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Decentralized optimal control of inter-area oscillations in bulk power systems
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Abstract—In bulk power systems, spectral analysis of poorly
damped modes is commonly used for identifying local and inter-
area oscillations. Conventionally, these oscillations are mitigated
by carefully tuned decentralized controllers. In this paper, we
depart from the modal perspective and employ non-modal
tools to analyze and control inter-area oscillations. Our input-
output analysis examines power spectral density and variance
amplification of stochastically forced systems and offers new
insights relative to modal approaches. To improve upon the
limitations of conventional wide-area control strategies, we also
study the problem of signal selection and optimal design of
sparse and block-sparse wide-area controllers. In our approach,
we preserve rotational symmetry of the power network by
allowing only relative angle measurements in the distributed
controllers. We examine performance tradeoffs and robustness
of sparse and block-sparse control architectures by studying
the NETS-NYPS test system, and show that optimal retuning
of fully-decentralized controllers can effectively guard against
local and inter-area oscillations.

Index Terms— Decentralized control, input-output analysis,
inter-area oscillations, power systems, sparsity-promoting opti-
mal control, synchronization, wide-area control.

I. INTRODUCTION

Electromechanical oscillations in power systems are
mainly caused by the loss of synchronization among the
generators and imbalanced power transfers. In particular,
oscillations with low frequencies and poor damping that in-
volves groups of generators swinging against each other, are
identified as inter-area oscillations. In recent years, increas-
ing system loads and deployment of renewables in remote
areas have significant impact on the dynamical behavior and
system stability. Limitations on the existing transmission
network would lead to smaller stability margins and even
power outage [1].

Conventional study on inter-area oscillations are based on
modal analysis of the system dynamics. Modal approaches
identify inter-area oscillations from the spatial profile of the
eigenvectors and participation factors of the poorly damped
modes. In practice, decentralized control gains are carefully
tuned to damp inter-area oscillations, using root locus [2],
pole placement [3] and optimal control [4] strategies. How-
ever, these decentralized control actions can interact in an
adverse way and may even destabilize the overall system.
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To improve the performance of existing decentralized con-
trol strategy, recent effort aims at designing wide-area con-
trollers that use remote measurements to form local control
actions [5]. These wide-area control design approaches range
from root locus criteria to robust and optimal control [6],
to maximize modal observability [7]. In this paper, we use
an input-output analysis to examine power spectral density
and variance amplification of the stochastically forced power
systems. In previous works [8], [9], a similar approach
was employed to quantify performance of consensus and
synchronization networks.

Here, we follow the procedures of sparsity-promoting
optimal control algorithm [10]-[13], which was successfully
employed for wide-area control of power systems [14]—
[16]. We formulate the problem following [13], [17] and
design linear state feedback controllers that simultaneously
optimizes a quadratic optimal control criterion and induces a
sparse control architecture. Our approach departs from recent
results [14]-[16] at two levels: (i) we preserve rotational
symmetry of the original power network by allowing only
relative angle measurements in the distributed controller and
(i1) we allow identification and optimal feedback gain design
of block-sparse control architectures.

We illustrate our developments by testing our control
strategy on the NETS-NYPS test system [18], [19]. We show
how different sparsity-promoting penalty functions can be
used to achieve a desired balance between closed-loop Ho
performance and sparsity of the communication network.
The addition of particular remote communication links and
careful retuned local control gains are shown to be effective
for improving system performance. For the NETS-NYPS test
system, the numerical results indicate that properly retuned
and fully-decentralized controllers can show comparable
performance to the optimal centralized controllers.

This paper summarizes the key developments of our recent
journal submission [20] and it is organized as follows. In
Section II, we briefly introduce the model, discuss causes
of inter-area oscillations, and provide background on input-
output analysis of power systems. In Section III, we for-
mulate sparse and block-sparse optimal wide-area control
problems under the relative angle measurement restriction.
In Section IV, we test our sparse controllers on the NETS-
NYPS test system and compare performance of open- and
closed-loop systems. Finally, Section V concludes the paper.

II. BACKGROUND ON POWER SYSTEM OSCILLATIONS

A. Modeling and control preliminaries

A power network is described by a set of nonlinear
differential-algebraic equations. By linearizing around a sta-
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tionary operating point and eliminating the algebraic equa-
tions, a state-space model is of the form

Here, z(t) € R™ is the state, u(t) € R™ is the excitation
control input, and d(t) € RP is the stochastic disturbance. For
example, the choice B; = B» can be used to account for the
impact of communication noise from the input channels [15].

