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Abstract—State statistics of linear systems satisfy cer-
tain structural constraints that arise from the underlying
dynamics and the directionality of input disturbances. In
the present paper, we study the problem of completing par-
tially known state statistics. Our aim is to develop tools that
can be used in the context of control-oriented modeling
of large-scale dynamical systems. For the type of applica-
tions we have in mind, the dynamical interaction between
state variables is known while the directionality and dynam-
ics of input excitation is often uncertain. Thus, the goal
of the mathematical problem that we formulate is to iden-
tify the dynamics and directionality of input excitation in
order to explain and complete observed sample statistics.
More specifically, we seek to explain correlation data with
the least number of possible input disturbance channels.
We formulate this inverse problem as rank minimization,
and for its solution, we employ a convex relaxation based
on the nuclear norm. The resulting optimization problem
is cast as a semidefinite program and can be solved us-
ing general-purpose solvers. For problem sizes that these
solvers cannot handle, we develop a customized alternat-
ing minimization algorithm (AMA). We interpret AMA as a
proximal gradient for the dual problem and prove sublin-
ear convergence for the algorithm with fixed step-size. We
conclude with an example that illustrates the utility of our
modeling and optimization framework and draw contrast
between AMA and the commonly used alternating direction
method of multipliers (ADMM) algorithm.

Index Terms—Alternating minimization algorithm, convex
optimization, disturbance dynamics, low-rank approxima-
tion, matrix completion problems, nuclear norm regulariza-
tion, structured covariances.

Manuscript received October 16, 2015; revised April 11, 2016, April
13, 2016, and May 31, 2016; accepted June 17, 2016. Date of publi-
cation July 28, 2016; date of current version February 24, 2017. This
work was supported by the National Science Foundation under Award
CMMI 1363266, the Air Force Office of Scientific Research under Award
FA9550-16-1-0009, the University of Minnesota Informatics Institute
Transdisciplinary Faculty Fellowship, and the University of Minnesota
Doctoral Dissertation Fellowship. Recommended by Associate Editor C.
M. Lagoa.

The authors are with the Department of Electrical and Com-
puter Engineering, University of Minnesota, Minneapolis, MN 55455
(e-mail: arminzare @ umn.edu; chen2468 @ umn.edu; mihailo @ umn.edu;
tryphon @umn.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TAC.2016.2595761

|. INTRODUCTION

OTIVATION for this work stems from control-oriented

modeling of systems with a large number of degrees of
freedom. Indeed, dynamics governing many physical systems
are prohibitively complex for purposes of control design and
optimization. Thus, it is common practice to investigate low-
dimensional models that preserve the essential dynamics. To
this end, stochastically driven linearized models often represent
an effective option that is also capable of explaining observed
statistics. Further, such models are well-suited for analysis and
synthesis using tools from modern robust control.

An example that illustrates the point is the modeling of fluid
flows. In this, the Navier-Stokes equations are prohibitively
complex for control design [1]. On the other hand, linearization
of the equations around the mean-velocity profile in the presence
of stochastic excitation has been shown to qualitatively repli-
cate structural features of shear flows [2]-[10]. However, it has
also been recognized that a simple white-in-time stochastic ex-
citation cannot reproduce important statistics of the fluctuating
velocity field [11], [12]. In this paper, we introduce a mathemat-
ical framework to consider stochastically driven linear models
that depart from the white-in-time restriction on random distur-
bances. Our objective is to identify low-complexity disturbance
models that account for partially available second-order statis-
tics of large-scale dynamical systems.

Thus, herein, we formulate a covariance completion problem
for linear time-invariant (LTI) systems with uncertain distur-
bance dynamics. The complexity of the disturbance model is
quantified by the number of input channels. We relate the num-
ber of input channels to the rank of a certain matrix which
reflects the directionality of input disturbances and the corre-
lation structure of excitation sources. We address the resulting
optimization problem using the nuclear norm as a surrogate for
rank [13]-[20].

The relaxed optimization problem is convex and can be cast as
a semidefinite program (SDP) which is readily solvable by stan-
dard software for small-size problems. A further contribution
is to specifically address larger problems that general-purpose
solvers cannot handle. To this end, we exploit the problem struc-
ture, derive the Lagrange dual, and develop an efficient cus-
tomized Alternating Minimization Algorithm (AMA). Specif-
ically, we show that AMA is a proximal gradient for the dual
and establish convergence for the covariance completion prob-
lem. We utilize a Barzilai-Borwein (BB) step-size initialization
followed by backtracking to achieve sufficient dual ascent. This
enhances convergence relative to theoretically-proven sublinear
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convergence rates for AMA with fixed step-size. We also draw
contrast between AMA and the commonly used ADMM by
showing that AMA leads to explicit, easily computable updates
of both primal and dual optimization variables.

The solution to the covariance completion problem gives rise
to a class of linear filters that realize colored-in-time distur-
bances and account for the observed state statistics. This is a
non-standard stochastic realization problem with partial spec-
tral information [21]-[24]. The class of modeling filters that we
generate for the stochastic excitation is generically minimal in
the sense that it has the same number of degrees of freedom
as the original linear system. Furthermore, we demonstrate that
the covariance completion problem can be also interpreted as an
identification problem that aims to explain available statistics
via suitable low-rank dynamical perturbations.

Our presentation is organized as follows. We summarize key
results regarding the structure of state covariances and its rela-
tion to the power spectrum of input processes in Section II. We
characterize admissible signatures for matrices that parametrize
disturbance spectra and formulate the covariance completion
problem in Section III. Section IV develops an efficient opti-
mization algorithm for solving this problem in large dimensions.
To highlight the theoretical and algorithmic developments we
provide an example in Section V. We conclude with remarks
and future directions in Section VI.

Il. LINEAR STOCHASTIC MODELS AND STATE STATISTICS

We now discuss algebraic conditions that state covariances
of LTI systems satisfy. For white-in-time stochastic inputs state
statistics satisfy an algebraic Lyapunov equation. A similar al-
gebraic characterization holds for LTI systems driven by colored
stochastic processes [25], [26]. This characterization provides
the foundation for the covariance completion problem that we
study in this paper.

Consider a linear time-invariant system

T = Az + Bu

y=Cr (D

where z(t) € C" is a state vector, y(t) € C? is the output,
and u(t) € C™ is a zero-mean stationary stochastic input. The
dynamic matrix A € C"*" is Hurwitz, B € C"*™ is the input
matrix with m < n, and (A, B) is a controllable pair. Let X
be the steady-state covariance of the state vector of system
(1), X = lim;_,» E(z(t)x*(t)), with E being the expectation
operator. We next review key results and provide new insights
into the following questions:
1) What is the algebraic structure of X? In other words,
given a positive definite matrix X, under what conditions
does it qualify to be the steady-state covariance of (1)?
2) Given the steady-state covariance X of (1), what can be
said about the power spectra of input processes that are
consistent with these statistics?

A. Algebraic Constraints on Admissible Covariances

The steady-state covariance matrix X of the state vector in
(1) satisfies [25], [26]

ik [AX +XA* B (22)

k| OB
B o|=M™XIp o]

white colored
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Fig.1. (a) A cascade connection of an LTl system with a linear filter that
is designed to account for the sampled steady-state covariance matrix
X; (b) An equivalent feedback representation of the cascade connection
in (a).

An equivalent characterization is that there is a solution H €
C"™*™ to the equation

AX + XA* = —-BH* — HB". (2b)

Either of these conditions, together with the positive definite-
ness of X, completely characterize state covariances of lin-
ear dynamical systems driven by white or colored stochastic
processes [25], [26]. When the input w is white noise with
covariance W, X satisfies the algebraic Lyapunov equation

AX + XA* = -BWDB".

