of turbulent
channel flow [236, 237] in terms of streamwise (left) and spanwise (right) wavelengths
and the wall-normal coordinate (all in inner units) at (a, b) Rτ = 186, (c, d) Rτ = 547,
(e, f) Rτ = 934, and (g, h) Rτ = 2003.
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Figure 11.3: Ratio of contribution to kinetic energy production to bulk production. As
the Reynolds number increases, contribution to the production of kinetic energy shifts
from structures that lie in the near-wall region to those that lie farther away from the
wall and in the logarithmic region; figure from Marusic et al. [315].

Figure 11.4 shows the premultiplied second-order correction to the turbulent kinetic
energy in terms of the the streamwise and spanwise wavelengths and the wall-normal
coordinate (all in inner units) for turbulent channels with various Reynolds numbers.
We observe that as the Reynolds number is increased, the effect of control on the
production of turbulent kinetic energy is confined to a certain region close to the wall
(1 < y+ < 100). It is also limited to a certain range of streamwise and spanwise
wavelengths. A similar collapse with inner units is observed in the premultiplied second-
order correction to the dissipation of kinetic energy divided by R2

τ ; see figure 11.5.

11.4 Drag reduction in higher Reynolds numbers flows

Based on the trends observed in the previous section, the effect of control on the pre-
multiplied second-order corrections to the turbulent kinetic energy and its dissipation
are approximately invariant with respect to changes in the the Reynolds number1; cf.
figures 11.4 and 11.5. Based on this and the dependence of equation (11.9) on the ratio
νT0/k0 we arrive at the following conclusion.

1Currently, this claim is confined to the range of Reynolds numbers considered in this study.
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Figure 11.4: Premultiplied second-order correction to the kinetic energy spectrum of
velocity fluctuations in turbulent channel flow subject to spanwise wall oscillations with
period T+ = 100; kxk2(y, kx) (left) and kzk2(y, kz) (right). (a, b) Rτ = 186, (c, d)
Rτ = 547, (e, f) Rτ = 934, and (g, h) Rτ = 2003.
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Figure 11.5: Premultiplied second-order correction to the dissipation of kinetic energy
in turbulent channel flow subject to spanwise wall oscillations with period T+ = 100;
kxε2(y, kx)/R2

τ (left) and kzε2(y, kz)/R
2
τ (right). (a, b) Rτ = 186, (c, d) Rτ = 547, (e,

f) Rτ = 934, and (g, h) Rτ = 2003.



165

%
f D

R
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Figure 11.6: Turbulent drag reduction normalized by α2 at Rτ = 934 (black), Rτ = 2003
(blue), and Rτ = 4000 (green) in terms of period of oscillations T+.

Remark 5. Given the spectrum of turbulent kinetic energy k0 of the uncontrolled
flow from DNS, and the turbulent kinetic energy νT0 from (11.6), the second-order
correction to the turbulent viscosity νT2 and skin-friction drag Cf,2 (cf. equations (11.9)
and (11.11)) can be predicted at higher Reynolds numbers based on the spectra of k2

and ε2/R
2
τ at lower Reynolds numbers.

Figure 11.6 shows the percentage of drag reduction normalized by α2 for various Reynolds
numbers

%fDR = −100Cf,2,

where Cf,2 is computed from equation (11.11). We have used k2 and ε2/R
2
τ from the

model-based analysis conducted at Rτ = 2003 to predict drag reduction at Rτ = 4000.
In addition, we have used the turbulent kinetic energy k0 from DNS of turbulent chan-
nel flow2 with Rτ = 4000 and used equation (11.6) for νT0. It is clear that the ability
of wall oscillations to reduce skin-friction drag in the turbulent channel flow reduces
as the Reynolds number is increased. This is in agreement with DNS studies that
have confirmed deterioration in drag reduction as the friction Reynolds number in-
creases [302–304,317]. Figure 11.6 also shows that the optimal period of oscillations T+

slightly decreases in higher Reynolds number flows. Therefore, as Rτ increases, optimal
drag reduction is obtained by wall oscillation with larger frequency.

