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Input-Output Analysis and Decentralized Optimal
Control of Inter-Area Oscillations in Power Systems
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Abstract—Local and inter-area oscillations in bulk power
systems are typically identified using spatial profiles of poorly
damped modes, and they are mitigated via carefully tuned de-
centralized controllers. In this paper, we employ non-modal tools
to analyze and control inter-area oscillations. Our input-output
analysis examines power spectral density and variance amplifi-
cation of stochastically forced systems and offers new insights
relative to modal approaches. To improve upon the limitations
of conventional wide-area control strategies, we also study the
problem of signal selection and optimal design of sparse and
block-sparse wide-area controllers. In our design, we preserve
rotational symmetry of the power system by allowing only relative
angle measurements in the distributed controllers. For the IEEE
39 New England model, we examine performance tradeoffs and
robustness of different control architectures and show that optimal
retuning of fully-decentralized control strategies can effectively
guard against local and inter-area oscillations.

Index Terms—Input-output analysis, inter-area oscillations,
sparsity-promoting optimal control, wide-area control.

I. INTRODUCTION

I NTER-AREA oscillations in bulk power systems are as-
sociated with the dynamics of power transfers and involve

groups of synchronous machines that oscillate relative to each
other. These system-wide oscillations arise from modular net-
work topologies, heterogeneous machine dynamics, adversely
interacting controllers, and large inter-area power transfers.
With increased system loads and deployment of renewables in
remote areas, long-distance power transfers will eventually out-
pace the addition of new transmission facilities. This induces
severe stress and performance limitations on the transmission
network and may even cause instability and outages [1].
Traditional analysis and control of inter-area oscillations is

based onmodal approaches [2], [3]. Typically, inter-area oscilla-
tions are identified from the spatial profiles of eigenvectors and
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participation factors of poorly damped modes [4], [5], and they
are damped via decentralized controllers, whose gains are care-
fully tuned using root locus [6], [7], pole placement [8], adaptive
[9], robust [10], and optimal [11] control strategies. To improve
upon the limitations of decentralized control, recent research
centers at distributed wide-area control strategies that involve
the communication of remote signals [12], [13]. The wide-area
control signals are typically chosen to maximize modal observ-
ability metrics [14], [15], and the control design methods range
from root locus criteria to robust and optimal control approaches
[16]–[18].
The spatial profiles of the inter-area modes together with

modal controllability and observability metrics were previously
used to indicate which wide-area links need to be added and
how supplemental damping controllers have to be tuned. Here,
we depart from the conventional modal approach and propose
a novel methodology for analysis and control of inter-area
oscillations. In particular, we use input-output analysis to study
oscillations in stochastically forced power systems. A similar
approach was recently employed to quantify performance of
consensus and synchronization networks [19], [20].
To identify wide-area control architectures and design op-

timal sparse controllers, we invoke the paradigm of sparsity-
promoting optimal control [21]–[24]. Recently, this framework
was successfully employed for wide-area control of power sys-
tems [25]–[28]. Here, we follow the formulation developed in
[24] and find a linear state feedback that simultaneously opti-
mizes a quadratic optimal control criterion (associated with in-
coherent and poorly damped oscillations) and induces a sparse
control architecture. The main novel contributions of our con-
trol design approach are highlighted below. We improve the
previous results [25]–[28] at two levels: first, we preserve rota-
tional symmetry of the original power system by allowing only
relative angle measurements in the distributed controller, and,
second, we allow identification of block-sparse control archi-
tectures, where local information associated with a subsystem
is either entirely used (or discarded) for control.
We illustrate the utility of our approach using the IEEE 39

New England model [29]. We show how different sparsity-pro-
moting penalty functions can be used to achieve a desired
balance between closed-loop performance and communication
complexity. In particular, we demonstrate that the addition of
certain long-range communication links and careful retuning of
the local controllers represent an effective means for improving
system performance. For the New England model, it turns out
that properly retuned and fully-decentralized controllers can
perform almost as well as the optimal centralized controllers.
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Our results thus provide a constructive answer to the much-de-
bated question of whether locally observable oscillations in a
power network are also locally controllable [30].
The remainder of the paper is organized as follows. In

Section II, we briefly summarize the model, highlight causes of
inter-area oscillations, and provide background on input-output
analysis of power systems. In Section III, we formulate sparse
and block-sparse optimal wide-area control problems under the
relative angle measurement restriction. In Section IV, we apply
our sparse controllers to the IEEE 39 New England power grid
and compare performance of open- and closed-loop systems.
Finally, in Section V, we conclude the paper.