In this case, H in (2b) is determined by H = (1/2)BW and
the right-hand-side —BW B* is sign-definite. In fact, except for
this case when the input is white noise, the matrix Z defined by

Z:= — (AX + XA (3a)
— BH* + HB" (3b)

may have both positive and negative eigenvalues. Additional
discussion on the structure of Z is provided in Section III-A.

B. Power Spectrum of Input Process

For stochastically-driven LTI systems the state statistics can
be obtained from knowledge of the system model and the input
statistics. Herein, we are interested in the converse: starting from
the steady-state covariance X and the system dynamics (1), we
want to identify the power spectrum of the input process u. As
illustrated in Fig. 1(a), we seek to construct a filter which, when
driven by white noise, produces a suitable stationary input u to
(1) so that the state covariance is X. Next, we characterize a
class of filters with degree at most n.

Consider the linear filter given by

§=(A—-BK){+ Bw
u= —K¢f+w

(4a)
(4b)

where w is a zero-mean white stochastic process with covariance
Q> 0and

1
K= igB*X*1 —H* X! (4c)
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for some H that satisfies (2b). The power spectrum of wu is
determined by

I, (w) = Y(jw)QU*(jw)
where
U(s)=1I1—-K(sI -A+BK)'B

is the transfer function of the filter (4). To verify this, consider
the cascade connection shown in Fig. I(a), with state space
representation

=10 B e+ 3]

x=[I 0] [ﬂ

This representation has twice as many states as linear system
(1), but it is not controllable and therefore not minimal. The
coordinate transformation

HEERE

brings system (5) into the following form:

o= [ TR ()

&)

z=[I 0] m .
Clearly, the input w does not enter into the equation for ¢ and
& =(A— BK)r + Bw (6)

provides a minimal realization of the transfer function from
white-in-time w to z, (sI — A+ BK) ! B. In addition, the
corresponding algebraic Lyapunov equation in conjunction with
(4c) yields

(A-— BK)X + X(A—- BK)"+ BQB*
=AX + XA*+ BOB*— BKX — XK*B*
=AX + XA*+BH* + HB*
=0.

This shows that (4) generates a process « that is consistent with
X.

As we elaborate next, compact representation (6) offers an
equivalent interpretation of colored-in-time stochastic input pro-
cesses as a dynamical perturbation to system (1).

C. Stochastic Control Interpretation

The class of power spectra described by (4) is closely related
to the covariance control problem, or the covariance assignment
problem, studied in [27], [28]. To illustrate this, let us consider

T = Ax + Bv + Bw (7a)

where w is again white with covariance €2; see Fig. 1(b). In the
absence of a control input (v = 0), the steady-state covariance
satisfies the Lyapunov equation

AX+ XA+ BQB" =0.

A choice of a nonzero process v can be used to assign different
values for X . Indeed, for

v=—-Kzx
and A — BK Hurwitz, X satisfies
(A-—BK)X 4+ X(A—-BK)"+ BQB* =0. ®)

(7b)

It is easy to see that any X > O satisfying (8) also satisfies (2b)
with H = —X K* + (1/2)B Q. Conversely, if X > 0 satisfies
(2b), for K = (1/2) QB*X ' — H*X !, then X also satisfies
(8) and A — BK is Hurwitz. Thus, the following statements are
equivalent:

* A matrix X > 0 qualifies as the stationary state covariance
of (7a) via a suitable choice of state-feedback (7b).

e Amatrix X > 0isastate covariance of (1) for some stationary
stochastic input .

To clarify the connection between K and the corresponding
modeling filter for u, let

u=—Kz+w. (9a)
Substitution of (7b) into (7a) yields
#=(A— BK)xr+ Bw
(9b)

= Ax + Bu

which coincides with (1). Thus, X can also be achieved by driv-
ing (1) with u given by (9a). The equivalence of (4) and (9) is
evident. Equation (9b) shows that a colored-in-time stochastic
input process u can be interpreted as a dynamical perturba-
tion to system (1). This offers advantages from a computational
standpoint, e.g., when conducting stochastic simulations; see
Section V.

In general, there is more than one choice of K that yields
a given feasible X. A criterion for the selection of an optimal
feedback gain K, can be to minimize

tlLr?O E (v (t)v(t)) .

This optimality criterion relates to information theoretic notions
of distance (Kullback-Leibler divergence) between correspond-
ing models with and without control [29]-[31]. Based on this
criterion, the optimal feedback gain K can be obtained by mini-
mizing trace (K X K*), subject to the linear constraint (8). This
choice of K characterizes an optimal filter of the form (9).
This filter is used in Section V where we provide an illustrative
example.

[Il. COVARIANCE COMPLETION AND MODEL COMPLEXITY

In Section II, we presented the structural constraints on the
state covariance X of an LTI system. We also proposed a method
to construct a class of linear filters that generate the appropri-
ate input process u to account for the statistics in X. In many
applications, the dynamical generator A in (1) is known. For
example, in turbulent fluid flows the mean velocity can be ob-
tained using numerical simulations of the Navier-Stokes equa-
tions and linearization around this equilibrium profile yields A
in (1). On the other hand, stochastic excitation often originates
from disturbances that are difficult to model directly. To com-
plicate matters, the state statistics may be only partially known,
i.e., only certain correlations between a limited number of states
may be available. For example, such second-order statistics may
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reflect partial output correlations obtained in numerical simula-
tions or experiments of the underlying physical system. Thus,
we now introduce a framework for completing unknown ele-
ments of X in a manner that is consistent with state-dynamics
and, thereby, obtaining information about the spectral content
and directionality of input disturbances to (1).

For colored-in-time disturbance u that enters into the state
equation in all directions, through the identity matrix, condition
(2a) is trivially satisfied. Indeed, any sample covariance X can
be generated by a linear model (1) with B = I. In this case, the
Lyapunov-like constraint (2b) simplifies to

AX 4+ XA*=—-H"—H.

Clearly, this equation is satisfied with H* = —A X. With this
choice of the cross-correlation matrix H, the dynamics repre-
sented by (9b) can be equivalently written as

1
T = —§X71x+w

with a white disturbance w. This demonstrates that colored-in-
time forcing u which excites all degrees of freedom can com-
pletely overwrite the original dynamics. Thus, such an input
disturbance can trivially account for the observed statistics but
provides no useful information about the underlying physics.
In our setting, the structure and size of the matrix B in (1)
is not known a priori, which means that the direction of the
input disturbances are not given. In most physical systems, dis-
turbance can directly excite only a limited number of directions
in the state space. For instance, in mechanical systems where in-
puts represent forces and states represent position and velocity,
disturbances can only enter into the velocity equation. Hence,
it is of interest to identify a disturbance model that involves a
small number of input channels. This requirement can be for-
malized by restricting the input to enter into the state equation
through a matrix B € C"*™ with m < n. Thus, our objective
is to identify matrices B and H in (2b) to reproduce a partially
known X while striking an optimal balance with the complex-
ity of the model; the complexity is reflected in the rank of B,
i.e., the number of input channels. This notion of complexity is
closely related to the signature of Z, which we discuss next.

A. The Signature of Z

As mentioned in Section II, the matrix Z in (3) is not nec-
essarily positive semidefinite. However, it is not arbitrary. We
next examine admissible values of the signature on Z, i.e., the
number of positive, negative, and zero eigenvalues. In partic-
ular, we show that the number of positive and negative eigen-
values of Z impacts the number of input channels in the state
equation (1).

There are two sets of constraints on Z arising from (3a) and
(3b), respectively. The first one is a standard Lyapunov equation
with Hurwitz A and a given Hermitian X > 0. The second
provides a link between the signature of Z and the number of
input channels in (1).

