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Optimal control problems in systems with symmetries and consensus/synchronization networks are
characterized by structural constraints that arise either from the underlying group structure or the lack
of absolute measurements for part of the state vector. Our objective is to design controller structures
and resulting control strategies that utilize limited information exchange between subsystems in large-
scale networks. To obtain controllers with low communication requirements, we seek solutions to
regularized versions of the #, optimal control problem. Non-smooth regularization terms are introduced
to tradeoff network performance with sparsity of the feedback-gain matrix. In contrast to earlier results,
our framework allows the state-space representations that are used to quantify the system’s performance
and sparsity of the static output-feedback controller to be expressed in different sets of coordinates.
We show how alternating direction method of multipliers can be leveraged to exploit the underlying
structure and compute sparsity-promoting controllers. In particular, for spatially-invariant systems, the
computational complexity of our algorithm scales linearly with the number of subsystems. We also
identify a class of optimal control problems that can be cast as semidefinite programs and provide an
example to illustrate our developments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In large networks of dynamical systems centralized information
processing may impose prohibitively expensive communication
and computation burden [1,2]. This motivates the development
of theory and techniques for designing distributed controller ar-
chitectures that lead to favorable performance of large-scale net-
works. Recently, regularized versions of standard optimal control
problems were introduced as a means for achieving this goal [3-
6]. For example, in consensus and synchronization networks, it is
of interest to achieve desired objective using relative information
exchange between limited subset of nodes [7-18].

The objective of this paper is to design controllers that provide
adesired tradeoff between the network performance and the spar-
sity of the static output-feedback controller. This is accomplished
by regularizing the #, optimal control problem with a penalty on
communication requirements in the distributed controller. In con-
trast to previous work [3-5], this regularization penalty reflects the
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fact that sparsity should be enforced in a specific set of coordinates.
In [3-5], the elements of the state-feedback gain matrix were taken
to represent communication links. Herein, we present a unified
framework where a communication link is a linear function of the
elements of the output-feedback gain matrix.

The proposed framework addresses challenges that arise in
systems with invariances and symmetries, as well as consensus
and synchronization networks. For example, the block diagonal
structure of spatially-invariant systems in the spatial frequency
domain facilitates efficient computation of the optimal centralized
controllers [ 1]. However, since the sparsity requirements are typi-
cally expressed in the physical space, it is challenging to translate
them into frequency domain specifications. Furthermore, in wide-
area control of power networks [19-21], it is desired to design
the controllers that respect the structure of the original system:
in both open- and closed-loop networks, only relative rotor angle
differences between different generators are allowed to appear. To
deal with these structural requirements, we introduce a coordinate
transformation to eliminate the average mode and assure stabi-
lizability and detectability of the remaining modes. Once again,
it is desired to promote sparsity of the feedback gain in physical
domain and it is challenging to translate these requirements in the
transformed set of coordinates.
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We leverage the alternating direction method of multipliers
(ADMM) [22] to exploit the structure of the corresponding objec-
tive functions in the regularized optimal control problem. ADMM
alternates between optimizing closed-loop performance and pro-
moting sparsity of the feedback gain matrix. The sparsity promot-
ing step in ADMM has an explicit solution and the performance
optimization step is solved using Anderson-Moore and proximal
gradient methods. Our framework thus allows for performance and
sparsity requirements to be expressed in different set of coordi-
nates and facilitates efficient computation of sparse static output-
feedback controllers.

For undirected consensus networks, the proposed approach
admits a convex characterization. Furthermore, for systems with
invariances and symmetries, transform techniques are utilized to
gain additional computational advantage and improve efficiency.
For example, by bringing the matrices associated with a state-
space representation of a spatially-invariant system into a block-
diagonal form, the regularized optimal control problem amounts
to easily parallelizable task of solving a sequence of smaller, fully-
decoupled problems. While the computational complexity of algo-
rithms that do not exploit spatially invariant structure increases
cubicly with the number of subsystems, our algorithms exhibit a
linear growth. After having identified a controller structure, the
structured design step optimizes the network performance over
the identified structure.