2The DNS-based kinetic energy is taken from http://torroja.dmt.upm.es/ftp/channels/data/

and interpolated in the wall-normal direction.

http://torroja.dmt.upm.es/ftp/channels/data/
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The deterioration in drag reduction as Reynolds number increases, can be explained
by experimental and computational observations. As previously reported in experi-
ments [301], and confirmed by the analysis of [33], wall oscillations reduce the spatial
spread and magnitude of the dominant characteristic eddies and suppress the spanwise
vorticity in the viscous sublayer. However, as the Reynolds number increases, the role of
longer (and wider) eddy structures that lie farther away from the wall (in the logarith-
mic region) becomes more prominent in the production of kinetic energy; cf. figure 11.3.
Similarly, the results of Section 11.3.2 showed that as the Reynolds number increases,
the effect of control on the production and dissipation of kinetic energy is confined to a
certain range of wavelengths that lie in the close proximity of the wall (y+ < 100). Fur-
thermore, figures 11.4 and 11.5 show that at higher Reynolds numbers, corrections to
the spectrum of turbulent kinetic energy and its dissipation due to the effect of control
at the level of α2 become more concentrated.



Chapter 12

Conclusions and future directions

Conclusions

In Chapter 10, we have developed a model-based framework to design streamwise trav-
eling waves for drag reduction in a turbulent channel flow. Our approach consists of two
steps: (1) we use the turbulent viscosity of the uncontrolled flow to approximate the in-
fluence of control on the turbulent mean velocity; and (2) we use second-order statistics
of stochastically forced equations linearized around this mean profile to examine the
influence of velocity fluctuations on the turbulent viscosity and skin-friction drag. We
demonstrate that the mean flow analysis alone is not capable of capturing the essential
drag-reducing trends of streamwise traveling waves. In order to improve the quality of
predictions, we need to incorporate the influence of fluctuations on the turbulent vis-
cosity and skin-friction drag. For an upstream traveling wave with c = −2 and ωx = 0.5
we have employed perturbation analysis in the traveling wave amplitude to demon-
strate that analysis of dynamics can reduce the gap between theoretical predictions
and results of high-fidelity numerical simulations. Moreover, we have demonstrated the
ability of our model-based framework in capturing the sub-laminar drag observed in the
DNS of turbulent channel flow subject to upstream traveling waves of amplitude 0.25
(α = 0.125).

In Chapter 11, we have utilized a previously developed model-based framework for the
design of spanwise wall oscillations to examine the efficacy of this control strategy at
high Reynolds numbers. For this, we have used perturbation analysis to show that
the influence of control on the production and dissipation of kinetic energy is confined
to a range of wavelengths that correspond to the universal inner-scaled eddies. These
energetic structures typically lie within the inner layer of the flow. Given the mean
profiles of the streamwise, wall-normal, and spanwise intensities (or the turbulent kinetic
energy) from DNS, these observations allow us to predict the drag reducing capability
of spanwise wall oscillations at higher Reynolds numbers. In particular, we are able to
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capture the deterioration in drag reduction as the friction Reynolds number increases.

Extensions and future directions

Stochastic modeling for the purpose of control design. Despite initial suc-
cesses of model-based feedback [106, 318–323] and sensor-free [33, 107–109, 324] control
at low Reynolds numbers in wall-bounded flows, many important challenges remain.
One source of the problem is that, typically, sensing and actuation of the flow field is
restricted to the surface of the domain. Thus, this limited actuation needs to rely on
estimation of the flow field based on available noisy measurements of wall-shear stresses
and pressure. The importance of modeling the statistics of flow disturbances for obtain-
ing well-behaved estimation gains has been previously recognized [325, 326]. However,
these initial studies, rely on assumptions on flow disturbances, e.g., whiteness-in-time,
which often fail to hold in turbulent flows. In this vein, the colored-in-time stochastic
modeling approach of Chapter 7 demonstrates that by departing from the white-in-
time restriction on stochastic excitations, turbulent flow statistics can be matched by
linearized NS equations. This methodology fits nicely into a Kalman filter estimation
framework for turbulent flows and has the potential to open the door for a successful
feedback control design at higher Reynolds numbers.