First, we study the constraint on the signature of Z arising
from (3a) which we repeat here,

AX + XA =—-7. (10)

The unique solution to this Lyapunov equation, with Hurwitz A
and Hermitian X and Z, is given by
o
X :/ et ZeA dt. (11)
0

Lyapunov theory implies that if Z is positive definite then X is
also positive definite. However, the converse is not true. Indeed,
for a given X > 0, Z obtained from (10) is not necessarily
positive definite. Clearly, Z cannot be negative definite either,
otherwise X obtained from (11) would be negative semidefinite.
We can thus conclude that (10) does in fact introduce a constraint

on the signature of Z. In what follows, the signature is defined
as the triple

In(Z) = (7(2),v(2),6(2))

where 7(Z), v(Z), and 6(Z) denote the number of positive,
negative, and zero eigenvalues of Z, respectively.

Several authors have studied constraints on signatures of A,
X, and Z that are linked through a Lyapunov equation [32]-
[34]. Typically, such studies focus on the relationship between
the signature of X and the eigenvalues of A fora given Z > 0.In
contrast, [35] considers the relationship between the signature
of Z and eigenvalues of A for X > 0 and we make use of these
results.

Let {A1,...,A;} denote the eigenvalues of A, 1 denote the
geometric multiplicity of Az, and

p(A) = max .
The following result is a special case of [35, Theorem 2].
Proposition 1: Let A be Hurwitz and let X be positive
definite. For Z = —(AX + X A*),

7(Z) > u(A). (12)

To explain the nature of the constraint w(Z) > p(A), we
first note that 11(A) is the least number of input channels that
are needed for system (1) to be controllable [36, p. 188]. Now
consider the decomposition

Z=2 -7

where Z,, Z_ are positive semidefinite matrices, and accord-
ingly X = X, — X_ with X, X_ denoting the solutions of the
corresponding Lyapunov equations. Clearly, unless the above
constraint (12) holds, X, cannot be positive definite. Hence,
X cannot be positive definite either. Interestingly, there is no
constraint on v(Z) other than

m(Z)+v(Z)<n

which comes from the dimension of Z.

To study the constraint on the signature of Z arising from
(3b), we begin with a lemma, whose proof is provided in the
appendix.

Lemma 1: For a Hermitian matrix Z decomposed as

Z=8+5"
the following holds
m(Z) < rank(S).
Clearly, the same bound applies to v(Z), that is,
v(Z) < rank(9).
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The importance of these bounds stems from our interest in
decomposing Z into summands of small rank. A decomposition
of Z into S + S allows us to identify input channels and power
spectra by factoring S = BH*. The rank of S coincides with the
rank of B, that is, with the number of input channels in the state
equation. Thus, it is of interest to determine the minimum rank
of S in such a decomposition and this is given in Proposition 2
(the proof is provided in the appendix).

Proposition 2: For a Hermitian matrix Z having signature
(x(2),1(2),6(2))

min {rank(S)|Z = S + S*} = max {n(Z),v(Z)}.

We can now summarize the bounds on the number of positive
and negative eigenvalues of the matrix Z defined by (3). By
combining Proposition 1 with Lemma 1 we show that these
upper bounds are dictated by the number of inputs in the state
equation (1).

Proposition 3: Let X > 0 denote the steady-state covari-
ance of the state x of a stable linear system (1) with m inputs.
If Z satisfies the Lyapunov equation (10), then

0<v(Z)<m

u(A) < 7(2) < m.
Proof: From Section 1II, a state covariance X satisfies
AX+ XA*"=—-BH"— HB".
Setting S = BH*
Z=BH*"+HB"=S5+ 5"
From Lemma 1
max {m(Z),v(Z)} < rank(S) < rank(B) = m.

The lower bounds follow from Proposition 1. |

B. Decomposition of Z into BH* + H B*

Proposition 2 expresses the possibility to decompose the
matrix Z into BH*+ HB* with S = BH* of minimum
rank equal to max{n(Z),v(Z)}. Here, we present an algo-
rithm that achieves this objective. Given Z with signature
(m(Z),v(Z),0(Z)), we can choose an invertible matrix 7" to
bring Z into the following form:!

A I, 0 0
7 = TZT*:Z[O -, o] (13)
0 0 0

where I and [, are identity matrices of dimension 7(Z) and
v(Z) [37, pages 218-223]. We first present a factorization of Z
for 7(Z) < v(Z). With

I - 0 0

N A A S

S=10 0o -I_. 0 (14)
0 0 0 0

! The choice of T represents a standard congruence transformation that brings
Z into canonical form.

we clearly have Z = S + S*. Furthermore, S can be written as
S = BH*, where

I 0 I; 0
. I. 0 o | =1L 0
B - 0 Iy—ﬂ ’ H o 0 —L/—7r
0 0 0 0

In case v(Z) =n(Z), I,—, and the corresponding row and
column are empty. Finally, the matrices B and H are determined
by B=T"'Band H=T"H.

Similarly, for 7(Z) > v(Z), Z can be decomposed into
BH*+ HB*with B=T"'B,H =T 'H, and

I, 0 I, O
A~ 0 L, A_ 0 L/
B=1 o1, =] o _1,
0 0 0 0

Note that both B and H are full column-rank matrices.

C. Covariance Completion Problem

Given the dynamical generator A and partially observed
state correlations, we want to obtain a low-complexity model
for the disturbance that can explain the observed entries of
X. Here, the complexity is reflected by the number of in-
put channels, i.e., the rank of the input matrix B. Clearly,
rank(B) > rank(S). Furthermore, any S can be factored as
S = BH* with rank(B) = rank(S) via, e.g., singular value de-
composition. Thus, we focus on minimizing the rank of S

Rank minimization is a difficult problem because rank(-) is a
non-convex function. Recent advances have demonstrated that
the minimization of the nuclear-norm (i.e., the sum of the sin-
gular values)

IS = oi(S)
i=1

represents a good proxy for rank minimization [13]-[20]. We
thus formulate the following matrix completion problem:
Given a Hurwitz A and the matrix G, determine matrices

X =X"and Z = S + S* from the solution to
miréir)r(lize 1Sl
subjectto AX + XA*+S5+4+5"=0
(CXCYoE—-G=0
X =0.

5)

In the above, the matrices A, C, F, and G represent prob-
lem data, while S, X € C"*" are optimization variables. The
entries of the Hermitian matrix GG represent partially known
second-order statistics which reflect output correlations pro-
vided by numerical simulations or experiments of the underly-
ing physical system. The symbol o denotes elementwise matrix
multiplication and the matrix £ is the structural identity defined
by

B 1, Giyj is available
10, Gy is unavailable.

The constraint set in (15) represents the intersection of the
positive semidefinite cone and two linear subspaces. These are
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specified by the Lyapunov-like constraint, which is imposed by
the linear dynamics, and the linear constraint which relates X to
the available entries of the steady-state output covariance matrix

lim B (y(t)y° (1)) = CXC".

As shown in Proposition 2, minimizing the rank of S is
equivalent to minimizing max{rn(Z),v(Z)}. Given Z, there
exist matrices Z; =~ 0 and Z_ = 0 with Z = Z, — Z_ such
that rank(Z,) = 7n(Z) and rank(Z_) = v(Z). Furthemore,
any such decomposition of Z satisfies rank(Z, ) > 7(Z) and
rank(Z_) > v(Z). Thus, instead of (15), we can alternatively
consider the following convex optimization problem, which
aims at minimizing max{n(2),v(Z)}

minimize
X, Zy, 2

subjectto AX + XA +7, —Z_ =0
(CXC*)oE-G=0
X0, Z, =0, Z_=0.

Both (15) and (16) can be solved efficiently using standard SDP
solvers [38], [39] for small- and medium-size problems. Note
that (15) and (16) are obtained by relaxing the rank function
to the nuclear norm and the signature to the trace, respectively.
Thus, even though the original non-convex optimization prob-
lems are equivalent to each other, the resulting convex relax-
ations (15) and (16) are not, in general.

