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Sparsity-promoting optimal control of consensus
and synchronization networks

Xiaofan Wu and Mihailo R. Jovanovié

Abstract— We study a class of optimal control problems that
are encountered in consensus and synchronization networks.
These are characterized by structural constraints that arise
from the lack of the absolute measurements for a part of
the state vector. In order to deal with these constraints,
we introduce a coordinate transformation to eliminate the
average mode and assure stabilizability and detectability of the
remaining modes. To design networks with low communication
requirements, we seek solutions to the ¢, regularized version of
the standard 7. optimal control problem. Such solutions trade
off network performance and sparsity of the controller. We also
identify a class of optimal control problems that can be cast
as semidefinite programs. Examples from power systems and
consensus networks are provided to illustrate our developments.

Index Terms— Alternating direction method of multipliers,
consensus, power systems, semidefinite programming, sparsity-
promoting optimal control, synchronization, wide-area control.

I. INTRODUCTION

Consensus and synchronization problems are of increased
importance in networks of dynamical systems [1]. These
problems are encountered in a number of applications rang-
ing from biology to computer science to power systems [2]—
[8]. In each of these applications, it is of interest to reach
an agreement or to achieve synchronization by exchanging
relative information between the nodes. The restriction on
the absence of the absolute measurements imposes structural
constraints for the analysis and design.

Conventional optimal control of distributed systems relies
on centralized implementation of control policies [9]. In large
networks of dynamical systems centralized information pro-
cessing may impose heavy communication and computation
burden on individual nodes. This motivates the development
of localized feedback control strategies that require limited
information exchange between the nodes in order to reach
consensus or guarantee synchronization [10]-[15].

The objective of this paper is to design optimal con-
trollers that provide a desirable tradeoff between the network
performance and sparsity of the controller. A coordinate
transformation is introduced to eliminate the unobservable
average mode and bring the network dynamics in a form that
is amenable to both standard and sparsity-promoting optimal
control methods [16], [17]. This facilitates identification of

Financial support from the National Science Foundation under award
CMMI-09-27720, and from the University of Minnesota Initiative for
Renewable Energy and the Environment under Early Career Award RC-
0014-11 is gratefully acknowledged.

Xiaofan Wu and M. R. Jovanovi¢ are with the Department of Electrical
and Computer Engineering, University of Minnesota, Minneapolis, MN
55455. E-mails: wuxxx836@umn.edu, mihailo@umn.edu.

978-1-4799-3271-9/$31.00 ©2014 AACC

sparse control architectures that are capable of achieving the
desired consensus or synchronization performance. In the
context of wide-area control of power systems [18], [19],
the optimal controller respects the structure of the original
power network: in both open- and closed-loop systems, only
relative rotor angle differences between different generators
appear in the state-space representation.

Our paper is organized as follows. In Section II, we
describe a class of optimal control problems that we examine.
In Section III, we formulate the sparsity-promoting consen-
sus and synchronization optimal control problems and solve
them using the alternating direction method of multipliers;
we also identify a class of design problems that can be
formulated as semidefinite programs. In Section IV, we
illustrate our developments using examples of consensus and
power networks. Finally, we provide a brief summary of our
results in Section V.

II. MOTIVATION AND BACKGROUND
A. Problem setup

We consider a class of control problems
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where d and u denote the disturbance and control inputs, and
z is the performance output. The feedback gains G, and G
are the design variables under the standard assumptions on
the state and control weights Q, = Q] = 0, Q, = Q] = 0,
and R = RT » 0.

We restrict our attention to the problems in which only
relative differences between the components of the vector
p(t) € RY enter into (1). This requirement imposes struc-
tural constraints on the matrices in (1), which are partitioned
conformably with the partition of the state vector

¢::{5} € R™.

This restriction on the absence of the access to the absolute
measurements of the components of the vector p translates
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into the following requirements
Al = 0, Ay 1 = 0
Q1 =0, G,1 =0

where 1 is the vector of all ones. Furthermore, since our
primary control objective is to achieve agreement between
the components of the vector p(t) € RY we will assume
that the matrix (), quantifies the deviation from average,

Q, = I - (1/N)11%. 3)

2

If the submatrices in (1) satisfy (2), then both the open-
loop system (1) and the closed-loop system,

¢ = (A - ByG)¢ + Bid
Q2 “)
a
have an eigenvalue at zero
Ay Ap Ty _ 1|0
Agr Ao o |0
{ 411 _BTQpGp 14:112 _BQqu ] [ 1 } _
Aor — BQqu Aoy — BQqu 0

z =

&)
and the corresponding eigenvector is associated with the
average of the vector p,

7= (1/N)17p.

We assume stabilizability and detectability of the pairs
(A, By) and (4, Q"/?) on the subspace S,

= [3] <[]

and formulate the optimal control problem in Section III.