II. BACKGROUND ON POWER SYSTEM OSCILLATIONS

A. Modeling and Control Preliminaries
A power network is described by a nonlinear system of dif-

ferential-algebraic equations. Differential equations govern the
dynamics of generators and their controllers, and the algebraic
equations describe quasi-stationary load flow and circuitry of
generators and power electronics [31]. A linearization around a
stationary operating point and elimination of the algebraic equa-
tions yield a linearized state-space model

(1)

Here, is the state, is the generator exci-
tation control input, and is the stochastic disturbance
which may arise from power imbalance and uncertain load de-
mands [31]. For example, the choice can be used to
quantify and mitigate the impact of noisy or lossy communica-
tion among spatially distributed controllers [26].
The dominant electro-mechanical dynamics of a power

system are given by the linearized swing equations [31]

These equations are obtained by neglecting fast electrical dy-
namics and eliminating the algebraic load flow. Here, and
are the rotor angle and frequency of generator and

are the generator inertia and damping coefficients, and is
the element of the network susceptance matrix indicating
the interactions between generators and [26]. Even though
the swing equations do not fully capture complexity of power
systems, they nicely illustrate the causes of inter-area oscilla-
tions: Inter-area oscillations originate from sparse links between
densely connected groups of generators (so-called areas). These
areas can be aggregated into coherent groups of machines which
swing relative to each other using the slow coherency theory
[32], [33]. Our goal is to design wide-area controllers to sup-
press inter-area oscillations.
Under a linear state-feedback

the closed-loop system takes the form

(2)

where is a performance output with state and control weights
and . We choose to be the identity matrix and a state ob-

jective that quantifies a desired potential energy and the kinetic
energy stored in the electro-mechanical dynamics

Here, is the inertia matrix and the matrix
penalizes the deviation of angles from their average

(3)

where is the number of generators and is the vector of all
ones. In a power system without a slack bus, the generator rotor
angles are only defined in a relative frame of reference, as can
be observed in the swing equations. Thus, they can be rotated by
a uniform amount without changing the fundamental dynamics
(1). We preserve this rotational symmetry and study problems
in which only differences between the components of the vector

enter into (2). As a result of the rotational symmetry,
both the open-loop -matrix and the performance weight
have an eigenvalue at zero which characterizes the mean of all
rotor angles.
By expressing the state vector as

where represents the rotor frequencies and addi-
tional states that account for fast electrical dynamics, we arrive
at the structural constraints on the matrices in (2)

In earlier work [25], [26], we have removed this rotational
symmetry by adding a small regularization term to the diagonal
elements of the matrix . This has resulted in a controller that
requires the use of absolute angle measurements to stabilize the
average rotor angle. Such a regularization induces a slack bus
(a reference generator with a fixed angle) and thereby alters the
structure of the original power system.
In this paper, we preserve the natural rotational symmetry by

restricting our attention to relative angle measurements. This
requirement implies that the average rotor angle has to remain
invariant under the state feedback . To cope with
these additional structural constraints, the sparsity-promoting
approach of [23] has been recently augmented in [24].
To eliminate the average-mode from (2) we introduce the

following coordinate transformation [24]:

(4)

where the columns of the matrix form an or-
thonormal basis that is orthogonal to . For example,
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these columns can be obtained from the eigenvectors
of the matrix in (3) that correspond to the non-zero eigen-
values. In the new set of coordinates, ,
the closed-loop system takes the form

(5)

where

The feedback matrices and (in the original and new
coordinates, respectively) are related by

Because of a marginally stable average mode, the matrix in
(2) is not Hurwitz. The coordinate transformation (4) eliminates
the average angle from (2), thereby leading to (5) with Hur-
witz . In the presence of stochastic disturbances, drifts
in a random walk. Since is not observable from the perfor-
mance output (which quantifies the mean-square deviation
from angle average, kinetic energy, and control effort), has a
finite steady-state variance. This variance is determined by the
square of the norm of system (5).