The dominant electro-mechanical dynamics of a power
system are well captured by the linearized swing equa-
tions [21],

Mzel + Dlel + Z,Lij(ei - 0j) = 0.
J

Here, 6; and 6, are the rotor angle and frequency of gen-
erator ¢, M; and D, are the generator inertia and damping
coefficients, and L;; is the (4,j) element of the network
susceptance matrix. Swing equations nicely illustrate the
causes of inter-area oscillations, which originate from sparse
links between densely connected groups of generators [22].

Under a linear state-feedback uv = — Kz, the closed-loop
system takes the form

T = (A—BQK)J} + Bld

_ z1 o Q 1/2 (2)

z = 2 = _ Rl /2 K X
where z is a performance output with state and control
weights () and R. We choose R to be the identity matrix and

a state objective that quantifies a desired potential energy and
the kinetic energy stored in the electro-mechanical dynamics,

1. R
2TQx = 07Qp0 + 59TMe.

Here, M = diag (M;) is the inertia matrix and (Jy penalizes
deviation of angles from their average 0(t) := (1/N) 170(¢),

Qo = I - (1/N)117 3)

where NN is the number of generators and 1 is the vector
of all ones. In a power system without a slack bus, the
generator rotor angles are only defined in a relative frame
of reference, as can be observed in the property of the
Laplacian matrix L in the swing equations. Thus, they
can be rotated by a uniform amount without changing the
fundamental dynamics (1). We preserve rotational symmetry
and study problems in which only differences between the
components of the vector §(t) € RY enter into (2). As a
result of rotational symmetry, both open-loop A-matrix and
performance weight (Qy have an eigenvalue at zero which
characterizes the mean of rotor angles.

By expressing the state vector as x(¢) =
[ o) rt)” ]T, where 7(t) € R" N represents
the rotor frequencies and additional states that account
for fast electrical dynamics, we arrive at the structural
constraints on the matrices in (2),

To eliminate the average-mode @ from (2) we introduce the
following coordinate transformation [13],

x:[ﬂ:wu[ﬂe @

T

where the columns of the matrix U € RYX(N=1 form
an orthonormal basis that is orthogonal to span (1). For
example, these columns can be obtained from the (N — 1)
eigenvectors of the matrix @y in (3) that correspond to
the non-zero eigenvalues. In the new coordinates, £(t) =
TTx(t) € R"~!, the closed-loop system takes the form

£ (A — ByF)¢ + Bid
. 0\ )
BEEAL
where

A= TTAT, B, = T"B;, Q'* := Q'°T.

z

The feedback matrices K and F' (in the original  and new
& coordinates, respectively) are related by

F=KT & K=FTT.

Because of a marginally stable average mode, the matrix A
in (2) is not Hurwitz. The coordinate transformation (4) elim-
inates the average angle 0 from (2), thereby leading to (5)
with Hurwitz A. In the presence of stochastic disturbances,
6(t) drifts in a random walk. Since 6 is not observable from
the performance output z, z has a finite steady-state variance,
determined by the square of the 75 norm of system (5).

B. Power spectral density and variance amplification

In what follows, we utilize an approach that offers addi-
tional and complementary insights to the conventional modal
analysis. This approach is based on the input-output analysis,
where the input d is the external disturbances and the z is
performance output. In stochastically forced systems, input-
output analysis amounts to the study of power spectral
density and variance amplification. Our approach builds
on the Ho paradigm [23], which analyzes and mitigates
amplification of white stochastic disturbances.

We next provide a brief overview of the power spectral
density and variance amplification analyses of linear dynami-
cal systems. Let H (jw) denote the frequency response of (5),

z(jw) = H(jw)d(jw).

The Hilbert-Schmidt norm determines the power spectral
density of H(jw),

1H (jo)|[fis = trace (H(jw) H* (jw)) = Y _ o7 (H(jw))

where o;’s are the singular values of the matrix H (jw).
The Hs norm quantifies the steady-state variance (energy)
of the output z of stochastically forced system (5). It is
obtained by integrating the power spectral density over all
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frequencies [23],
. 1 [ .
171 = Jim B(T0:0) = 5- [ 1HG@)lfsde

where E is the expectation operator. Equivalently, the matrix
solution X to the Lyapunov equation,
(A - ByF)X + X(A - BF)' = -B,BT
can be used to compute the Hy norm [23],
J(F) == ||H|3 = trace (X (Q + FTRF)) ©
= trace(Z;) + trace(Z2).