Our presentation is organized as follows. In Section 2, we pro-
vide motivating examples and formulate the generalized sparsity-
promoting optimal control problem that we study in this paper.
In Section 3, we identify a class of convex problems that can
be cast as semidefinite programs. In Section 4, we leverage the
alternating direction method of multipliers algorithm to exploit
the structure of the corresponding objective functions and solve
the regularized optimal control problem. In Section 5, we illustrate
our developments using a synchronization network. We conclude
the paper in Section 6.

2. Motivation and background

We consider a class of control problems

X =AX+Bd+B,0

2= GR+Di )
J =GR

i=—Ky

where % is the state, d and ii are the disturbance and control
inputs, Z is the performance output, and y y is the measured output
The matrices C; and D are given by [Q”2 0] and [0 Rl/z]
with standard assumptions on stabilizability and detectability of
pairs (;\ ]§2) and (A Q”Z) Here, (-)* denotes complex-conjugate
transpose of a given matrix. The matrices Q = Q* > 0 and
R = R* > 0 are the state and control performance weights, and
the closed-loop system is given by

X=A-BKG)x+Bd
Q' 1, (2)
= a2~ | X
—R2K G

We assume that there is a stabilizing feedback gain matrix K.

Our objective is to achieve a desired tradeoff between the 7,
performance of system (2) and the sparsity of a matrix that is re-
lated to the feedback gain matrix K through a linear transformation

T(IA(). To address this challenge we consider a regularized optimal
control problem

N>
|

minimize J(K)+ y g(T(K)) (3)
K

where](l%) is the H, norm of system (2), y is a positive regulariza-
tion parameter, and g(7 (IA<)) is a sparsity-promoting regularization
term (see Section 2.3 for details).

Linear transformation 7 (I% ) of the feedback gain K in (3) re-
flects the fact that sparsity should be enforced in a specific set of
coordinates. This characterization is more general than the one
considered in [3-5] where the sparsity-promoting optimal control
was originally introduced and algorithms were developed. In con-
trast to [3-5], where it was assumed that the state-space model is
given in physically meaningful coordinates, herein we only require
that the states in (2) are related to these coordinates via a linear
transformation 7. One such example arises in spatially invariant
systems where the “spatial frequency” domain is convenient for
minimizing quadratic performance objective [ 1], whereas sparsity
requirements are naturally expressed in the physical domain. An-
other class of problems is given by consensus and synchronization
networks where the absence of absolute measurements confines
standard control-theoretic requirements to a subspace of the orig-
inal state-space.

2.1. Problem formulation

As mentioned earlier, while it is convenient to formulate min-
imization of the quadratic performance index in terms of the
feedback gain K, it may be desirable to promote sparsity in a dif-
ferent set of coordinates. By introducing an additional optimization
variable K, we bring (3) into the following form,

minimize ](I%) + v g(K)
K.K . (4a)
subject to T(K)—K =0,

where g(K) is a sparsity-promoting regularization term and 7 is a
linear operator. In the #; setting, J(K) is given by

J(K) ==

- {trace ((Q + 65*1%*1?1%62 ))2) , K stabilizing (4b)

00, otherwise

where the closed-loop controllability Gramian X satisfies the Lya-
punov equation

(A - 32]%62)5\( + )A( (A — ézk&z)* + B]BT =0. (4c)

Clearly, for any feasible K and K, the optimal control problems (3)
and (4a) are equivalent. We note that the linear constraint in (4a)
is more general than the constraint considered in [3-5], where
K — K = 0. This introduces additional freedom in control design
and broadens applicability of the developed tools.

In the set of coordinates where it is desired to promote sparsity,
the closed-loop system takes the form

X =(A—-B,KG)x+Byd
_ Q1/2 (5)
£= [—R”ZK Gl

where K = T(IA<).

2.2. Examples

We next discuss several classes of problems that are encoun-
tered in applications. For each of these, the optimal control prob-
lem can be brought into the form (4) via a suitable change of
coordinates.
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2.2.1. Consensus and synchronization networks

Consensus and synchronization problems are of increasing im-
portance in applications ranging from biology to computer science
to power systems [7-21]. In each of these, it is of interest to reach
an agreement or to achieve synchronization between the nodes in
the network.