B. Power Spectral Density and Variance Amplification

The conventional analysis of inter-area oscillations in power
systems is based on spatial profiles of eigenvectors and partic-
ipation factors of poorly damped modes. Similarly, traditional
control design builds on a modal perspective [4], [5]. In sys-
tems with non-normal -matrices, modal analysis may lead to
misleading conclusions about transient responses, amplification
of disturbances, and robustness margins [34]–[36]. Non-normal
matrices are common in power systems; such matrices do not
have orthogonal eigenvectors and they cannot be diagonalized
via unitary coordinate transformations.
In what follows, we utilize an approach that offers additional

and complementary insights to modal analysis. This approach
is based on the input-output analysis, where the input is the
source of excitation and the output is the quantity that we care
about. In stochastically forced systems, input-output analysis
amounts to the study of power spectral density and variance
amplification. Our approach builds on the paradigm [37],
which analyzes and mitigates amplification of white stochastic
disturbances.
We next provide a brief overview of the power spectral den-

sity and variance amplification analyses of linear dynamical sys-
tems. Let denote the frequency response of (5)

The Hilbert-Schmidt norm determines the power spectral den-
sity of

where 's are the singular values of the matrix . The
norm quantifies the steady-state variance (energy) of the

output of stochastically forced system (5). It is obtained by
integrating the power spectral density over all frequencies [37]

where is the expectation operator. Equivalently, the matrix
solution to the Lyapunov equation

can be used to compute the norm [37]

(6)

Here, is the steady-state covariance matrix of the state in
(5), , and the covariance matrices
of the outputs and are determined by

Note that and quantify the system's kinetic
and potential energy and the control effort, respectively. In par-
ticular, the eigenvalue decomposition of the matrix

determines contribution of different orthogonalmodes to the
kinetic and potential energy in statistical steady-state. The total
energy is given by , i.e., the sum of the eigenvalues

of the covariance matrix . Each mode contributes to
the variance amplification and the spatial structure of the most
energetic mode is determined by the principal eigenvector of
the matrix .

III. SPARSE AND BLOCK-SPARSE OPTIMAL CONTROL

In this section, we study the problem of optimal signal selec-
tion and optimal design of wide-area controllers. We approach
this problem by invoking sparsity-promoting versions of the
standard optimal control formulation. We build on the
framework developed in [21]–[24] which is aimed at finding a
state feedback that simultaneously optimizes the closed-loop
variance and induces a sparse control architecture. This is
accomplished by introducing additional regularization terms
to the optimal control problem. These serve as proxies for
penalizing the number of communication links in the wide-area
controller, thereby inducing a sparse control architecture.

A. Elementwise Sparsity

As shown in Section II-B, the norm of system (5) is deter-
mined by (6). While the performance is expressed in terms
of the feedback matrix in the new set of coordinates, it is
necessary to enhance sparsity of the feedback matrix in the
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physical domain. A desired tradeoff between the system's per-
formance and the sparsity of is achieved by solving the reg-
ularized optimal control problem [24]

(7)
The regularization term in (7) is given by the weighted -norm
of

which is an effective proxy for inducing elementwise sparsity
[38]. The weights 's are updated iteratively using the solu-
tion to (7) from the previous iteration; see [38] for details. In
(7), is a fixed positive scalar that characterizes the emphasis
on the sparsity level of the feedback matrix . A larger value
of introduces a sparser feedback gain at the expense of de-
grading the closed-loop performance.
We solve the optimal control problem (7) for different values

of the positive regularization parameter via the alternating di-
rection method of multipliers; see [23], [24] for algorithmic de-
tails. This allows us to identify a parameterized family of dis-
tributed control architectures that strikes an optimal balance be-
tween competing performance and sparsity requirements.