Here, X is the steady-state covariance matrix of the state
€in (5), X := limy , oo E(£(t) €7(t)), and the covariance
matrices of the outputs z; and 29 are determined by

7= ImE(a(t) (1) = QV2x QY2
Zy = tlimE(zQ(t)zQT(t)) = RY?F X FTRY2,
— 00

Note that trace (Z7) and trace (Z2) quantify the system’s ki-
netic and potential energy and the control effort, respectively.
In particular, the eigenvalue decomposition of the matrix Z,

Zv =Y Niviy!

determines contribution of different orthogonal modes y; to
the kinetic and potential energy in statistical steady-state.
The total energy is given by trace (Z), i.e., the sum of the
eigenvalues \; of the covariance matrix Z;. Each mode y;
contributes \; to the variance amplification and the spatial
structure of the most energetic mode is determined by the
principal eigenvector y; of the matrix Z;.

III. SPARSE AND BLOCK-SPARSE OPTIMAL CONTROL

We study the problem of optimal signal selection and
optimal design of wide-area controllers. We build on the
framework developed in [10]-[13] which is aimed at finding
a state feedback that simultaneously optimizes the closed-
loop variance and induces a sparse control architecture.

A. Elementwise sparsity

As shown in Section II-B, the 5 norm of system (5) is
determined by (6). While the H2 performance is expressed in
terms of the feedback matrix ' in the new set of coordinates,
it is necessary to enhance sparsity of the feedback matrix
K in the physical domain. This results in the regularized
optimal control problem [13],

J(F) + vg(K)
FTT - K = 0.

minimize
: )

subject to
The regularization term in (7) is given by the weighted /-
norm of K, g(K) := ZWij|Kij|7 which is an effective

proxy for inducing elemé]ntwise sparsity [24]. The weights
W;;’s are updated iteratively using the solution to (7) from
the previous iteration [24].

We solve the optimal control problem (7) for different
values of the positive regularization parameter v via the

alternating direction method of multipliers; see [12], [13] for
algorithmic details. This allows us to identify a parameterized
family of distributed control architectures that strikes a
balance between performance and sparsity requirements.

B. Block sparsity

In power systems, only rotor angle differences enter into
the dynamics and information about absolute angles is not
available. It is thus advantageous to treat rotor angles sep-
arately from the remaining states in the control design. We
partition K conformably with partition of the state vector z,

K =[Ky K. ]

where Ky and K, are the feedback gains acting on the rotor
angles and the remaining states, respectively.

While our approach is general, in the sequel we restrict
our presentation to Power System Stabilizers (PSSs) as
actuators. For PSSs the control action is usually formed
in a fully-decentralized fashion using local measurements
of frequencies and power injections. We represent r as
[r] o % }T, where r; is the vector of states of the
controlled generator ¢ (modulo angles). If K. is partitioned
conformably with the partition of the vector r, then the
block-diagonal elements of K. provide a means for retuning
the local control action. Since r; is readily available to the
controller of generator 7, in what follows we do not introduce
sparsity-promoting penalty on the block-diagonal elements of
K. In this paper, group penalties are imposed on the states
of all other generators in K., see [20] for additional options
and details regarding block-sparsity setup.

IV. CASE sTUDY: NETS-NYPS TEST SYSTEM

The New England Test System (NETS)—New York Power
System (NYPS) example consists of 16 machines, 68 buses
and 5 areas; see Fig. 1. All the generators have fast static
excitation system, while generators 1 — 12 are also equipped
with Power System Stabilizers (PSSs). A detailed description
of the model can be found in [18], [19].

Fig. 1: Schematic diagram of NETS-NYPS test system.

The uncontrolled open-loop system is unstable, and PSSs
are used for stabilization and to suppress local oscillations.
For the subsequent analysis and the wide-area control design,
we assume that the PSS inputs are embedded in the open-
loop matrix A € R'"7<147 in (2). The transfer function of
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TABLE I: Poorly-damped modes of A with PSSs

mode | eigenvalue damping | freq. | coherent
no. | pair ratio [Hz] | groups
1 | —0.2634 £j6.9464 | 0.0379 | 1.1061]| 1,8,9 vs.2,3 vs.4-7
2 | —0.3268 +j7.8543|0.0416 |1.2510(2,3,13 vs. 10-12
3 | —0.3347 +£j7.0581 | 0.0474 |1.1252|2,3 vs. 4-7 vs. 9
4 | —0.4113+j8.3783|0.0490 |1.3353]10,11 vs. 12

the local PSS controller on the ith generator is given by
Tw.is 14+ This8 14+Th0,s 6 (s)
. . . . i S
1+ Tw7i8 1+ le’is 1+ Td27i8
with Tw,i =5, Tnl,i = 1n2,i = 0.08, le,i = Td2,i = 0.02,
k; = 4 for i € {1,---,12}. This set of PSS control gains
stabilizes the unstable open-loop system.