In consensus and synchronization networks with the state vec-
tor

x:=[p" ¢] eRr"
only relative differences between the components of the vector
p(t) € RN are allowed to enter into (5). This requirement imposes

structural constraints on the matrices in (5), which are partitioned
conformably with the partition of the state vector x,

A1 Az B — By,
Ay Ap | ! B |’
0
Q= [%P Qq], K = [Ky Ky
For C; = I, the restriction on the absence of the access to the ab-

solute measurements of the components of the vector p translates
into the following requirements

A

(6)

An1=0, Ay1=0, Q1=0, K,1=0 )

where 1 is the vector of all ones. Under these conditions, the
closed-loop system (5) has an eigenvalue at zero and the corre-
sponding eigenvector [IL* 0*]* is associated with the average of
the vector p, p := (1/N)1*p. If the pairs (A, B,) and (A, Q1/?) are
stabilizable and detectable on the subspace S,

=[] <[

a coordinate transformation X := Tx can be introduced to eliminate
the average mode p from (5).

To achieve the goal of eliminating the average mode, p :=
(1/N)1*p, we introduce the following coordinate transformation

-5 ALl

X T+ X
where the columns of the matrix U € R¥*(N=1 form an orthonor-
mal basis for the subspace 1+. For example, the columns of U
can be obtained from the (N — 1) eigenvectors of the matrix Q,
corresponding to the non-zero eigenvalues. Using properties of the
matrix U

U*U=I, UU*=1-(1/N)11*, U*1=0,

we equivalently have

X T X
This change of coordinates brings the closed-loop system (5) into
the form (2) which does not contain the average mode p. The
matrices in (2) are given by
TATY, B :=TB, G :=GT*
=T™QT", R:=R

Q> x>

with il = u, d = d,? = z. Finally, we note that the feedback gain
matrices K and K are related by the transformation matrix T

K=TK)=KT & K=KT",

which has the right inverse T*, TT™ = I.In consensus and synchro-
nization networks, the rows of the matrix T form an orthonormal
basis and we thus have TT = T*,

We next provide particular examples that can be described
by (2) and (5) with structural constraints (7).

Swing equation. In power networks, the swing equation is used to
characterize energy exchange between generators [23]. After lin-
earization around a stationary operating point, the swing equation
reduces to

Mp+Dp+L,p=d+u (8)

where p is the vector of rotor angles, M and D are diagonal matrices
of inertia and damping coefficients, and L, is the Laplacian matrix
that describes the interaction topology. By setting q := p, (8) is
brought into the state-space form (5)-(6) with

0 I 0
i=[ e o] 5= .

Since L,1 = 0, the structural restrictions (7) are satisfied if Q,1 = 0
and K,1 = 0.

Single-integrator consensus networks. Networks in which each
node updates a scalar variable p; using relative information ex-
change with its neighbors can be obtained from (8) by setting the
matrix M to zero; e.g., see [7]. In this case, the matrices in the state-
space model (5)-(6) simplify to A = —D~'L, and By = B, = D™ .
Power systems. Models of power networks account for the dy-
namics of generators, control devices, and algebraic equations that
describe load flow, stators, and electronic circuits. Control actions
are typically executed using generator excitation via power system
stabilizers (PSS), governor control, or power electronics (FACTS). In
addition to the rotor angles p and frequencies v := p, additional
states r that account for fast electrical devices are needed to de-
scribe the dynamics of the entire system. After linearization at a
stationary operating point, the state-space model can be written
in the form (5)-(6) by defining g := [v* r*]" with

A11 = 0, A12 = [1 0],

_|-m71L, _[-M7'D A,

Since only differences between rotor angles of different generators
enter into the original nonlinear differential equations, this prop-
erty is shared by the linearized set of equations, thereby implying
A>11 = 0. Furthermore, in the absence of the access to the
absolute rotor angle measurements both the matrix A in (6) and its
closed-loop equivalent in (5) have an eigenvalue at zero with the
corresponding eigenvector [IL* 0*]*. Such formulation has been
recently utilized in [21].