B. Block Sparsity
In power systems, only rotor angle differences enter into the

dynamics and information about absolute angles is not avail-
able. It is thus advantageous to treat rotor angles separately from
the remaining states in the control design. We partition con-
formably with the partition of the state vector

where and are the feedback gains acting on the rotor
angles and the remaining states, respectively.
The actuators in wide-area control range from power system

stabilizers (PSSs) to power electronics devices (FACTS) to
HVDC links. While our design methodology is general, in
the sequel we restrict our presentation to PSSs. For PSSs the
control action is usually formed in a fully-decentralized fashion
using local measurements of frequencies and power injections.
We represent the vector as

where is the vector of states of the controlled generator
(modulo angles). If is partitioned conformably with the par-
tition of the vector , then the block-diagonal elements of
provide a means for retuning the local control action. Since
is readily available to the controller of generator , in what

follows we do not introduce sparsity-promoting penalty on the
block-diagonal elements of . On the other hand, there are
many options for treating the components of associated with
the states of other generators. We next illustrate three possible
options.
Consider a system of four generators with controllers.

The states of each controlled generator are given by angle,
frequency, fluxes, and excitation control system; see Fig. 1.
Sparsity of the inter-generator control gains can be enhanced

Fig. 1. Block structure of the feedback matrix . Black dots denote relative
angle feedback gains; blue and red dots represent local and inter-generator fre-
quency and PSS gains, respectively. (a) Elementwise. (b) Group states of indi-
vidual generators. (c) Group states of all other generators.

either via elementwise or group penalties. Inter-generator
information exchange can be treated with an elementwise
penalty in the same way as in Section III-A; see Fig. 1(a) for
an illustration. On the other hand, group penalties [39] can be
imposed either on the states of individual generators or on the
states of all other generators; cf. Figs. 1(b) and (c).
The above objectives can be accomplished by solving the

sparsity-promoting optimal control problem

(8)
where

(9a)

On the other hand, for the three cases discussed and illustrated
in Fig. 1 the corresponding regularization functions are

(9b)

(9c)

(9d)

where
and

(9e)

The elementwise penalty (9b) eliminates individual components
of the feedback gain. In contrast, the group penalties (9c) and
(9d) simultaneously eliminate feedback gains associated with a
particular generator or feedback gains associated with all other
generators, respectively. The cardinality function in
(9e) counts the number of nonzero elements of a matrix, is el-
ementwise matrix multiplication, is the struc-
tural identity matrix (see Fig. 2 for the structure of ),
is the th unit vector, and is the structural identity
vector. This vector is partitioned conformably with the partition
of the vector

where for and for .
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Fig. 2. Structural identity matrix with red dots representing locations of 1's.

Fig. 3. The IEEE 39 New England Power Grid and its coherent groups identi-
fied using slow coherency theory.

We note that the Euclidean norm ( , not its square) is a
widely used regularizer for enhancing group sparsity [39]. The
group weights 's and 's are updated iteratively using the
solution to (8) from the previous iteration [38]. The scaling fac-
tors and account for variations in the group sizes.

IV. CASE STUDY: IEEE 39 NEW ENGLAND MODEL

The IEEE 39 New England Power Grid model consists of
39 buses and 10 detailed two-axis generator models; see Fig. 3.
All loads are modeled as constant power loads. Generators 1
to 9 are equipped with PSSs, and generator 10 is an equivalent
aggregated model representing the transmission network of a
neighboring area. This generator has an inertia which is an order
of magnitude larger than the inertia of other generators.
The uncontrolled open-loop system is unstable, and PSSs are

used for stabilization and to suppress local oscillations. For the
subsequent analysis and the wide-area control design, we as-
sume that the PSS inputs are embedded in the open-loop matrix

in (2). The transfer function of the local PSS con-
troller on the th generator is given by

with controller gains
for . This set of PSS con-

trol gains stabilizes the unstable open-loop system, but it still
features several poorly-damped modes. Our objective is to aug-
ment the local PSS control strategy with an optimal wide-area
controller in order to simultaneously guard against inter-area os-
cillations and weakly dampened local oscillations.
Our computational experiments can be reproduced

using the code available at: www.umn.edu/~mihailo/soft-
ware/lqrsp/matlab-files/lqrsp_wac.zip.

A. Analysis of the Open-Loop System
Despite the action of the local PSS controllers, modal

and participation factor analyses reveal the presence of six

Fig. 4. Polar plots of the angle components of the six poorly-damped modes
for the open-loop system. (a) Mode 1. (b) Mode 2. (c) Mode 3. (d) Mode 4. (e)
Mode 5. (f) Mode 6.