B. Examples

To motivate our developments, we next provide several
examples that can be represented in the form described in
Section II-A.

1) Swing equation: In power networks, swing equation
is used to characterize energy exchange between genera-
tors [20]. After linearization at a stationary operating point,
the swing equation reduces to

Mp+Dp+ Lyp=d+u (6)

where M and D are diagonal matrices of inertia and damping
coefficients, and L, is the Laplacian matrix that describes
interactions between different nodes. By setting q := p, the
swing equation (6) is brought into the state-space form (1)
with

- 0 1 = 0

A= ML, —M‘lD]’ Bi = [M—l }

Furthermore, networks in which each node updates a
scalar variable p; using relative information exchange with its
neighbors can be obtained from (6) by setting the matrix M

to zero. In this case, the state-space model (1) simplifies to
A=-D'L, B =By =D" (7)

Since, by definition L, 1 = 0, the structural restrictions (2)
are satisfied if Q1 =0 and G,1 = 0.

2) Power systems: Models of power networks account for
the dynamics of generators, control devices, and algebraic
equations that describe load flow, stators, and electronic
circuits. Control actions are typically executed using gener-
ator excitation via power system stabilizers (PSS), governor
control, or power electronics (FACTS) [21]. Thus, in addition
to the rotor angles p and frequencies v := p, additional states
r that account for fast electrical dynamics are needed to de-
scribe the dynamics of the entire system. After linearization
at a stationary operating point, the state-space model can be
written in the form (1) by defining

Pp— fl} ]
q = |
with
_ _ i _M—lL :|
A = 0, Ay = _ P
11 21 I Av‘p

. . [ —M~'D A,
A12 — [ I 0 ] 3 A22 — I Arq A,,‘,r, :| .

Since only differences between rotor angles of different gen-
erators enter into the original nonlinear differential equations,
this property is shared by the linearized set of equations,
thereby implying Ay;1 = 0. Furthermore, in the absence
of the access to the absolute rotor angle measurements both

the matrix A in (1) and its closed-loop equivalent satisfy
properties specified in (5).

III. SPARSITY-PROMOTING OPTIMAL CONTROL

A. Elimination of the average mode

To eliminate the average-mode, p := (1/N) 17p, from (4)
we introduce the following coordinate transformation

where the columns of the matrix U € RY*(N=1) form an
orthonormal basis for the subspace 1. In particular, the
columns of U are obtained from the (N — 1) eigenvectors
of the matrix @, in (3) corresponding to the non-zero
eigenvalues. Using properties of the matrix U

vt =1, vut =1 - (1/M117, vT1 =0

we equivalently have

N HECRIHRS

State-space representation of the closed-loop system (4) on
the subspace S is obtained by combining the above relations
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between ¢ and x with (5),

i = (A-ByF)z + Bid
1/2 (8)
z = [—gl/zF:lx

where
A= TTAT, B, = T"B;, QY* = Q'*T.

Furthermore, using the properties of the matrix U it is readily
shown that the feedback gain matrices F' and G are related
by
F=GT & G=/FT".
Our control objective is to achieve a desirable tradeoff
between the Ho performance of (8) and the sparsity of the
feedback gain G. The H2 norm from d to z is defined as

trace (B P(F) By)

J(F) = {

where the closed-loop observability Gramian P(F') satisfies
the Lyapunov equation

(A - ByF)'P + P(A - BoF) = —(Q + FTRF).

F stabilizing

otherwise

While quadratic performance is expressed in terms of the
feedback gain matrix F', as we describe in Section III-B, it
is desired to enhance sparsity of the feedback gain matrix G
in the original set of coordinates.

B. Sparsity-promoting optimal control

We now identify feedback gains that achieve a desirable
tradeoff between variance amplification of the closed-loop
system (8) and sparsity of the controller. After the desired
tradeoff has been obtained, we fix the sparsity structure
and determine the optimal feedback gain that minimizes the
Hz norm of (8). Our approach augments the developments
of [17] and it utilizes the alternating direction method of
multipliers (ADMM) algorithm.

While variance minimization is most conveniently ex-
pressed in terms of the feedback gain F, it is desirable
to promote sparsity of the feedback gain GG in the original
set of coordinates. To address this challenge we consider a
regularized Ho optimal control problem

J(F) + v9(G)
FIT — G =0

minimize
9

subject to

where the regularization term is determined by the weighted
f1 norm,
9(G) = > Wi |Gijl.
]

We note that the linear constraint in (9) is more general than
the constraint considered in [17].