In Section IV, we develop an efficient customized algorithm
which solves the following covariance completion problem:

—logdet X +~]|Z||.

max {trace(Z, ), trace(Z_)}

(16)

minimize
X.Z

subjectto AX + XA*+Z=0 (CC)

(CXC*)o E—-G=0.

For any Z there exists a decomposition Z = Z, — Z_ with
Zy,Z_ > 0such that

| Z||« = trace(Z, ) + trace(Z_).
Since
trace(Z, ) 4 trace(Z_) > max {trace(Z, ), trace(Z_)}

the solution to (CC) provides a possibly suboptimal solution to
(16). In recent work [40], [41], we considered (CC) in the ab-
sence of the logarithmic barrier function. However, in that work,
the corresponding semidefinite X is not suitable for synthesiz-
ing the input filter (4) because X ~! appears in the expression
for K; cf. (4¢). Furthermore, as we show in Section IV, another
benefit of using the logarithmic barrier is that it ensures strong
convexity of the smooth part of the objective function in (CC)
which is exploited in our customized algorithm.

IV. CUSTOMIZED ALGORITHM FOR SOLVING THE
COVARIANCE COMPLETION PROBLEM

We begin this section by bringing (CC) into a form that is
convenient for alternating direction methods. We then study the
optimality conditions, formulate the dual problem, and develop
a customized Alternating Minimization Algorithm (AMA) for
(CC). Our customized algorithm allows us to exploit the re-
spective structure of the logarithmic barrier function and the

nuclear norm, thereby leading to an efficient implementation
that is well-suited for large systems.

We note that AMA was originally developed by Tseng [42]
and its enhanced variants have been recently presented in [43],
[44] and used, in particular, for estimation of sparse Gaussian
graphical models. In Section IV-D, we show that AMA can
be equivalently interpreted as a proximal gradient algorithm
on the dual problem. This allows us to establish theoretical
results regarding the convergence of AMA when applied to the
optimization problem (CC). It also enables a principled step-size
selection aimed at achieving sufficient dual ascent.

In (CC), v determines the importance of the nuclear norm
relative to the logarithmic barrier function. The convexity of
(CQO) follows from the convexity of the objective function

Jp(X,Z) := —logdet X +~||Z||.

and the convexity of the constraint set. Problem (CC) can be
equivalently expressed as follows:
mir}l{irgize — log det X + ~|| Z||«
' (CC-1)
subjectto AX +BZ —-C=0

where the constraints are now given by

o] 2= e] o
Here, A; : C"*" — C"*™ and Ay : C"*" — CP*? are linear
operators, with
A (X) = AX + X A"
Ay (X) = (CXC")o E

and their adjoints, with respect to the standard inner product
(My, My) := trace(M; My), are given by

Al(Y) =AY +YA
AL(Y)=C*(EoY)C.

A. SDP Formulation and the Dual Problem
By splitting Z into positive and negative definite parts
L=Zy—7Z_, Z.»=0, Z_ >0

it can be shown [14, Section 5.1.2] that (CC-1) can be cast as
an SDP

— logdet X + v (trace(Zy ) + trace(Z_))

e
subjectto A (X)+Z, —Z_=0

A (X)—G=0

Z, =0, Z_ =0. (P)

We next use this SDP formulation to derive the Lagrange dual
of the covariance completion problem (CC-1).
Proposition 4: The Lagrange dual of (P) is given by

minilg/lize log det (.AJ{ (Y1) + Al (YQ)) —(G,Y2) +n
1,12
subjectto  ||Yi]]2 < (D)

where Hermitian matrices Y7, Y5 are the dual variables associ-
ated with the equality constraints in (P).
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Proof: The Lagrangian of (P) is given by
L(X,Z1;Y1,Y9,AL) = —logdet X

+ytrace(Zy +Z-) — (A4, Zy) — (A, Z_)

+ M, X))+ 2 - Z) + (Va, A(X) = G) (7)

where Hermitian matrices Y7, Y5, and AL > 0 are Lagrange
multipliers associated with the equality and inequality con-
straints in (P). Minimizing the Lagrangian with respect to Z
and Z_ yields

’}/I—A+ +Yi i()?
’YI—A?—K toa

Because of the positive semi-definiteness of the dual variables
A, and A_, we also have that

Yi+yI =AL =0
“Yi+yl=A =0

Z. =0
Z_ 0.

which yields the constraint in (D)
=Y 29 = Y]]z <. (18)
On the other hand, minimization of £ with respect to X yields
Xt =Al(M) + AL(V2) - 0. (19)

Substitution of (19) into (17) in conjunction with complemen-
tary slackness conditions

<’}/I_A+ +)/17Z+> = O
<’YI—A, _}/172*> =0
can be used to obtain the Lagrange dual function

Jd(}q7yé): lnf E(X,Zi;}/l,X/Q,Ai)

R

logdet (A (v1) + AL(V2)) = (G, Y3) + .

[ |
The dual problem (D) is a convex optimization problem with
variables Y; € C"*™ and Y, € CP*P, These variables are dual
feasible if the constraint in (D) is satisfied. In the case of pri-
mal and dual feasibility, any dual feasible pair (Y7, Ys) gives a
lower bound on the optimal value .J;; of the primal problem (P).
As we show next, the alternating minimization algorithm of
Section IV-B can be interpreted as a proximal gradient algo-
rithm on the dual problem and is developed to achieve sufficient
dual ascent and satisfy (19).

B. Alternating Minimization Algorithm (AMA)

The logarithmic barrier function in (CC) is strongly con-
vex over any compact subset of the positive definite cone [45].
This makes it well-suited for the application of AMA, which
requires strong convexity of the smooth part of the objective
function [42].

The augmented Lagrangian associated with (CC-1) is

’Cﬂ(Xa Z,K,Y&) = - logdetX—l—'yHZH*
+ (Y1, A (X) + Z) + (Y2, A (X) — G)

+ 5 A GO+ 2]+ A (X) - Gl

where p is a positive scalar and || - || is the Frobenius norm.
AMA consists of the following steps:

XhHL o arg)r(nin Lo (X, 2% Y, YY) (20a)
Zk+1 . arg;nin[,p (x* Z YR v (20b)
VIR =V 4 p (A (XD 4 28 (20c)
}/2k+1 = 1/2]47 4 P (AQ(Xk+1) _ G) ) (20d)

These terminate when the duality gap
Agap := —logdet X || ZF|, — gy (Y1, v )
and the primal residual
A, = [|AXFH 4 BZEHL g

are sufficiently small, i.e., [Agyp| < €1 and A, < €. In the X-
minimization step (20a), AMA minimizes the Lagrangian £
with respect to X. This step is followed by a Z-minimization
step (20b) in which the augmented Lagrangian £, is minimized
with respect to Z. Finally, the Lagrange multipliers, Y; and Y5,
are updated based on the primal residuals with the step-size p.
In contrast to the Alternating Direction Method of Multipliers
[46], which minimizes the augmented Lagrangian £, in both X -
and Z-minimization steps, AMA updates X via minimization
of the standard Lagrangian L£,. As shown below, in (21), use
of AMA leads to a closed-form expression for X**1. Another
differentiating aspect of AMA is that it works as a proximal
gradient on the dual function; see Section IV-D. This allows us
to select the step-size p in order to achieve sufficient dual ascent.