TABLE I
POORLY-DAMPED MODES OF NEW ENGLAND MODEL

poorly-damped modes in the New England power grid model;
see Table I and Fig. 4. Mode 4 is a local mode because it only
involves oscillations between generators 2 and 3, which belong
to the same coherent group. All other modes are inter-area
modes where groups of generators oscillate against each other.
Since these inter-area modes are poorly damped with damping
ratios as low as 1.20% and 2.61%, the local PSS controllers
need to be complemented by supplementary wide-area con-
trollers to improve the damping of the inter-area oscillations.
We depart from the modal perspective and examine the power

spectral density and variance amplification of the open-loop
system. This type of analysis allows us to identify 1) the tem-
poral frequencies for which large amplification occurs; and 2)
the spatial structure of strongly amplified responses.
Fig. 5 illustrates the power spectral density of the open-loop

system. The largest peak occurs at rad/s
( Hz) and it corresponds to mode 1 in
Table I and Fig. 4. Another resonant peak at rad/s
( Hz) corresponds to mode 6 in Table I and Fig. 4.
The red dots in Fig. 5(b) indicate all six poorly-damped modes.
The contribution of each generator to the steady-state vari-

ance is shown in Fig. 6. The diagonal elements of the output
covariance matrix contain information about mean-square
deviation from angle average and variance amplification of fre-
quencies of the individual generators. From Fig. 6, we see that
the largest contribution to the variance amplification arises from
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Fig. 5. (a) Power spectral density of the open-loop system. (b) Zoomed version
of the red square shown in (a). Red dots denote poorly-damped modes from
Table I.

Fig. 6. Diagonal elements of the open-loop covariance matrix determine
contribution of each generator to the variance amplification.

Fig. 7. (a) Eigenvalues; and (b)–(d) eigenvectors corresponding to the three
largest eigenvalues of the open-loop output covariance matrix . (a) Eigen-
values of . (b) . (c) . (d) .

the misalignment of angles of generators 1, 5, and 9, and mis-
alignment of frequencies of generators 1 and 9.
Similar observations can be made from Fig. 7. In Fig. 7(a),

we observe two dominant eigenvalues of the output covariance
matrix . We also show the spatial structure of the three prin-
cipal eigenvectors (modes) of , which contain 47.5% of the
total variance. Although the angle and frequency fluctuations in
experiments and nonlinear simulations are expected to be more
complex than the structures presented in Fig. 7, the spatial pro-
files identified here are likely to play significant role in amplifi-
cation of disturbances in power systems.

Fig. 8. Sparsity patterns of resulting from (7). (a)
. (b) . (c)
.

B. Sparsity-Promoting Optimal Wide-Area Control

We next illustrate that the addition of certain long-range com-
munication links and careful retuning of the local excitation
controllers are effective means for improving the system per-
formance and increasing its resilience to inter-area oscillations.
1) Elementwise Sparsity: We first consider an optimal sparse

controller whose structure is identified using the solution to (7).
Sparsity patterns of the feedback matrix for dif-
ferent values of are illustrated in Fig. 8. The blue dots denote
information coming from the generators on which the particular
controller acts, and the red dots identify information that needs
to be communicated from other generators. For , the
identified wide-area control architecture imposes the following
requirements: 1) the controller of generator 9, which contributes
most to the variance amplification of both angles and frequen-
cies, requires angle and field voltage measurements of the ag-
gregate generator 10; 2) the controller of generator 5 requires
the difference between its angle and the angle of the equiva-
lenced model 10; and 3) the controllers of generators 1, 4, and 7
utilize the field voltage information of generators 10, 5, and 6,
respectively.
When is increased to 0.1548, only one long-range link re-

mains. This link is identified by the red dot in Fig. 8(b), indi-
cating that the controller of generator 9 requires access to the
angle mismatch relative to generator 10. By further increasing
to 0.25, we obtain a fully-decentralized controller. Compared to
the optimal centralized controller, our fully-decentralized con-
troller degrades the closed-loop performance by about 3.02%;
see Fig. 9. This fully-decentralized controller can be embedded
into the local generator excitation system by directly feeding the
local measurements to the automatic voltage regulator, thereby
effectively retuning the PSS controller.
In earlier work [25], [26], a small regularization term was

added to the diagonal elements of the matrix in order to pro-
vide detectability of the average mode. This has resulted in a
controller that requires access to the absolute angle measure-
ments to stabilize the average rotor angle. Our results indicate



2440 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 31, NO. 3, MAY 2016

Fig. 9. Performance vs sparsity comparison of sparse and the optimal cen-
tralized controller for 50 logarithmically-spaced points .