In order to provide better approximation of the cardinality
function card (G), which determines the number of the non-
zero elements in G, the weights W;; are selected using the
procedure introduced in [22]. The positive regularization pa-

rameter ~y specifies the importance of sparsity. For v = 0, the
standard centralized linear quadratic regulator is obtained; as
~ increases, the feedback matrix G becomes sparser.

As we describe next, the introduction of the linear con-
straint in (9) in conjunction with the ADMM algorithm
allows us to exploit structure of the objective functions J
and g in (9).

The ADMM algorithm is described next; we refer the
reader to [17] for additional details.

1) Form augmented Lagrangian:
L,(F,G,A) = J(F) + vg(G) +
trace (AT(FTT — G)) + g |FTT -G ||§
where A denotes the matrix of Lagrange multipliers and ||-|| 7
is the Frobenius norm of a matrix.

2) Iterative ADMM algorithm:

Fr+1 = argmin £, (F, G*, A¥)

F
GFl = argmin £, (FF!, G, AF)
AR = Ry (R T ghiy,

Using the fact that 77T = I, it is readily shown that
the F-minimization step amounts to solving the following
optimization problem

F*1 = argmin (J(F) + gHF - H’“Hi)
F
where
H* = (G* — (1/p)AM)T.

As shown in [17], the necessary conditions for the optimality
of L,(F,G*, A*) are given by

(A— ByF)L + L(A— ByF)T' = —B,BT

(A= ByF)'P + P(A—- ByF) —(Q+ FTRF),

2(RF — BIP)L + p(F — H*) = 0.

The resulting set of the matrix-valued equations is solved
using the iterative procedure developed in [17].

Similarly, properties of the matrix 7" can be used to bring
the G-minimization problem into the following form

. . p 2
GF*! = argmin (vg(G) + 3 G — Vk||F)
G
where
Vk — Fk+1 TT + (1/p) Ak

and the unique solution is obtained via convenient use of the
soft thresholding operator,

k k
e { (1 = o/ IVEDV
1] O

Here, a := (v/p)W,; and, for a given VZ’; GZ-H is either
set to zero or it is obtained by moving VZ-’;- towards zero with
the amount (v/p)W;;.

V&l > a
V< a
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3) Stopping criterion:
| FE+LTT — Gh+|
Gk — G|

The ADMM algorithm stops when both primal and dual
residuals are smaller than specified thresholds.

IN

€

A

€

4) Polishing step: Finally, we fix the sparsity pattern of G
identified using ADMM and solve the optimal control prob-
lem in the presence of the identified structural constraints.
This polishing step improves the Ho performance relative
to the feedback gain identified by ADMM; see [17] for
additional details.

C. Class of convex problems

For an undirected network in which each node updates a
scalar value p;, we next show that the sparsity promoting
optimal control problem can be formulated as an SDP. The
closed-loop system (4) with

~L,, By = By :=1, G := L

A =
can be written as

p = —(Lp+Le)p + d

1/2
[ — Rl/2 Ly } p
where L, and L;, satisfy
L,1 =0, L, =
Lyl = 0, L, =

(10)

z =

LT =0
Ly = 0.

These two Laplacian matrices contain information about the
interconnection structure of the open-loop system and the
feedback gain, respectively.

The ¢;-regularized Ho optimal control problem can be
formulated as
minimize
Ly

J(Lg) + v|W o Ll (11
where o denotes elementwise multiplication of two matrices.
On the other hand, the solution to the algebraic Lyapunov
equation

(Lp + L) P+ P(Lp + L) = Q + Ly R Ly

can be used to compute the variance amplification of the
closed-loop system, J(Lj) = trace (P). It is readily shown
that the stability of (10) on the subspace 1 amounts to
positive-definiteness of the matrix (L, + L) on 1-+. Under
this condition, we can rewrite J(Ly) as

%trace ((Lp+ L + (1/N)117) "1 (Q + Ly R Ly))

and cast the sparsity-promoting optimal control problem (11)

as an SDP,
1
minimize = trace(X + Y) + 41721
XY, Z,L, 2
) X Q1/2
—
subject to [ Q2 Ly+Ly+ /N1t | =0
Y RY2 Ly, -
Ly RY? L,+ L+ (1/N)117 | =
Lyl =0

—Z < Woly < Z.
(12)
For small and medium size problems, the resulting SDP
formulation can be solved efficiently using available SDP
solvers.

IV. EXAMPLES
A. IEEE 14 bus test case

For IEEE 14 bus benchmark problem, sparsity-promoting
optimal control problem is formulated for the system (8), in
the set of coordinates where the average-mode is eliminated.
This removes a requirement on introducing small regular-
ization penalty on absolute rotor angles that was recently
made in [18], [19]. As shown in Fig 1, 14 buses connect
2 generators and 3 synchronous condensers. A synchronous
condenser is a device identical to a synchronous generator
whose shaft is not connected to anything but spins freely.
Its purpose is not to convert electric power to mechanical
power or vice versa, but to adjust conditions on the electric
power transmission grid. A voltage regulator is used to either
generate or absorb reactive power as needed to adjust the
grid’s voltage, or to improve power factor. In this test case,
we treat synchronous condensers as generators.