2.2.2. Spatially-invariant systems

For systems with invariances and symmetries, transform tech-
niques can be used to bring a large-scale analysis and design
problems into a parametrized family of smaller problems. One such
class is given by spatially invariant systems that evolve over a dis-
crete spatially-periodic domain (e.g., a one-dimensional circle or a
multi-dimensional torus). In this case, the matrices in (5) are block
circulant matrices and the application of the discrete Fourier trans-
form (DFT) in the spatially invariant directions brings them into a
block-diagonal form (2). As shown in [1], the optimal centralized
controllers for spatially invariant systems with quadratic perfor-
mance indices are also spatially invariant; thus, in the transformed
domain they also take the block-diagonal form. Consequently,
determining the optimal centralized controller amounts to easily
parallelizable task of solving a sequence of smaller, fully-decoupled
optimal control problems. While there are no guarantees that
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structured optimal controllers for spatially-invariant systems are
also spatially invariant, we show that significant computational
advantage can be gained by restricting synthesis to a class of
spatially-invariant controllers.

For spatially-invariant systems (5) with block-circulant matri-
ces, the application of DFT

=Tx, 1i=Tu, d=Td, 5=Tz,

brings the closed-loop system (5) to the form (2) with block-
diagonal matrices A, By, By, C3, Q, R, and K. Here, T is the discrete
Fourier matrix and the feedback gain matrices are related via a
linear transformation [24],

K =T(K)=TKT.

2.3. Sparsity-promoting penalty functions

We briefly describe two classes of sparsity-promoting penalty
functions. More sophisticated penalties can also be introduced;
see [21] for examples in power networks.

Elementwise sparsity. The weighted ¢;-norm,
g(K) =Y WylKy| (10)
ij

is a commonly used proxy for enhancing elementwise sparsity of
the matrix K [25]. The non-negative weights W;; provide additional
flexibility relative to the standard ¢;-regularization. An iterative
reweighting method was introduced in [25] to provide better
approximation of the non-convex cardinality function. In the mth
iteration, the weights Wj; are set to be inversely proportional to the
absolute value of Kj; in the previous iteration,

Wi =1/(IK]""| +¢)
where 0 < € « 1 guards against K;; = 0.

Block sparsity. By selecting g(K) to penalize the Frobenius norm
of the ijth block of the matrix K,

g(K) =" Wyl Ky llr
ij

sparsity can be enhanced at the level of submatrices. In the iterative
reweighting algorithm, the absolute value should be replaced by
the Frobenius norm of Kj;.

3. Class of convex problems

For an undirected consensus network in which each node up-
dates a scalar value p;, we next show that the sparsity-promoting
optimal control problem can be formulated as an SDP. The closed-
loop system (5) with

A=—L,, Bi=By =1, (=1, K:=1L
can be written as
p=—(,+L)p+d

1/2 11
z = [_%1/21"(] p (1)

where the symmetric positive semi-definite matrices L, and L
satisfy L, 1 = 0, Ly 1 = 0. These two Laplacian matrices contain
information about the interconnection structure of the open-loop
system and the controller.

The ¢4-regularized #, optimal control problem can be formu-
lated as

min{mize JW) + v [IW o Ll - (12)
k

Here, o denotes elementwise matrix multiplication and the solu-
tion to the algebraic Lyapunov equation

(Lp +L)P+P (L, + L) = Q + Ly RL

determines the %, of the closed-loop system, J(Ly) = trace (P).Itis
readily shown that the stability of (11) on the subspace 1+ amounts
to positive-definiteness of the matrix (L, + L) on 1+. Under this
condition, we can rewrite J(L;) as

J(L) = trace (L, + L)' (Q + Ly RLy))
1 1 !
= 5trace ((Lp+Lk+ NILILT> (Q+LkRLk))

where (Lp—l—Lk)T denotes the Moore-Penrose pseudoinverse of (L, +
L), and cast the sparsity-promoting optimal control problem (12)
as an SDP via the Schur complement,

1
minimize — trace(Y)+y 1721

Y.Z.L 1/2
Q
Y
KA

subject to ;
(-) Lp—i—Lk—i—NIL]lT

=0 (13)

Lyk1=0
—Z<Woly<Z.