1. Solution to the X-Minimization Problem (20a): At
the kth iteration of AMA, minimizing the Lagrangian £, with
respect to X for fixed {Z%, Y}, Y} yields

X = (AL (v ) = (AL + ()
(2D

2. Solution to the Z-Minimization Problem (20b):
For fixed {X**!, Y} Y}}, the augmented Lagrangian £, is
minimized with respect to Z

minimize | Z||. + 5112 = V¥l 22)

By computing the singular value decomposition of the symmet-
ric matrix

Vhi=— (A1 (XF) + (;) Y{") = UsU*

where Y. is the diagonal matrix of the singular values o; of V",
the solution to (22) is obtained by singular value thresholding
[47]

AR Sv/p(vk)~
The soft-thresholding operator S; is defined as
S, (VH) = US, (S)U*,  8,(%) = diag ((0; — 7)<

with a; := max{a,0}.
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3. Lagrange Multiplier Update: The expressions for
X*+1 and Z**1 can be used to bring (20c) and (20d) into
the following form:

}/lkJrl _ /22 (}/lk +pA1(Xk+1))
Yvaqu :Y2k +p(A2(Xk+1) —G)

For Hermitian matrix M with singular value decomposition
M = UXU*, 7, is the saturation operator
T.(M) = UT, (2)U

7. (X) = diag (min (max(o;, —7), 7))

which restricts the singular values of M between —7 and 7. The
saturation and soft-thresholding operators are related via

The above updates of Lagrange multipliers guarantee dual
feasibility at each iteration, i.e. ||Y]‘Jrl ||, <~ for all k, which
justifies the choice of stopping crlterla in ensuring primal feasi-
bility of the solution.

(23)

4. Choice of Step-Size for the Dual Update (20c),
(20d): We follow an enhanced variant of AMA [44] which uti-
lizes an adaptive BB step-size selection [48] in (20b), (20c),
and (20d) to guarantee sufficient dual ascent and positive def-
initeness of X. Our numerical experiments indicate that this
heuristic provides substantial acceleration relative to the use of
a fixed step-size. Since the standard BB step-size may not al-
ways satisfy the feasibility or the sufficient ascent conditions,
we employ backtracking to determine an appropriate step-size.

At the kth iteration of AMA, an initial step-size

2 k+1 k|2
P el

Pro = (24)

Yk+1
1<7,

= YR VI (V) = VI (V)

HKMI\D

3

is adjusted through a backtracking procedure to guarantee posi-
tive definiteness of the subsequent iterate of (20a) and sufficient
ascent of the dual function

Af (Yk+1 Yk+1) “ 0 (253)
Jd (}/lkle Yk+1) > J (Yk)
2
k k+1 _ vk L E+1 vk 2
Z(wdy Y, z>+2pk|m m|F>.
(25b)

Here, V.J; is the gradient of the dual function and the right-
hand-side of (25b) is a local quadratic approximation of the dual
objective around Y}* and Yy . Furthermore, (25a) guarantees the
positive definiteness of X**1; cf. (21).

Our customized AMA is summarized as Algorithm 1.

5. Computational Complexity: The X-minimization
step in AMA involves a matrix inversion, which takes O(n?)
operations. Similarly, the Z-minimization step amounts to a
singular value decomposition and it requires O(n?) operations.
Since this step is embedded within an iterative backtracking
procedure for selecting the step-size pj. (cf. Section IV-B.4), if

Algorithm 1: Customized Alternating Minimization Algo-
rithm.
input: A, G, ~ > 0, tolerances €1, €5, and backtracking
constant 3 € (0,1).
initialize: k = 0, py o = 1, Agyp = Ap = 2¢€1, Yy = Oy iy,
and choose Y, such that Al (V%) = (~/||Y,° o) Ly s -
while: [Ag,p| > € and A > €,
Xk+1 — (AT(}/lk’Yék?))fl ‘
compute p;;: Largest feasible step in {57 pi. o }
such that Y"1 and Y ! satisfy (25)
Zk+1 — argmln ‘Cﬂk (XIH—l ; Z, }/lk , }/Qk)
z

j=0.1,..

Y1/c+1 _ Ylk —&—p(Al(Xk'*'l) 4 Zk+1)

Vi =V + p(Ax(XFHY) - G)
A, = [|AXFHL 4 BZEE - |

Agap = —logdet X* 1 4[| ZF ],
_ Jd(}/lk'+1,}/2k‘+l)
k=k+1

choose py. o based on (24)

endwhile
output: e-optimal solutions, X**! and Z#*1,

the step-size selection takes g inner iterations the total computa-
tional cost for a single iteration of AMA is O(gn?). In contrast,
the worst-case complexity of standard SDP solvers is O(n°).

C. Comparison With ADMM

Another splitting method that can be used to solve the opti-
mization problem (CC) is the the Alternating Direction Method
of Multipliers (ADMM). This method is well-suited for large-
scale and distributed optimization problems and it has been
effectively employed in low-rank matrix recovery [49], sparse
covariance selection [50], image denoising and magnetic reso-
nance imaging [51], sparse feedback synthesis [52], [53], sys-
tem identification [54]-[56], and many other applications [46].
In contrast to AMA, ADMM minimizes the augmented La-
grangian in each step of the iterative procedure. In addition,
ADMM does not have efficient step-size selection rules. Typ-
ically, either a constant step-size is selected or the step-size is
adjusted to keep the norms of primal and dual residuals within
a constant factor of one another [46].

While the Z-minimization step is equivalent to that of AMA,
the X-update in ADMM is obtained by minimizing the aug-
mented Lagrangian. This amounts to solving the following op-
timization problem:

2
e P k2
minimize  — log det X + 3 Zl | Ai(X)-U}||, @6
where U} := —(ZF + (1/p)Y{) and U} =G — (1/p)Ys
From first order optimality conditions, we have
—XT 4 AL (LX) = UF) o+ p AL (Ao(X) = TF) =0

Since AJA, and A}A, are not unitary operators, the X-
minimization step does not have an explicit solution.
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In what follows, we use a proximal gradient method [57] to
update X. By linearizing the quadratic term in (26) around
the current inner iterate X; and adding a quadratic penalty
on the difference between X and X;, X, is obtained as the
minimizer of

2
—10gdetX—|—pZ<A} (A, (X:) = UF) 7X>

j=1
H 2
+ 51X = XillF. @)

To ensure convergence of the proximal gradient method [57], the
parameter p has to satisfy 1 > pAnax (A{ A+ AQAQ), where
we use power iteration to compute the largest eigenvalue of the
operator Al A; + AL A,

By taking the variation of (27) with respect to X, we obtain
the first order optimality condition

2
pX = X =pXs = p ) AL (A(X) - US).

J
Jj=1

(28)

The solution to (28) is given by
Xiy1 = Vdiag(g)V*

where the jth entry of the vector g € R" is given by

2
g; = L’ + (Aj> + l
T2 2 7

Here, A;’s are the eigenvalues of the matrix on the right-hand-
side of (28) and V is the matrix of the corresponding eigen-
vectors. As it is typically done in proximal gradient algorithms
[57], starting with X, := X*, we obtain X**! by repeating
inner iterations until the desired accuracy is reached.

The above described method involves an eigenvalue decom-
position in each inner iteration of the X-minimization prob-
lem, which requires O(n®) operations. Therefore, if the X-
minimization step takes ¢ inner iterations to converge, a single
outer iteration of ADMM requires O(gqn®) operations. Thus,
ADMM and AMA have similar computational complexity; cf.
Section IV-B-5. However, in Section V we demonstrate that, rel-
ative to ADMM, customized AMA provides significant speed-
up via a heuristic step-size selection (i.e., a BB step-size initial-
ization followed by backtracking).

We finally note that, when both parts of the objective func-
tion are strongly convex, an accelerated variant of ADMM can
be employed [43]. However, the presence of the nuclear norm
in (CC) prevents us from using such techniques. For weakly
convex objective functions, restart rules in conjunction with ac-
celeration techniques can be used to reduce oscillations that
are often encountered in first-order iterative methods [43], [58].
Since our computational experiments do not suggest a signif-
icant improvement using restart rules, we refrain from further
discussing this variant of ADMM in Section V.

D. AMA as a Proximal Gradient on the Dual

In the follow up section, Section IV-E, we show that the
gradient of the dual objective function over a convex domain is
Lipschitz continuous. In the present section, we denote a bound
on the Lipschitz constant by L, and prove that AMA with step-
size p = 1/L works as a proximal gradient on the dual problem.