A. Analysis of the open-loop system with PSSs

Despite the action of the local PSS controllers, modal
and participation factor analyses still reveal the presence
of four poorly-damped modes; see Table I. The dominant
inter-area modes have damping ratios as low as 3.79%
and 4.16%. Therefore, the local PSS controllers need to
be complemented by supplementary wide-area controllers to
improve the damping of the inter-area oscillations.

Figure 2 illustrates the power spectral density of the open-
loop system. The largest peak occurs at w; = 6.9464 rad/s
(fi = w1/27 = 1.1061 Hz) and it corresponds to mode 1
in Table I. Note that the other two resonant peaks are local
modes that have reasonable damping ratios greater than 5%.

\3
10 9

107

(a) (b)

Fig. 2: (a) Power spectral density of the open-loop system;
(b) zoomed version of the red square shown in (a). Red dots
denote poorly-damped modes from Table 1.

The contribution of each generator to the steady-state
variance is shown in Fig. 3. The diagonal elements of Z;
contain information about mean-square deviation from angle
average and variance amplification of frequencies of the
individual generators. From Fig. 3, we see that the largest
contribution to the variance amplification arises from the
misalignment of angles and frequencies of generators 9.

Similar observations can be made from Fig. 4. In Fig. 4a,
we observe two dominant eigenvalues of Z;. We also show
the spatial structure of these two principal eigenvectors
(modes) of Z;, which contain about 30% of the total
variance. Although the angle and frequency fluctuations in
experiments and nonlinear simulations are expected to be

more complex than the structures presented in Fig. 4, the
spatial profiles identified here are likely to play significant
role in amplification of disturbances in power systems.

150 Angles Frequencies
9 9
* *
100
¥
500 ** *x *
* o *** 1 o
Pl
* L2 3™ .
% 10 20 Ei

Fig. 3: Diagonal elements of the open-loop covariance matrix
7, determine contribution of each generator to the variance
amplification.
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Fig. 4: (a) Eigenvalues; and (b),(c) eigenvectors correspond-
ing to the three largest eigenvalues \; of the open-loop output
covariance matrix 2.

B. Sparsity-promoting optimal wide-area control

1) Elementwise sparsity: We first consider an optimal
sparse controller whose structure is identified using the
solution to (7). Sparsity patterns of the feedback matrix
K € R¥2X47 for different values of ~ are illustrated in
Fig. 5. The blue dots denote information coming from the
generators on which the particular controller acts, and the
red dots identify information that needs to be communicated
from other generators. For v = 0.5574 and v = 0.8490
, the identified wide-area control architecture indicate that
the controller of generator 1 needs to have access to the
difference between its angle and the angle of generator 9.

When 7 is increased to 3, we obtain a fully-decentralized
controller. Compared to the optimal centralized controller,
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our fully-decentralized controller degrades the closed-loop
performance by about 13.09%; see Fig. 6. This fully-
decentralized controller can be embedded into the local
generator excitation system by directly feeding the local
measurements to the automatic voltage regulator, thereby
effectively retuning the PSS controller.

0 Angles Frequencies and PSSs
10t ‘ ‘ ‘ Lt e e -
0 20 40 60 80 100 120 140
(a) v = 0.5574, card (K) = 28
0 Angles Frequencies and PSSs
10t ‘ ‘ ‘ Lt e e -
0 20 40 60 80 100 120 140
(b) v = 0.8490, card (K) = 25
0 Angles Frequencies and PSSs
5 Tt e e
10 ‘ ‘ . L N ]
0 20 40 60 80 100 120 140

(©)y=3, card (K) =23

Fig. 5: Sparsity patterns of K resulting from (7).
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Fig. 6: Performance vs sparsity comparison of sparse / and

the optimal centralized controller K. for 50 logarithmically-
spaced points v € [107%, 3].