Another aspect which remains to be studied is the possibility to improve predictions from
our model-based framework by incorporating higher-order corrections to the turbulent
viscosity. This can be effectively thought of as closing the loop in the simulation-
free approach presented in [33]; see Figure 12.1. In this, higher-order corrections are
fed back into the RANS model for the mean velocity which subsequently modifies the
linearized flow dynamics. This closed-loop methodology in conjunction with appropriate
stochastic noise modeling for higher-order statistics can potentially improve predictions
of skin-friction drag, which is critically important in model-based flow control design.
The development of the appropriate computational framework for these purposes is a
topic of future research.

Numerical simulations. Direct numerical simulations play a critical role in verifying
our simulation-free predictions. While many numerical studies have examined the drag
reducing effects of wall oscillations in turbulent boundary layers, channels and pipes [291,
303, 317, 327–330], our recent efforts to predict skin-friction drag reduction at higher
Reynold numbers call for additional efforts in this direction.
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Figure 12.1: Block diagram representing the various steps involved in the simulation-
free approach for determining the effect of control on skin-friction drag in turbulent
flows; figure taken from [33].
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[136] F. Lin, M. R. Jovanović, and T. T. Georgiou. An admm algorithm for matrix
completion of partially known state covariances. In Proceedings of the 52nd IEEE
Conference on Decision and Control, pages 1684–1689, 2013.
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[165] Y. Chen, M. R. Jovanović, and T. T. Georgiou. State covariances and the matrix
completion problem. In Proceedings of the 52nd IEEE Conference on Decision
and Control, pages 1702–1707, 2013.
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Appendix A

A.1 Proof of Lemma 1

Without loss of generality, let us consider Z of the following form (see Section 2.3.2 for
further justification)

Z = 2

 Iπ 0 0
0 −Iν 0
0 0 0

 . (A.1)

Given any S that satisfies Z = S + S∗ we can decompose it into

S = M + N

with M Hermitian and N skew-Hermitian. It is easy to see that

M =
1

2
Z =

 Iπ 0 0
0 −Iν 0
0 0 0

 .
By partitioning N as

N =

 N11 N12 N13

N21 N22 N23

N31 N32 N33

 ,
we have

S =

 Iπ +N11 N12 N13

N21 −Iν +N22 N23

N31 N32 N33

 .
Clearly,

rank(S) ≥ rank(Iπ +N11).
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Since N11 is skew-Hermitian, all its eigenvalues are on the imaginary axis. This implies
that all the eigenvalues of Iπ +N11 have real part 1 and therefore Iπ +N11 is a full rank
matrix. Hence, we have

rank(S) ≥ rank(Iπ +N11) = π(Z)

which completes the proof.

A.2 Proof of Proposition 2

The inequality

min{rank(S) | Z = S + S∗} ≥ max{π(Z), ν(Z)}

follows from Lemma 1. To establish the proposition we need to show that the bounds
are tight, i.e.,

min{rank(S) | Z = S + S∗} ≤ max{π(Z), ν(Z)}.

Given Z in (A.1), for π(Z) ≤ ν(Z), Z can be written as

Z = 2


Iπ 0 0 0
0 −Iπ 0 0
0 0 −Iν−π 0
0 0 0 0

 .
By selecting S in the form (2.15) we conclude that

rank(S) = rank(

[
Iπ −Iπ
Iπ −Iπ

]
) + rank(−Iν−π)

= π(Z) + ν(Z) − π(Z) = ν(Z).

Therefore
min{rank(S) | Z = S + S∗} ≤ ν(Z).

Similarly, for the case π(Z) > ν(Z),

min{rank(S) | Z = S + S∗} ≤ π(Z).

Hence,
min{rank(S) | Z = S + S∗} ≤ max{π(Z), ν(Z)}

which completes the proof.
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A.3 Proof of Lemma 2

The second-order approximation of log detA†(Y ) yields

log detA†(Y + ∆Y ) = log detA†(Y ) + trace
(
A†(Y )−1A†(∆Y )

)
−

1

2
trace

(
A†(Y )−1A†(∆Y )A†(Y )−1A†(∆Y )

)
+ O(‖∆Y ‖2F ).

To show Lipschitz continuity of the gradient it is sufficient to show that the approxima-
tion to the Hessian is bounded by the Lipschitz constant L, i.e.,

trace
(
A†(Y )−1A†(∆Y )A†(Y )−1A†(∆Y )

)
≤ L ‖∆Y ‖2F .