This implies that (20c) and (20d) are equivalent to the updates
obtained by applying the proximal gradient algorithm to (D).
The dual problem (D) takes the following form:

minimize  f(Y1,Y2) + g(Y1,Y2) (29)
1,12
where  f(V1,Ys) = —logdet A1(Y},Y3) — (G,Y5)  and

g(Y1,Y3) denotes the indicator function

0, 1Yill, <~
400,

7(vi) = {

Both f:(C"" ,CP*?) - R and g: (C"*" ,CP*?) -RU
{+0o0} are closed proper convex functions and f is continu-
ously differentiable. For Y, € C"*" and Y, € CP*?, the prox-
imal operator of g, prox, : (C"*",CP*P) — (C"*",CP*P) is
given by

otherwise.

2

. 1

prox, (V1. V2) = argmin (Y3, ¥2) + 5 SV - Vilz
1,12 i=1

where V) and V5 are fixed matrices. For (29), the proximal
gradient method [57] determines the updates as

<Ylk+17y2k+1) i= prox,, (Ylk —pVy, f (Ylk’YQk) ’
)/'Qk — pVyzf (iflkaYZk))

where p > 0 is the step-size. For p € (0, 1/L] this method con-
verges with rate O(1/k) [59].

Application of the proximal gradient method to the dual prob-
lem (29) yields

Y= argmin (Vy, (—logdet A" (V{",YS")) . 17)
Y,
L k|2
FI0) + 5 v -V (30a)
Yyt = argmin (Vy, (—logdet A" (Y, Y])),Y2)
Yy

L [
GV} + 5 [Ve Y (300)
The gradient in (30a) is determined by

Vy, (—logdet AT (Y], Y5)) = —A, (AT (Ylk’YQk)ﬂ)

and we thus have

Y= argmin Z(Y;)
Yy

1 o 2
)/1 o <5/1k +ZA1 (AT (}/{C’)/Qk) 1)>

F

L
+2‘ 31)

Since XF*1 = AN(YF, YQk)il, it follows that the dual update
Y} given by (20c) solves (31) with p = 1/L. This is because
the saturation operator 7., represents the proximal mapping for
the indicator function Z(Y7) [57]. Finally, using the first order
optimality conditions for (30b) it follows that the dual update:

.1 d
YA =y 4 z (A (AT(Ylk’YQk)—1> -G)

is equivalent to (20d) with p = 1/L.
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E. Convergence Analysis

In this section, we use the equivalence between AMA and
the proximal gradient algorithm (on the dual problem) to prove
convergence of our customized AMA. Before doing so, we first
establish Lipschitz continuity of the gradient of the logarithmic
barrier in the dual objective function over a pre-specified convex
domain, and show that the dual iterates are bounded within
this domain. These two facts allow us to establish sublinear
convergence of AMA for (CC). Proofs of all technical statements
presented here are provided in the appendix.

We define the ordered pair Y = (Y7,Y32) € H" x H?” where

H" x H? = {(Y,Y,)|Y; € H" and Y € H?}

with HI" denoting the set of Hermitian matrices of dimension
n. We also assume the existence of an optimal solution Y =
(Y1,Y5) which is a fixed point of the dual updates (20c) and
(20d), i.e.,

Vi =T, (Vi + pi (X))
Vo= Ya + p (Ax(X) — G)

where X = Af(Y)~!. Since the proof of optimality for Y fol-
lows a similar line of argument made in [44], we refrain from
including further details.

While the gradient of .J; is not Lipschitz continuous over the
entire domain of H" x H”, we show its Lipschitz continuity
over the convex domain

Do ={Y e H" x H|0 < af < A(Y) <8I < 0} (32)

for any 0 < av < 3 < oc. This is stated in the next lemma, and
its proof given in the appendix relies on showing that the Hessian
of J; is bounded from above.

Lemma 2: For Y € D, 3, the function log det A'(Y") has
a Lipschitz continuous gradient with Lipschitz constant I =
02 . (A" /a?, where 0y, (AT) is the largest singular value of
the operator A,

We next show that the dual AMA iterations (20c) and (20d)
are contractive, which is essential in establishing that the iterates
are bounded within the domain D,, 5.

Lemma 3: Consider the map Y — Y

Yi" =T, (Vi + pA (AN(Y) )
Yy' =Ys +p (A(AI(Y) ) - G)
where Y = (Y7,Y3). Let 0 < ao < 8 < oo be such that

(33a)
(33b)

ol < ANY) < gI

where Y = (Y7, Y3) denotes a fixed point of (33). Then, for any
0<p<(2a*/3*02,.(A)), the map (33) is contractive over
D, 3, that is

Yt —Y|r <||Y =Y foranyY € D,5.

As noted above, it follows that the dual AMA iterates: {Y*}
belong to the domain D, 3. This is stated explicitly next in
Lemma 4. In fact, the lemma establishes universal lower and
upper bounds on A’ (Y*) for all k. These bounds guarantee that
the dual iterates {Y*} belong to the domain D,, 5 and that Lips-
chitz continuity of the gradient of the dual function is preserved
through the iterations.

Lemma 4: Given a feasible initial condition Y, i.e., Y
satisfies AT(Y?) = 0 and ||Y,||, <7, leta, 3 >0

8= s (ADIIY" = V15 + ATl
a =det AT(Y?)3t " o (G.Y9) =7 viomax (A]trace(X)

Then, for any positive step-size p < (2a* /%02, (A)), we
have

ol < A'(Y*) < BT forall k > 0.

Since AMA works as a proximal gradient on the dual prob-
lem its convergence properties follow from standard theoretical
results for proximal gradient methods [59]. In particular, it can
be shown that the proximal gradient algorithm with step-size
p = 1/L (L being the Lipschitz constant in Lemma 2) falls into
a general family of majorization-minimization algorithms for
which convergence properties are well-established [60].

The logarithmic barrier in the dual function is convex and
continuously differentiable. Furthermore, its gradient is Lips-
chitz continuous over the domain D,, 3. Therefore, starting from
the pair YV = (Y}, Y})) a positive step-size

p < min{2a'/F*07,, (A), 0 Jor, . (AN}

guarantees that {Y*} converges to Y at a sublinear rate that is
no worse than O(1/k),

T (YF) = Jy(Y) < O(1/k).

Since A" is not an invertible mapping, — log det A'(Y") cannot
be strongly convex over D,gs. Thus, in general, AMA with
a constant step-size cannot achieve a linear convergence rate
[61], [62]. In computational experiments, we observe that a
heuristic step-size selection (BB step-size initialization followed
by backtracking) can improve the convergence of AMA; see
Section V.

V. COMPUTATIONAL EXPERIMENTS

We provide an example to demonstrate the utility of our
modeling and optimization framework. This is based on a
stochastically-forced MSD system. Stochastic disturbances are
generated by a low-pass filter

low-pass filter: C =—(+d (34a)

where d represents a zero-mean unit variance white process.
The state space representation of the MSD system is given by

MSD system: & = Ax + B:( (34b)

where the state vector z = [p* v*]", contains position and ve-
locity of masses. Accordingly, the state and input matrices are

(5 2 nel]

where O and I are zero and identity matrices of suitable sizes,
and 7' is a symmetric tridiagonal Toeplitz matrix with 2 on the
main diagonal and —1 on the first upper and lower subdiagonals.

The steady-state covariance of system (34) can be found as
the solution to the Lyapunov equation

AY + X A"+ BB* =0
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Fig. 2. (a) The y-dependence of the relative error (percents) between

the solution X to (CC) and the true covariance X, , for the MSD system
with 50 masses; (b) singular values of the solution Z to (CC) for v = 2.2.