2) Block sparsity: Three identified block-sparsity patterns
of the feedback matrix are shown in Fig. 7. When v =
0.1, we obtain a fully-decentralized controller structure. The
group penalty yields block-diagonal feedback gains that
act on the remaining states of generators 1-12. Since no
information exchange with generators 13—16 is required, this
part of K is implemented in a fully-decentralized fashion.

Compared to the optimal centralized controller, a fully-
decentralized controller with structure shown in Fig. 7c
compromises performance by only 2.56% for system of
such large dimension; see Fig. 8. We recall that the fully-
decentralized controller with structure shown in Fig. Sc
degrades performance by 13.09%; cf. Fig. 6. Since the
block-sparse controller has more degrees of freedom than
the elementwise sparse controller, performance improvement
does not come as a surprise. We finally note that the jumps
in the number of non-zero elements in Fig. 8 are caused by
elimination of the entire off-diagonal rows of K.

C. Comparison of open- and closed-loop systems

We next compare performance of the open-loop system
and the closed-loop systems with optimal centralized and

0 Angles , Ffequencie:'s and PSSS
5 - mmmmmW
100 " R _
0 20 40 60 80 100 120 140
(a) v = 0.0429, card (K) = 115
0 Angles Frequencies and PSSs
B ettt '

10} R _
0 20 40 60 80 100 120 140
(b) v = 0.0655, card (K) = 109

0 Angles Frequencies and PSSs
o re—m——
10t , . e et ]
0 20 40 60 80 100 120 140

(c) vy =0.1, card (K) = 107

Fig. 7: Sparsity patterns of K.

(J = Je) /e card (K) /card (K.)

100 e
801 "u
60 K
40 '-,

percent
=
percent

05 20 e

0 oo - - 0 - -
10~* 10~* 102 10~ 10~* 107* 102 10~

! 14

Fig. 8: Performance vs sparsity comparison of block-
sparse K and the optimal centralized controller K. for 50
logarithmically-spaced points v € [107%, 0.1].

fully-decentralized sparse and block-sparse controllers. The
structures of these fully-decentralized controllers are shown
in Fig. 5c and Fig. 7c, respectively.

Figure 9 provides a comparison between the power spec-
tral densities of four cases. All three controllers successfully
suppress resonant peaks associated with the poorly-damped
modes in Table I and significantly improve performance. We
also note that the fully-decentralized block-sparse controllers
perform almost as well as the optimal centralized controller
for high frequencies; for low frequencies, we observe minor
performance degradation in the variance amplification.

D. Robustness analysis

We then examine robustness to the operating point changes
of both open- and closed-loop systems. Random load pertur-

10

2

10°

10°
—open-loop
——sparse
102 block-sparse
—optimal centralized
10° 10° 10°

]

Fig. 9: Power spectral density comparison.
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Fig. 10: Performance histograms of open- and closed-loop
linearized systems (with nominal controllers) for 20,000
uniformly distributed operating points.

bations are used to modify the operating point of the nonlin-
ear system. The loads are altered via uniformly distributed
perturbations that are within +20% of the nominal loads. The
performance of the nominal centralized and decentralized
controllers on the perturbed linearized model is evaluated
by examining the closed-loop Hs norm.

Figure 10 shows the distribution of performance change
for 20,000 operating points around the original equilibria.
We observe bell-shaped distributions with symmetric and
narrow spread around the nominal performance. In spite of
significant changes in the operating points, both centralized
and fully-decentralized controllers are within 2% of the nom-
inal performance. In contrast, same perturbations can degrade
performance of the open-loop system by as much as 6%.
Thus, our decentralized controllers also reduce the sensitivity
and improve the robustness with respect to setpoint changes.

V. CONCLUDING REMARKS

We have analyzed inter-area oscillations in power systems
by studying their power spectral densities and output co-
variances. We have also designed sparse and block-sparse
feedback controllers that use relative angle measurements
to achieve a balance between system performance and con-
troller architecture. By placing increasing weight on the
sparsity-promoting term we obtain fully-decentralized feed-
back gains. Performance comparisons of open- and closed-
loop systems allowed us to understand the effect of the
control design approach both in terms of system performance
and with regards to the resulting control architecture. For
the NETS-NYPS test system we have successfully tested
our analysis and control design algorithms. We have also
provided a systematic method for optimal retuning of fully-
decentralized excitation controllers that achieves comparable
performance to the optimal centralized controller.
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