Fig. 10. Sparsity patterns of resulting from (8). (a)
. (b) .

.

that long-range links identified in [25] and [26] do not have sig-
nificant influence on the system performance.
2) Block Sparsity: Three identified sparsity patterns of the

feedback matrix resulting from the solution to (8), with and
given by (9a) and (9d), are shown in Fig. 10. In all three

cases, structures of the angle feedback gains agree with the el-
ementwise sparse controllers; cf. Fig. 8. On the other hand, the
group penalty (9d) yields block-diagonal feedback gains that act
on the remaining states of generators 1–9. Since no information
exchangewith aggregate generator 10 is required, this part of the
controller can be implemented in a fully-decentralized fashion
in all three cases.
Compared to the optimal centralized controller, a fully-de-

centralized controller with structure shown in Fig. 10(c) com-
promises performance by only 2.34%; see Fig. 11. We recall
that the fully-decentralized controller with structure shown in
Fig. 8(c) degrades performance by 3.02%; cf. Fig. 9. Since the
block-sparse controller has more degrees of freedom than the
elementwise sparse controller, performance improvement does
not come as a surprise. We finally note that the jumps in the
number of non-zero elements in Fig. 11 are caused by elimina-
tion of the entire off-diagonal rows of the feedback gain that
acts on states different from relative angles.

C. Comparison of Open- and Closed-Loop Systems
We next compare performance of the open-loop system

and the closed-loop systems with optimal centralized and

Fig. 11. Performance vs sparsity comparison of block-sparse and the op-
timal centralized controller for 50 logarithmically-spaced points

.

fully-decentralized sparse and block-sparse controllers. The
structures of these fully-decentralized controllers are shown in
Figs. 8(c) and 10(c), respectively.
Fig. 12 compares the spectra of the open- and closed-loop

systems. As Fig. 12(a) illustrates, all three controllers (central-
ized as well as decentralized sparse and block-sparse) move the
open-loop spectrum away from the imaginary axis. The dashed
lines in Fig. 12 identify damping lines. Typically, the mode is
considered to have sufficient damping if it is located to the left of
the 10% cyan damping line. The numbered black asterisks to the
right of the 10% damping line in Fig. 12(b) correspond to the six
poorly-damped modes of the open-loop system. Other damping
lines show that all of our controllers significantly improve the
damping of the system by moving the poorly-damped modes
deeper into the left-half of the complex plane. This demon-
strates that minimization of the variance amplification (i.e., the
closed-loop norm) represents an effective means for im-
proving damping in power systems.
Fig. 13 provides a comparison between the power spectral

densities of the four cases. All three controllers successfully
suppress the resonant peaks associated with the poorly-damped
modes and significantly improve performance.We also note that
the fully-decentralized sparse controllers perform almost as well
as the optimal centralized controller for high frequencies; for
low frequencies, we observe minor discrepancy that accounts
for 2%–3% of performance degradation in the variance ampli-
fication.
Fig. 14 displays the eigenvalues of the output covariance ma-

trix for the four cases mentioned above. Relative to the open-
loop system, all three feedback strategies significantly reduce
the variance amplification. A closer comparison of the closed-
loop systems reveals that the diagonal elements of the output co-
variance matrix are equalized and balanced by both the optimal
centralized and the decentralized controllers; see Fig. 14(b).
Similar to the modal observations discussed in [26], the op-
timal sparse and block-sparse feedback gains not only increase
the damping of the eigenvalues associated with the inter-area
modes, but also structurally distort these modes by rotating the
corresponding eigenvectors.
We use time-domain simulations of the linearized model to

verify performance of decentralized block-sparse controller.
Fig. 15 shows the trajectories of rotor angles and frequencies
for the open- and closed-loop systems for two sets of initial con-
ditions. These are determined by the eigenvectors of open-loop
inter-area modes 2 and 6 in Table I. Clearly, the decentralized