From the left-hand-side we have

trace
(
A†(Y )−1A†(∆Y )A†(Y )−1A†(∆Y )

)
= trace

(
A†(Y )−

1
2 A†(∆Y )A†(Y )−1A†(∆Y )A†(Y )−

1
2

)
≤ 1

α
trace

(
A†(Y )−

1
2 A†(∆Y )A†(∆Y )A†(Y )−

1
2

)
=

1

α
trace

(
A†(∆Y )A†(Y )−1A†(∆Y )

)
≤ 1

α2
trace

(
A†(∆Y )A†(∆Y )

)
≤ σ2

max(A†)

α2
‖∆Y ‖2F .

Here, we have utilized the fact that A†(Y )−1 is a positive-definite matrix and that
Y ∈ Dαβ. This completes the proof.

A.4 Proof of Lemma 3

We begin by substituting the expressions for Y +
1 , Y +

2 , Ȳ1, and Ȳ2. Utilizing the non-
expansive property of the proximal operator Tγ [331] we have

‖Y +
1 − Ȳ1‖F = || Tγ

(
Y1 + ρA1(A†(Y1, Y2)−1)

)
− Tγ

(
Ȳ1 + ρA1(A†(Ȳ1, Ȳ2)−1)

)
||F

≤ || Y1 + ρA1(A†(Y1, Y2)−1) − Ȳ1 − ρA1(A†(Ȳ1, Ȳ2)−1) ||F

‖Y +
2 − Ȳ2‖F = || Y2 + ρ

(
A2(A†(Y1, Y2)−1) − G

)
−

Ȳ2 − ρ
(
A2(A†(Ȳ1, Ȳ2)−1) − G

)
||F ,
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from which we obtain

‖Y + − Ȳ ‖F ≤ ‖hρ(Y ) − hρ(Ȳ )‖F ,

where
hρ(Y ) = Y + ρA

(
A†(Y )−1

)
.

The first order approximation of the linear map hρ gives

hρ(Y + ∆Y ) − hρ(Y ) ≈ ∆Y − ρA
(
A†(Y )−1A†(∆Y )A†(Y )−1

)
.

From this we conclude that its Jacobian at Y is ≤ 1 if〈
A
(
A†(Y )−1A†(∆Y )A†(Y )−1

)
,∆Y

〉
≥ 0,

and the step-size 0 < ρ ≤ 2α4

β2 σ2
max(A)

satisfies

ρ

2
‖A
(
A†(Y )−1A†(∆Y )A†(Y )−1

)
‖2F ≤

〈
A
(
A†(Y )−1A†(∆Y )A†(Y )−1

)
,∆Y

〉
for any perturbation ∆Y . The former follows from〈
A†(Y )−1A†(∆Y )A†(Y )−1,A†(∆Y )

〉
= trace (A†(Y )−1A†(∆Y )A†(Y )−1A†(∆Y ))

= trace (A†(Y )−1/2A†(∆Y )A†(Y )−1A†(∆Y )A†(Y )−1/2),

and the latter follows from

ρ

2
‖A
(
A†(Y )−1A†(∆Y )A†(Y )−1

)
‖2F

≤ ρ σ2
max(A)

2
‖A†(Y )−1A†(∆Y )A†(Y )−1‖2F

≤ ρ σ2
max(A)

2α4
‖A†(∆Y )‖2F

≤ ρ β2 σ2
max(A)

2α4

〈
A†(Y )−1A†(∆Y )A†(Y )−1,A†(∆Y )

〉
=

ρ β2 σ2
max(A)

2α4

〈
A
(
A†(Y )−1A†(∆Y )A†(Y )−1

)
,∆Y

〉
≤
〈
A
(
A†(Y )−1A†(∆Y )A†(Y )−1

)
,∆Y

〉
.
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Thus, we conclude Jhρ(Y ) ≤ 1 for all Y ∈ Dαβ. Finally, from the mean value theorem,
we have

‖Y + − Ȳ ‖F ≤ ‖hρ(Y ) − hρ(Ȳ )‖F
≤ sup

δ ∈ [0,1]
Jhρ(Yδ) ‖Y − Ȳ ‖F ,

≤ ‖Y − Ȳ ‖F

where Yδ = δ Y + (1− δ) Ȳ ∈ Dαβ. This completes the proof.