TABLE |
SOLVE TIMES (IN SECONDS) FOR DIFFERENT NUMBER OF
MASSES AND v = 2.2

n CVX  ADMM AMA AMAgg
10 28.4 2 1.3 0.5
20 419.7 54.7 30.7 2.2
50 — 3442.9 3796.7 52.7
100 — 40754 34420 5429.8

where
i |A B¢ ~ |0
=15 5] 8- [1]
and
by by
N = T z(
{Eca Ecc}

The matrix X, , denotes the state covariance of the MSD system,
partitioned as

— EPP EPU
Z.mc - |:Z’U[) Zv’u .

We assume knowledge of one-point correlations of the position
and velocity of masses, i.e., the diagonal elements of matrices
Ypps Xvw, and X, Thus, in order to account for these available
statistics, we seek a state covariance X of the MSD system
which agrees with the available statistics.

Additional information about our computational experi-
ments, along with MATLAB source codes, can be found at:
http://www.ece.umn.edu/users/mihailo/software/ccama/

Recall that in (CC), v determines the importance of the nu-
clear norm relative to the logarithmic barrier function. While
larger values of v yield solutions with lower rank, they may fail
to provide reliable completion of the “ideal” state covariance
>.». For various problem sizes, minimum error in matching
Y+ 18 achieved with v ~ 1.2 and for larger values of ~ the
error gradually increases. For MSD system with 50 masses,
Fig. 2(a) shows the relative error in matching ¥, , as a function
of . The smallest error is obtained for v = 1.2, but this value
of «v does not yield a low-rank input correlation Z. For v = 2.2
reasonable matching is obtained (82.7% matching) and the re-
sulting Z displays a clear-cut in its singular values with 62 of
them being nonzero; see Fig. 2(b).

For v = 2.2, Table I compares solve times of CVX [38] and
the customized algorithms of Section IV. All algorithms were

implemented in MATLAB and executed on a 3.4 GHz Core(TM)
17-2600 Intel(R) machine with 12 GB RAM. Each method stops
when an iterate achieves a certain distance from optimality,
e | X — X*|p /X" |r < e and | 2% — 2°]|p /] 2* |5 <
€9. The choice of €1, €2 = 0.01, guarantees that the primal ob-
jective is within 0.1% of .J,, (X*, Z*). For n = 50 and n = 100,
CVX ran out of memory. Clearly, for large problems, AMA
with BB step-size initialization significantly outperforms both
regular AMA and ADMM.

For MSD system with 50 masses and v = 2.2, we now fo-
cus on the convergence of AMA. Fig. 3(a) shows monotonic
increase of the dual objective function. The absolute value of
the duality gap |Ag.p| and the primal residual A, demonstrate
convergence of our customized algorithm; see Figs. 3(b) and
3(c). In addition, Fig. 4(a) shows that regular AMA converges
linearly to the optimal solution and that AMA with BB step-size
initialization outperforms both regular AMA and ADMM. Thus,
heuristic step-size initialization can improve the theoretically-
established convergence rate. Similar trends are observed when
convergence curves are plotted as a function of time; see 4(b).
Finally, Fig. 5 demonstrates feasibility of the optimization prob-
lem (CC) and perfect recovery of the available diagonal elements
of the covariance matrix.

For v = 2.2, the spectrum of Z contains 50 positive and
12 negative eigenvalues. Based on Proposition 2, Z can be
decomposed into BH* + H B*, where B has 50 independent
columns. In other words, the identified X can be explained by
driving the state-space model with 50 stochastic inputs u. The
algorithm presented in Section III-B is used to decompose Z
into BH* 4+ H B*. For the identified input matrix B, the design
parameter K is then chosen to satisfy the optimality criterion
described in Section II-C. This yields the optimal filter (9) that
generates the stochastic input u. We use this filter to validate
our approach as explained next.

We conduct linear stochastic simulations of system (9b) with
zero-mean unit variance input w. Figure 6 shows the time evo-
lution of the state variance of the MSD system. Since proper
comparison requires ensemble-averaging, we have conducted
twenty stochastic simulations with different realizations of the
stochastic input w to (9b). The variance, averaged over all sim-
ulations, is given by the thick black line. Even though the re-
sponses of individual simulations differ from each other, the
average of twenty sample sets asymptotically approaches the
correct steady-state variance.

The recovered covariance matrix of mass positions X, re-
sulting from the ensemble-averaged simulations of (9b) is shown
in Fig. 7(b). We note that (i) only diagonal elements of this ma-
trix (marked by the black line) are used as data in the optimiza-
tion problem (CC), and that (ii) the recovery of the off-diagonal
elements is remarkably consistent. This is to be contrasted with
typical matrix completion techniques that require incoherence
in sampling entries of the covariance matrix. The key in our for-
mulation of structured covariance completion is the Lyapunov-
like structural constraint (2b) in (CC). Indeed, it is precisely this
constraint that retains the relevance of the system dynamics and,
thereby, the physics of the problem.

VI. CONCLUDING REMARKS

We are interested in explaining partially known second-order
statistics that originate from experimental measurements or sim-
ulations using stochastic linear models. This is motivated by the
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the number of iterations and (b) solve times for the MSD system with
50 masses and vy = 2.2. Here, J; is the value of the optimal dual
objective.

10 20 30

(b)

40 50

Fig. 5. Diagonals of (a) position and (b) velocity covariances for
the MSD system with 50 masses. Solid black lines show diagonals
of 3., and red circles mark solutions of optimization problem (CC).
(a) diag(Xy, ), diag(X,y ). (b) diag(X,, ), diag( Xy ).

need for control-oriented models of systems with large number
of degrees of freedom, e.g., turbulent fluid flows. In our setup, the
linearized approximation of the dynamical generator is known
whereas the nature and directionality of disturbances that can
explain partially observed statistics are unknown. We thus for-
mulate the problem of identifying the appropriate stochastic
input that can account for the observed statistics while being
consistent with the linear dynamics.

This inverse problem is framed as convex optimization. To
this end, nuclear norm minimization is utilized to identify noise
parameters of low rank and to complete unavailable covariance
data. Our formulation relies on drawing a connection between
the rank of a certain matrix and the number of disturbance
channels into the linear dynamics. An important contribution
is the development of a customized alternating minimization
algorithm (AMA) that efficiently solves covariance completion
problems of large size. In fact, we show that our algorithm works

2000 4000

time

6000

Fig. 6. Time evolution of the variance of the MSD system’s state vector
for 20 realizations of white-in-time forcing to (9b). The variance averaged
over all simulations is marked by the thick black line.

10 20 30

(a)

10 20

30
(b)

Fig.7. Thetrue covariance ¥, of the MSD system and the covariance
X, resulting from linear stochastic simulations of (9b). Available one-
point correlations of the position of masses used in (CC) are marked
along the main diagonals. (a) X, . (b) X,

as a proximal gradient on the dual problem and establishes a sub-
linear convergence rate for the fixed step-size. We also provide
comparison with ADMM and demonstrate that AMA yields ex-
plicit updates of all optimization variables and a principled pro-
cedure for step-size selection. An additional contribution is the
design of a class of linear filters that realize suitable colored-in-
time excitation to account for the observed state statistics. These
filters solve a non-standard stochastic realization problem with
partial covariance information.

Broadly, our research program aims at developing a frame-
work for control-oriented modeling of turbulent flows [41], [63],
[64]. The present work represents a step in this direction in
that it provides a theoretical and algorithmic approach for deal-
ing with structured covariance completion problems of sizes
that arise in fluids applications. In fact, we have recently em-
ployed our framework to model second-order statistics of tur-
bulent flows via stochastically-forced linearized Navier-Stokes
equations [64].
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APPENDIX
Proof of Lemma 1

Without loss of generality, let us consider Z of the following
form (see Section III-B for further justification):

I, 0 0
Z=210 —=I, 0 (35)
0 0 0

Given any S that satisfies Z = .S + S* we can decompose it
into

S=M+N

with M Hermitian and N skew-Hermitian. It is easy to see that

1 I 0 0
M = §Z =10 -1, O
0 0 0
By partitioning N as
Ni1 N1 Ny
N = | Nat Ny N3
N31 N3z Ni3
we have
I; + Ny Nis N3
S = Noy —1I, + Nag N3
N3 N3 N33
Clearly,

rank(S) > rank(Z; + Niq).