For small size problems, the resulting SDP formulation can be
solved efficiently using available SDP solvers.

In addition to optimal edge design in undirected consensus
networks, several other classes of problems admit convex charac-
terizations: a class of optimal synchronization problems [ 17], opti-
mal actuator/sensor selection [26,27], symmetric modifications of
symmetric systems [3,28], and diagonal modifications of positive
systems [29].

4. Design of controller structure

We next develop an algorithm, based on the Alternating Di-
rection Method of Multipliers (ADMM), to solve the sparsity-
promoting optimal control problem (4),

JUK) +y g(K)

minimize
K.K A
subjectto T(K)—K =0.

As we describe next, the introduction of the linear constraintin (4a)
in conjunction with utilization of the ADMM algorithm allows us
to exploit the respective structures of the objective functions J and
gin(4).

4.1. Structure design via ADMM

The structure of feedback gains that strike a balance between
quadratic performance of the system and sparsity of the controller
is designed via ADMM. The ADMM algorithm starts by introducing
the augmented Lagrangian

£,(K, K, A) = J(K)+y g(K) + <A, T(K) — 1<>

+ g <T(12) — K, T(K) - 1<>

where A is the Lagrange multiplier, p is a positive scalar, and (-, -)
is the standard inner product between two matrices. Instead of
minimizing the augmented Lagrangian jointly with respect to K
and K, ADMM uses a sequence of iterations [22],

K*1 = argmin £, (K, K¥, A¥)
¢

K*1 = argmin £, (K¥*1, K, A¥)
K

Ak+1 — Ak+,0(7-(kk+])—Kk+l)
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until primal and dual residuals are smaller than specified thresh-
olds,

[T = K e < 6 11K — KXl < eq.

It is readily shown that K-minimization step amounts to the
quadratically-augmented minimization of J(K),

K1 = argmin (1(1%) + g 17 (K) — H"lli)
K

where H* := K¥—(1/p) A¥. Similarly, using completion of squares,
the K-minimization problem can be brought into the following
form

K*' := argmin (y g(K) + g K — Vk||i)
K

with V¥ := T(K¥1) 4 (1/p) AX. Thus, updating K requires com-
putation of the proximal operator of the function g.

4.1.1. K-minimization step
For elementwise sparsity, the objective function in the K-
minimization step takes separable form,

P 2
3 (y Wi i1+ 5 (K = V) ) ,
ij
and the update of K is obtained via convenient use of the soft-
thresholding operator,

e (1—a/IViDVE Vil >a
v 0 Vil <a

where a := (y/p)Wj. This analytical update of K is independent
of the quadratic performance index J. Similarly, for block sparsity,
the minimizer is determined by

K+ _ (1=a/IViIE)VE  IVillE > a
I 0 IVillr <a

where Kj; and Vj; are the corresponding submatrices.

4.1.2. K-minimization step .

Finding the solution to the K-minimization problem represents
the biggest challenge to solving the sparsity-promoting optimal
control problem (4) via ADMM. In what follows, we introduce
two methods to solve the K-minimization problem: the Anderson-
Moore method and the proximal gradient method.

Anderson-Moore method. For the #, optimal control prob-

lem (4), the optimality conditions in the K-minimization step are
given by

(A —ByKG)X + X (A — B,KGy)* = —ByB: (NC-X)
(A—ByKCy)*P + P (A — B,KGy) = —(Q + C;K*RRCGy)  (NC-P)
2RKC, — BsP)XCS + pTH(T(K) —H*) =0 (NC-K)

where 77 is the adjoint of the operator 7,
(k. 7ti0)) = (Ti(K). R).

The unknowns in this system of nonlinear matrix-valued equations
are the feedback gain K as well as the controllability and observ-
ability Gramians X and P of the closed-loop system (2). These
equations can have multiple solutions, each of which is a stationary
point of the K-minimization problem. In general, it is not known
how many stationary points exist or how to find all of them.