A.5 Proof of Lemma 4

We first show that
αI � A†(Y 0) � βI.

The upper bound follows from

‖A†(Y 0)‖2 = ‖A†(Y 0)‖2 − ‖A†(Ȳ )‖2 + ‖A†(Ȳ )‖2

≤ ‖A†(Y 0) − A†(Ȳ )‖2 + ‖A†(Ȳ )‖2

≤ ‖A†(Y 0) − A†(Ȳ )‖F + ‖A†(Ȳ )‖2

≤ σmax(A†)‖Y 0 − Ȳ ‖F + ‖A†(Ȳ )‖2 = β.

To see the lower bound, note that for any X ∈ Hn,

1√
n
‖X‖F ≤ ‖X‖2 ≤ ‖X‖F . (A.2)

Using this property and the dual constraint ‖Y 0
1 ‖2 ≤ γ we have

‖A†
1(Y 0

1 )‖2 ≤ ‖A†
1(Y 0

1 )‖F ≤ σmax(A†
1) ‖Y 0

1 ‖F

≤
√
nσmax(A†

1) ‖Y 0
1 ‖2 ≤ γ

√
nσmax(A†

1).

Since A†
1(Y 0

1 ) +A†
2(Y 0

2 ) � 0, we also have

A†
2(Y 0

2 ) � − γ
√
nσmax(A†

1) I.

Noting G = A2(X̄) for the optimal solution X̄ � 0, we obtain〈
G, Y 0

2

〉
=
〈
A2(X̄), Y 0

2

〉
=
〈
X̄,A†

2(Y 0
2 )
〉
≥ − γ

√
nσmax(A†

1) trace(X̄). (A.3)
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Let a = λmin(A†(Y 0)). Since β gives a bound on the largest eigenvalue of A†(Y 0), we
have

log detA†(Y 0) ≤ log(a) + (n− 1) log(β)

Combining this and

log detA†(Y 0) ≥ log detA†(Y 0)−
〈
G, Y 0

2

〉
+
〈
G, Y 0

2

〉
≥ log detA†(Y 0)−

〈
G, Y 0

2

〉
− γ

√
nσmax(A†

1) trace(X̄).

gives λmin(A†(Y 0)) = a ≥ α.

The proof of αI � A†(Y k) � βI for k > 0 follows similar lines. We use inductive
argument to prove this. Assume that αI � A†(Y `) � βI holds for all 0 ≤ ` ≤ k − 1.
For the upper bound, we have

‖A†(Y k)‖2 = ‖A†(Y k)‖2 − ‖A†(Ȳ )‖2 + ‖A†(Ȳ )‖2
≤ ‖A†(Y k) − A†(Ȳ )‖F + ‖A†(Ȳ )‖2
≤ σmax(A†) ‖Y k − Ȳ ‖F + ‖A†(Ȳ )‖2.

By repeatedly applying Lemma 3 for ‖Y j − Ȳ ‖F ≤ ‖Y j−1 − Ȳ ‖F , for all 1 ≤ j ≤ k we
have

‖A†(Y k)‖2 ≤ σmax(A†) ‖Y 0 − Ȳ ‖F + ‖A†(Ȳ )‖2 = β.

To see the lower bound, note that (A.3) holds for all k ≥ 0, namely,〈
G, Y k

2

〉
=
〈
A2(X̄), Y k

2

〉
=
〈
X̄,A†

2(Y k
2 )
〉
≥ − γ

√
nσmax(A†

1) trace(X̄), (A.4)

with the same argument. Let a = λmin(A†(Y k)). Since β gives a bound on the largest
eigenvalue of A†(Y k), we have

log detA†(Y k) ≤ log(a) + (n− 1) log(β) (A.5)

The dual ascent property

log detA†(Y k) −
〈
G, Y k

2

〉
≥ log detA†(Y 0) −

〈
G, Y 0

2

〉
,

together with inequality (A.4) gives

log detA†(Y k) ≥ log detA†(Y 0) −
〈
G, Y 0

2

〉
+
〈
G, Y k

2

〉
≥ log detA†(Y 0) −

〈
G, Y 0

2

〉
− γ

√
nσmax(A†

1) trace(X̄).
(A.6)
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From (A.5) and (A.6) we thus have

λmin(A†(Y k)) = a ≥ detA†(Y 0)β1−n e−〈G,Y 0
2 〉− γ

√
nσmax(A†

1) trace(X̄) = α,

which completes the proof.