WU et al.: INPUT-OUTPUT ANALYSIS AND DECENTRALIZED OPTIMAL CONTROL 2441

Fig. 12. Eigenvalues of the open-loop system and the closed-loop systems with
sparse/block-sparse/centralized controllers are represented by black asterisks,
red circles, green diamonds, and blue squares, respectively. The damping lines
indicate lower bounds for damping ratios and they are represented by dashed
lines using the same colors as for the respective eigenvalues. The 10% damping
line is identified by cyan color. The numbered black asterisks correspond to
the six poorly-damped modes given in Table I. (a) Spectra of the open- and
close-loop systems. (b) Zoomed version of (a).

block-sparse controller significantly improves performance
by suppressing the inter-area oscillations between groups of
generators. Furthermore, relative to the open-loop system, the
transient response of the closed-loop system features shorter
settling time and smaller maximum overshoot.

D. Robustness Analysis

We close this section by examining robustness to the op-
erating point changes of both open- and closed-loop systems.
Random load perturbations are used to modify the operating
point of the nonlinear system. The loads, that are used for
the analysis and control synthesis, are altered via uniformly

Fig. 13. Power spectral density comparison.

Fig. 14. Eigenvalues of the output covariance matrix . Black asterisks repre-
sents the open-loop system, red circles, green diamonds, and blue squares repre-
sent the closed-loop systems with sparse, block-sparse, and optimal centralized
controllers, respectively. (a) Variance amplification. (b) Zoomed version of (a).

distributed perturbations that are within % of the nom-
inal loads. The performance of the nominal centralized and
decentralized controllers on the perturbed linearized model is
evaluated by examining the closed-loop norm.
Fig. 16 shows the distribution of performance change for

10 000 operating points around the original equilibria. We
observe bell-shaped distributions with symmetric and narrow
spread around the nominal performance. In spite of signif-
icant changes in the operating points, both centralized and
fully-decentralized controllers are within 2% of the nominal
performance. In contrast, same perturbations can degrade per-
formance of the open-loop system by as much as 15%. Thus,
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Fig. 15. Time-domain simulations of the linearized model of the IEEE 39 New England power grid. The rotor angles and frequencies of all generators are shown.
The closed-loop results are obtained using the fully-decentralized block-sparse controller. The initial conditions are given by the eigenvectors of the poorly-damped
inter-area modes 2 (left) and 6 (right) from Table I.

our decentralized controllers also reduce the sensitivity and
improve the robustness with respect to setpoint changes.
To account for delays in communication channels, asyn-

chronous measurements, and fast unmodeled dynamics, we
utilize multivariable phase margin to quantify the robustness of
our sparse optimal controllers. In Fig. 17, we investigate how
the phase margins of the closed-loop systems change with the
sparsity-promoting parameter . As our emphasis on sparsity
increases, multivariable phase margins degrade gracefully and
stay close to a desirable phase margin of 60 .
Our approach thus provides a systematic way for designing

optimal sparse controllers with favorable robustness margins
and performance guarantees even in a fully-decentralized case.

V. CONCLUDING REMARKS

We have analyzed inter-area oscillations in power systems by
studying their power spectral densities and output covariances.
Our analysis of the open-loop system identifies poorly-damped
modes that cause inter-area oscillations. We have also designed
sparse and block-sparse feedback controllers that use relative
angle measurements to achieve a balance between system
performance and controller architecture. By placing increasing

Fig. 16. Performance histograms of open- and closed-loop linearized systems
(with nominal controllers) for 10 000 uniformly distributed operating points. (a)
Open-loop system. (b) Centralized controller. (c) Sparse controller. (d) Block-
sparse controller.

weight on the sparsity-promoting term we obtain fully-decen-
tralized feedback gains. Performance comparisons of open- and
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Fig. 17. Multivariable phase margins as a function of . (a) Element-wise
sparse controller. (b) Block-sparse controller.

closed-loop systems allowed us to understand the effect of the
control design approach both in terms of system performance
and with regards to the resulting control architecture. For the
IEEE 39 New England model we have successfully tested our
analysis and control design algorithms. We have also provided
a systematic method for optimal retuning of fully-decentralized
excitation controllers that achieves comparable performance to
the optimal centralized controller.
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