The Anderson-Moore method solves the above system of equa-
tions in an iterative fashion. In each igeration, the algorithm starts
with a stabilizing feedback matrix K and solves two Lyapunov

equations and one Sylvester equation. Specifically, it first solves
(NC-X) and (NC-P) for controllability and observability Gramians
X and P with K being fixed. Then the Sylvester equation (NC-K) is
solved for K with X and P being fixed.

For consensus and synchronization problems discussed in Sec-
tion 2.2.1, we have

K=TK)=KRT < K=7IK)=KT"

with TT* = I. If the control weight Ris given by a scaled version of
the identity matrix

fi:rl, r > 0.

Sylvester equation (NC-K) can be explicitly solved for K,
. A A -1
R=(2BP%C +pH 1) (2r &R E +01)

Following [5], we can show that the difference between two
consecutive updates of K forms a descent direction for

LK) = J(R) + g I T(R) — HE |7

In conjunction with backtracking, this can be used to determine
step-size to guarantee closed-loop stability and convergence to a
stationary point of L(K).

Proximal gradient method. Proximal gradient method provides
an alternative approach to solving the K-minimization step. It
is based on a simple quadratic approximation of the quadratic
objective function J(K) around current inner iterate K™,

JR) ~ J(R™) + (VIR™), K — k™) + %nf( — k™)

m

where «;; denotes the step-size and
VJ(K™) = 2(RK™C, — B; P™)X™ C5.

Using completion of squares, the K-minimization step can be writ-
ten as

) 1 1a /a NENT
gm+t — argmin(— H R (1('“ — V](K”’)) H
e Z(xm F

P X 2
+ S ITK) = H"HF)
and the optimality condition is given by

1 (4 A N A
—(K _ (K'“ — VJ(K'"))) +poT7t (T(K) - H") —0. (14
Um
For consensus and synchronization networks, 71 (IA<) = KT, and we
have an explicit update for K,
Rmot— = (12”1 — am VJ(R™) + ap p H* T+) .
T+amp

The proximal gradient algorithm converge with rate O(1/m)
if a; is smaller than the reciprocal of the Lipschitz constant of
V] [30]. Since the Lipschitz constant is difficult to determine ex-
plicitly, we adjust oy, via backtracking procedure that we describe
next. Furthermore, to enhance the speed of convergence, we ini-
tialize the step-size using the Barzilai-Borwein (BB) method [31],
IRm — g1y

o) = — - ~ —.
(K’"*l — R, wj(Rm-1y — V](K’")>

The BB method approximates the Hessian with a scaled version
of the identity matrix and it represents an effective heuristics for

improving convergence rate. The initial step-size ag is adjusted via
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Fig. 1. Topology of a disconnected plant network with 3 clusters and 20 nodes.

backtracking to guarantee closed-loop stability and to make sure
that,

A A ~ A A 1 & A2
JR™ < JR™) + (VIR R = R R - R
m

The proximal gradient method terminates when

IVLK™)|lF < -

Remark 1. For spatially-invariant systems, the computational
complexity of each K-minimization step is O(Nn3). Here, N de-
notes the number of subsystems and ng is the number of states in
each subsystem. This should be compared and contrasted to O(n®)
complexity, with n = Nny, for systems without spatially-invariant
structure.

Polishing step. After having identified the sparsity pattern S, via
ADMM, we optimize the network performance over the identified
structure,
minimize ](12)

K ) (15)
subjectto  T(K) € 8.

We fix the sparsity pattern of K and solve the optimal control
problem (15) via an ADMM algorithm, where the K-minimization
step is the same as in Section 4.1.2 while the K-minimization step
is computed by projecting the new K = KT onto the convex set
Sp. This polishing step is used to further improve performance of
sparse feedback gains resulting from the structure design step.