Appendix B

B.1 Change of coordinates

The kinetic energy of velocity fluctuations in the linearized NS equations (7.5) is deter-
mined by,

E = 〈ϕ,ϕ〉e =
1

2

∫ 1

−1
ϕ∗Qϕ dy =: 〈ϕ,Qϕ〉 , (B.1)

where 〈·, ·〉 is the standard L2 inner product and Q is the operator that determines
energy on the state-space HOS × L2[−1, 1] [30, 178]. After wall-normal discretization,
the energy norm is determined by E = ϕ∗Qϕ, where Q is the finite-dimensional rep-
resentation of the operator Q.

Since the matrix Q is positive-definite, the state of the linearized NS equations (7.5)
can be transformed into a set of coordinates in which the energy is determined by the
standard Euclidean norm, i.e., E = ψ∗ψ with ψ := Q1/2ϕ. Equation (7.6) results from
the application of this change of coordinates on the discretized state-space matrices Ā,
B̄, and C̄

A = Q1/2 Ā Q−1/2, B = Q1/2 B̄ I
−1/2
W , C = I

1/2
W C̄ Q−1/2, (B.2)

and the discretized input d̄ and velocity v̄ vectors

d = I
1/2
W d̄, v = I

1/2
W v̄. (B.3)

Here, IW is a diagonal matrix of integration weights on the set of Chebyshev collocation
points. The form of the input and output matrices in (B.3) follows from the definition of
their respective energy norms which are given by the standard L2[−1, 1] inner product.
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B.2 Interpretation of the matrix H solving (7.12)

From (7.25) we see that the state φ(k, t) of the linear filter (7.20) is

φ(k, t) = ψ(k, t) + χ(k, t), (B.4)

where χ(k, t) represents uncontrollable asymptotically stable modes of the cascade con-
nection of the linearized NS equations and the filter given in (7.24). Thus, χ(k, t)→ 0
as t→∞ and, consequently,

lim
t→∞

〈ψ(k, t)φ∗(k, t)〉 = lim
t→∞

〈ψ(k, t)ψ∗(k, t)〉 = X(k). (B.5)

On the other hand, the cross-correlation between the colored-in-time forcing and the
state of the linearized NS equations (7.6) becomes

lim
t→∞

〈ψ(k, t) d∗(k, t)〉 = lim
t→∞

〈
ψ(k, t)

(
φ∗(k, t)C∗f (k) + w∗(k, t)

)〉
= X(k)C∗f (k),

(B.6)

where we have used the fact that the state ψ(k, t) and the white-in-time input w(k, t)
are not correlated. From the definition of Cf (k) in (7.21) we now have

H(k) = lim
t→∞

〈ψ(k, t) d∗(k, t)〉 +
1

2
B(k) Ω(k). (B.7)

Therefore, the solution H(k) of (7.12) can be seen to be directly related to the cross-
correlation between the forcing d(k, t) and the state ψ(k, t); see also [121].

B.3 The role of the regularization parameter γ

When the true covariance matrices are not known, the regularization parameter γ is
typically chosen on an empirical basis or by cross-validation. In fact, the selection of
the optimal value of γ is an open theoretical challenge. If the DNS-generated two-point
correlation matrix Φdns(k) is known, we can use the following error criterion:

‖Φ(k) − Φdns(k)‖F
‖Φdns(k)‖F

× 100, (B.8)

to assess the quality of approximation.

For turbulent channel flow with Rτ = 186 and k = (2.5, 7), figure B.1a shows the γ
dependence of the above measure. The smallest error is achieved for γ ≈ 300. On the
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(a) (b)

γ γ

Figure B.1: The γ-dependence of (a) the relative error (B.8); and (b) the rank of the
matrix Z resulting from (7.19) for turbulent channel flow withRτ = 186 and k = (2.5, 7).

other hand, figure B.1b shows the γ dependence of the rank of the matrix Z. Clearly,
much larger values of γ are needed to achieve Z of lower rank.
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