THREE  WINDING
TRANSFORMER ngVALENT

(©) ceneraTors

© sverroNous
CONDENSERS

Fig. 1: IEEE 14 bus test case.

We apply control signal to the exciter of each generator
to control the rotor angle and frequency. Exciter system is
designed to control the applied voltage, and thus the field
current to the rotor, which in turn gives control of gener-
ator output or terminal voltage. Subsequently this is what
provides reactive power and power factor control between
the generator and the system. Conventionally, control inputs

2939



are applied on excitation system, because they are easier to
operate and are characterized by small time constants.

In our problem formulation, local exciter controllers are
already embedded into the open-loop system. Our objective
is to find a trade-off between Ho performance and sparsity of
the feedback gain. In Fig. 2, we illustrate the sparsity pattern
of the feedback matrix G in the original set of coordinates
for different values of ~. Five rows correspond to five
control inputs of each generator. The first block corresponds
to the rotor angles p, the second block corresponds to
rotor frequencies v := p, and the third block corresponds
to the remaining states r. The blue dots represent fully-
decentralized feedback gains, and the red dots represent
information exchange between different generators.

O—= -
0 20 40 60
(a) v = 0.2705, card (G) = 17

O -

5“ [ -] - .
0 20 40 60
0 (b) v = 0.4930, card (G) = 13

5“ .':r - . - H

0 20 40 60
©)vy=2,card(G) =9

Fig. 2: Sparsity pattern of GG for the exciter control.

When v = 0, the optimal centralized feedback gain G.
is a dense matrix populated with nonzero elements. When
v = 0.4930, controller on generator 1 needs to have access
to frequency of generator 4 and also the exciter information
from generator 2; see Fig. 2a. Relative to the optimal
centralized controller, sparse controller with only two long-
range communication links compromises performance by
only about 15%. The nonzero elements corresponding to the
local states indicate feedback gains that are retuned by our
procedure. When we increase « to 2, only one long-range
communication link remains and the resulting performance
drop is 24.4%.

In Fig. 3, we can see that, relative to the optimal cen-
tralized controller GG, performance of the optimal sparse
controller decreases with increased emphasis on sparsity. As
expected, increased emphasis on sparsity induces feedback
gains with smaller number of nonzero elements.

B. Single-integrator network

In Fig. 4, 30 nodes are randomly distributed in a unit
square. The graph Laplacian of the open-loop system L, is
obtained based on proximity of two nodes: a pair of nodes
communicate with each other if their distance is not greater
than 0.25 units. Each node is equipped with a controller that
is designed to minimize the total mean-square deviation from
average of the closed-loop network.

25 S
20
-
S 15 -
2 L]
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5 -~
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104 1073 1072 10~! 10°
Y
@ (J — Je) /Je
708,
60 |
-,
o 40 ™
(3] .Y
30 -
[}} -
Q 9 \._‘
10 N
0 b S|
107% 1073 1072 10! 10°
9

(b) card (G) /card (G.)

Fig. 3: Performance drop and the number of non-zero
feedback gains for the exciter control.

"“0 [c3
0.8" \ /L @
0.6/
0.4

0.2+

Fig. 4: Local performance graph, where blue edges connect
pair of nodes with distance less than 0.25

Using the SDP characterization (12) of the sparsity-
promoting optimal control problem (11), the optimal Lj
is computed in CVX [23]. Figure 5 illustrates that when
v = 0.0621, only 7 additional long-range communication
links are needed to achieve performance which is within
26% of the optimal centralized gain. Furthermore, for the
smallest value of + in Fig. 6, we see that dropping 25% of
links from the centralized controller almost yields optimal
centralized performance. On the other hand, for the largest
value of v in Fig. 6, we observe that the sparse controller
with only 1.6% of links present in the centralized controller
compromises performance by about 46%.
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0.4 0.6 0.8 1

Fig. 5: Identified communication graph, where long-range

communication links are highlighted in red.
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Fig. 6: Performance drop and the number of non-zero
feedback gains.

V. CONCLUDING REMARKS

In this paper, we consider ¢; regularized version of the
standard Hy optimal control problem for consensus and
synchronization networks. We achieve desirable performance
with fewer controller links by promoting sparsity on the
feedback matrix. Alternating direction method of multipliers
allows for performance and sparsity requirements to be ex-
pressed in different set of coordinates which allows efficient
computation of the optimal controllers. The developments
are illustrated using examples from power and consensus

networks.
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