5. Case study: Synchronization network

Twenty nodes in an undirected disconnected network shown
in Fig. 1 are randomly distributed in a unit square. The nodes
form three clusters and the network dynamics are described by
the swing equation (8). The state-space model is given by (5) with
C, = I and the matrices A, By, and B, determined by (9). The graph
Laplacian L, is obtained based on the proximity of the nodes: two
nodes are connected if their distance is not greater than 0.25. The
control objective is to minimize performance metric that penalizes
angular kinetic energy and the mean square deviation from the
angle average.

Communication links in the controller graph that result from
elementwise sparsity-promoting algorithm with iterative re-
weighting are illustrated in Fig. 2. Since local frequency measure-
ments are readily available, the diagonal elements of the frequency

e

‘\jﬂ\‘

0 02 04 06 08 1 0 02 04 06 08 1
(a)y = 0.0010. (b)y = 0.0072.

1

0.8 2
0.6
0.4 A
° o
0.2
-3 o ° o
0 2 0 2
0 02 04 06 08 1 0 02 04 06 0.8 1
(c) y = 0.0596. (dyy=1

Fig. 2. Topology of controller network for different values of y. Edges in the
controller network are marked with red lines. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

0 Angles Frequencies
]
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5 °
[ ]
[ ]
[ ]
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10 (]
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Fig. 3. Sparsity pattern of K for y = 1. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

feedback gains are not penalized in the function g. The red lines
mark the identified communication links (of either the rotational
angles or the frequencies) between the nodes. As we increase y, the
controller graph becomes sparser. For y = 1, there are only two
long-range links that connect two small clusters to the large cluster
of nodes. The controller connects the originally disconnected graph
by adding links between different clusters, thereby guaranteeing
synchronization and optimizing the desired performance metric.

The structure of the feedback gain K for y = 1is shown in Fig. 3.
The blue dots denote local feedback gains and the red dots identify
information that needs to be communicated between different
nodes. Since the frequency feedback gain matrix is diagonal, only
local frequency measurements are required to form the control
action. The two red dots correspond to the two red long-range links
in Fig. 2(d) and they indicate that the controllers of the two furthest
nodes require access to the angle measurements of the node in the
center of the domain. Dropping either of these two links would
yield a disconnected closed-loop network and synchronization
would not be achieved.

Compared to the optimal centralized controller, the sparse con-
troller with structure shown in Fig. 2(d) compromises performance
by 8.81%; see Fig. 4. In contrast, the sparse controller in Fig. 2(c) has
five additional long-range links and degrades performance by only
3.4%.
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Fig. 5. Performance degradation comparison of K resulting from our framework
(x) to the average of 100 feedback matrices (o) of random sparsity patterns with
same sparsity level for each y. The best closed-loop performance achieved by the
heuristic method is marked by black hollow circles (o).

Finally, for each value of the regularization parameter y we
compare and contrast performance of the controller with the spar-
sity pattern shown in Fig. 3 with a heuristic strategy that has
the same sparsity level. The diagonal elements of the frequency
feedback gain are always non-zero and sparsity pattern for the
rest of the elements is randomly selected. For each sparsity level,
we randomly select 100 off-diagonal patterns and optimize feed-
back gains over the fixed structure. Fig. 5 compares the average
closed-loop performance degradation of this heuristic strategy to
our method. For each sparsity level, our approach yields smaller
performance loss and offers significant advantages for sparser con-
trol architectures (i.e., larger values of y).

6. Concluding remarks

In this paper, we have considered a regularized version of the
standard #; optimal control problem where the regularization
term serves as a proxy for inducing sparsity. We consider a class
of systems in which state-space representation is not cast in the
set of coordinates in which it is desired to enhance sparsity. This
setup arises in systems with invariances and symmetries as well
as in consensus and synchronization networks. We achieve desired
performance with fewer communication links in the controller
network by promoting sparsity of the feedback gain matrix. Al-
ternating direction method of multipliers allows for performance

50— ) feard ()

40+ R

30 2

percent
[ ]

20 ° 7

10 . :

and sparsity requirements to be expressed in different set of co-
ordinates and facilitates efficient computation. A synchronization
network is provided as an illustrative example to demonstrate
the value of our developments. Recently, our generalized sparsity-
promoting optimal control framework was used to suppress inter-
area oscillations in power networks [21].
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