Since Np; is skew-Hermitian, all its eigenvalues are on the
imaginary axis. This implies that all the eigenvalues of I, + N
have real part 1, and therefore I, + Np; is a full rank matrix.
Hence, we have

rank(S) > rank(I; + N11) = 7(Z)

which completes the proof.

Proof of Proposition 2

The inequality
min{rank(S)|Z = S + S*} > max{n(Z2),v(Z)}

follows from Lemma 1. To establish the proposition we need to
show that the bounds are tight, i.e.,

min{rank(S)|Z = S+ S*} < max{n(Z),v(Z)}.

Given Z in (35), for m(Z) < v(Z), Z can be written as

I. 0 0 0
0 —-I: 0 0
Z=2 0 0 -, O
0 0 0 0

By selecting S in the form (14), we conclude that

rank(S) = rank (H’r :? ]) +rank(—1, )

=7n(2)+v(Z)—n(Z)=v(Z).
Therefore
min{rank(S)|Z = S+ 5"} < v(Z).
Similarly, for the case 7(Z) > v(Z),
min{rank(S)|Z = S+ 5"} < n(2).
Hence,
min{rank(S)|Z = S + S*} < max{n(Z),v(Z)}
which completes the proof.
Proof of Lemma 2
The second-order approximation of log det A'(Y") yields
logdet AT(Y 4+ AY) = log det A'(Y)
+ trace (AT(Y) T AT(AY))
- %trace (AT(Y)AT(AY) AT (V) AT (AY)
+ O(JAY[3).

To show Lipschitz continuity of the gradient it is sufficient to
show that the approximation to the Hessian is bounded by the
Lipschitz constant L, i.e.,

trace (AT (Y) T AT(AY)AT(Y) T AT(AY)) < L||AY 3.
From the left-hand-side, we have

trace (AT(Y) T AN(AY) AN (Y) T AT(AY))

— trace (AT(Y)’%AT(AY)A*(Y)’lA*(AY)AT(Y)*%)

IN

étraee (AT) Al @A) AT(AY)Al(Y) F)
= étraee (AT(AY)AT(y)*lAT(Ay))

< %trace (AT(AY)AT(AY»

Tax (A

o?

IN

IAY 7

Here, we have utilized the fact that Af(Y)~! is a positive-
definite matrix and that Y € D, 3. This completes the proof.

Proof of Lemma 3

We begin by substituting the expressions for Y, Y, Y,
and Y,. Utilizing the non-expansive property of the proximal
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operator 7, [65], we have
1Yy =Yillr =17, (Vi + pAi(AT(V1,Y2) 7))
— T, (Vi + pAL(AT(V1,Y2) ™) [|r
+ pAL(AT(Y1, ) )
— Vi = pAL(AT(V1,Y2) 7 )|lr
15" = Yallr = [[Ya + p (A2(AT(V1,Y2)7!) = G)
~Yy—p (AQ(-AT(YhY?)_ )= G) |lr

<|n

from which we obtain
Y+ =Y <7, (Y) = h,(Y)|r
where
ho(Y) =Y + pA(AT(Y)™!).

The first order approximation of the linear map h, gives

h/)(Y +AY) -
~ AY — pA (Al(Y)tAT(AY) Al ().

hy(Y)

From this, we conclude that its Jacobian at Y is < 1 if
(A(ATY)TANAY)ANY)Y) ,AY) >0

and the step-size 0 < p < 2at/3%02 .. (A) satisfies

EIA (AT ) AT AV AT ) Il
< (A(AT(Y) T ATAY)AT(Y) 1), AY)
for any perturbation AY'. The former follows from
(AT AT AV AT(Y) ! AT(AY))
= trace(AT (V)T AT (AY) AT (V) AT(AY))

= trace(AT(Y)/2AN(AY)AT(Y) T AT(AY) AT (V) 2),

and the latter follows from

SIA (AT ) AT A AT ) 17

< ety LAl @A) AL )

2
pO—IHHX(A)
Pmed A (AY)f;
< PP max(A)
= 204
2 2
_ Pﬁf;%;f(““) (A(A(Y) Al AY)AT(Y) ), AY)

< (A(ATY) AN (AY) AN (Y) ) AY) .

(AN(Y) AT (AY) AN (V)1 AT(AY))

Thus, we conclude J;,, (Y) < 1 forall Y’ € D, . Finally, from
the mean value theorem, we have

[Y* =Y <7, (Y) ~

< sup I, (
0€0,1

<Y =Yllr

he (V)|
YOIy =Yl|r,

where Y; = 6Y + (1 — §)Y € D, 3. This completes the proof.
Proof of Lemma 4
We first show that
ol < AT(Y?) < I

The upper bound follows from

AT )2 = [AT(Y)ll2 — AT V)2 + AT (V)2
< [ANY?) = ATY) 2 + ATV
< [MANY?) = AN @)l|r + AT

< JmaX(AT)HYO - YHF + HAT(Y)HQ = .

To see the lower bound, note that for any X € H",

1
— 1 XNr <X < 1X]r- 36
\/ﬁll I < 1 Xl2 < I X (36)

Using this property and the dual constraint ||Y,’||> < 7, we have
[t o), = [l o), < s (A1) 1901

< Viomas (A} 1Y l2 € 3v/momas (A} -

Since Al (V) + AL(YY) = 0, we also have

ALY = =m0 (ADT.

Noting G' = A (X)) for the optimal solution X > 0, we obtain
(A(5),77) = (X, A4L0%))

Z - ’Y\/ﬁamax (Ai )trace()_().
(37

(G.9) =

Let @ = Apin (AT(Y?)). Since 3 gives a bound on the largest

eigenvalue of AT(Y?), we have
log det AT(Y?) < log(a) + (n — 1) log(B)

Combining this and

logdet A'(Y") > log det A'(Y?) — (G, YY) + (G, Yy)
> logdet AT(Y?) — - (@G, V)
— YN0 ax (Al trace(X).

gives Apin (AH(Y?)) =a > a.
The proof of ol < .AJf(Yk) =< GBI for k > 0 follows similar
lines. We use inductive argument to prove this. Assume that
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al < AT(Y") < BI holds for all 0 < ¢ < k — 1. For the upper
bound, we have

AT, = AT )|, - |AT(Y
() - A7)

§ Omax (AT) ||Yk -

M, + AT
Ir + AT,
Ve + (|47,

I

IN

By repeatedly applying Lemma 3 for [|Y/ — Y|[p < [|Y/~! —
Y| F,forall 1 <j <k, we have

[ATYF)]|, < omax (ANY? = Yp + || AT(YV)]], = 8.

To see the lower bound, note that (37) holds for all £ > 0,
namely,

<GaY2k> = <~A2(X)7Y2k> = <Xa~A;(Y2k)>

> — yV/Nomax (A )trace(X)

(38)

with the same argument. Let a = Ay, (AT(Y")). Since 3 gives
a bound on the largest eigenvalue of A"(Y*), we have

log det AT(Y") < log(a) + (n — 1) log(B) (39)
The dual ascent property
log det AT(Y?) — (G, Yy ) > log det AT(Y?) — —{(G,Yy)
together with inequality (38) gives
log det A"(Y*) > logdet AT(Y?) — (G, YY) + (G, Y5)
> logdet A'(Y?) — (G,Yy)
— YN max (.AI Ytrace(X). (40)

From (39) and (40), we thus have
)"min (-AT (Yk )) =a

> det AT(yU)ﬂlfne—<G,Y20>—fy\/ﬁ(rmax(AI)trace(X) —a

which completes the proof.
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