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Abstract— Recently distributed integral controllers relying
on averaging and communication have been proposed as
effective means for optimal frequency regulation in power
systems, load balancing of network flows, and as natural
extensions to static consensus controllers. Typically, only the
questions of stability, disturbance rejection, and steady-state
resource allocation are addressed in the literature, and the
problems of transient performance and optimal communication
network design remain open. In this paper we consider the
optimal frequency regulation problem and propose a principled
heuristic to identify the topology and gains of the distributed
integral control layer. We employ an `1-regularized H2-optimal
control framework as a means for striking a balance between
network performance and communication requirements. The
resulting optimal control problem is solved using the alternating
direction method of multipliers algorithm. For the IEEE 39
New England benchmark problem, we demonstrate that the
identified sparse and distributed integral controller can achieve
reasonable performance relative to the optimal centralized
controller. Interestingly, the identified control architecture is
directed and correlates with the generator rotational inertia
and cost coefficients.

Index Terms— Alternating direction method of multipliers,
distributed PI-control, power systems, sparsity-promoting op-
timal control, topology identification.

I. INTRODUCTION

The basic task of power system operation is to match
load and generation. In an AC power grid, the synchronous
frequency is a direct measure of the load-generation imbal-
ance, which makes frequency control the fundamental power
balancing mechanism. This task is traditionally accomplished
by adjusting generation in a hierarchical three-layer structure:
primary (droop control), secondary (automatic generation
control) and tertiary (economic dispatch) layer, from fast
to slow timescales, and from decentralized to centralized
architectures [1], [2].

From a control-theoretic perspective, the three frequency
control layers essentially correspond to proportional-integral
(PI) control and set-point scheduling to solve a resource
allocation problem. A broad range of research efforts have
recently been put forward to decentralize these control tasks.
While the primary layer is typically being implemented by
means of proportional droop control, the secondary and

Financial support from ETH Zürich grants, the SNF Assistant Professor
Energy Grant #160573, the University of Minnesota Informatics Institute
Transdisciplinary Faculty Fellowship, and the National Science Foundation
under award ECCS-1407958 is gratefully acknowledged.
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tertiary integral and set-point controllers can be realized
in a plug-and-play fashion through discrete-time averaging
algorithms [3], continuous-time optimization approaches [4],
or distributed averaging-based proportional-integral (DAPI)
controllers [5]; see [6] for a recent literature review. Here, we
focus on the simple yet effective DAPI controllers advocated,
among others, in [5]–[9] to coordinate the action of multiple
integral controllers through continuous averaging of the
marginal injection costs to arrive at an optimal solution for
a tertiary resource allocation problem.

More generally, PI control is a simple and effective
method, it is well known for its ability to eliminate the
influence of static control errors and constant disturbances,
and it is commonly used in many industrial applications [10],
[11]. For large-scale distributed systems DAPI-type control
strategies have been used successfully for stabilization, dis-
turbance rejection, and resource allocation, as summarized
above for power systems [5]–[9] as well as for general
network flow problems and other applications [12], [13].
DAPI-type control strategies have also been studied from a
pure theoretic perspective as natural extension to proportional
consensus control; see [14].

A common theme of the above studies on various DAPI-
type controllers is that the communication network among
the integral controllers needs to be connected to achieve
stable disturbance rejection and resource allocation. How-
ever, to the best of our knowledge, there are no studies
addressing the question of how to optimally design the cyber
integral control network relative to the physical dynamics and
interactions. Here, we pursue this question for the special
case of frequency regulation in a power system and using
the DAPI controllers advocated in [5]–[9].

In this paper, we identify topology of the integral control
communication graph and design the corresponding edge
weights for the DAPI controller. Our proposed approach al-
lows us to identify stabilizing and optimal integral controllers
with a sparse communication architecture. As a preliminary
pre-processing step, we introduce a coordinate transforma-
tion to enforce the structural constraints on the rotor angles
and auxiliary integral states. In the new set of coordinates,
the system dynamics are amenable to both standard linear
quadratic regulator tools as well as a `1 regularized version
of the standard H2 optimal control problem. We invoke the
paradigm of sparsity-promoting optimal control developed
in [15]–[17] and seek a balance between system performance
and sparsity of the integral controller. An alternating direc-
tion method of multipliers (ADMM) algorithm is used to
iteratively solve the static output-feedback control problem.
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Similar techniques have recently been used to solve wide-
area control problems in bulk power grids [18]–[22]. For
the New England example, we show that distributed integral
control can achieve reasonable performance compared to the
optimal centralized controller. The optimal communication
topology for the distributed integral controller is directed and
related to the rotational inertia and cost coefficients of the
synchronous generators.

The remainder of the paper is organized as follows. Sec-
tion II reviews the problem setup in power system frequency
regulation. Section III defines the proposed distributed PI-
controller and formulates the optimal static output-feedback
control problem. Augmented Lagrangian method is used to
design the optimal centralized controller in Section III-C.
In Section IV, we introduce the sparsity-promoting optimal
control algorithm and describe the iterative ADMM steps.
We apply the proposed control design strategy on the IEEE
39 New England model in Section V to illustrate our
development. Finally, Section VI concludes the paper.

II. SYNCHRONOUS FREQUENCY AND POWER SHARING

In this section, we briefly summarize background material
on synchronous frequency and economic load sharing. In the
linearized swing equations [1]

M ω̇ = − Lp θ − Dω + η + u, (1)

(θ, ω) ∈ R2n are the generator rotor angles and frequencies,
u ∈ Rn is the governor control action, and η ∈ Rn is a
disturbance input accounting for stochastic fluctuations in
generation and load, which we model as white noise signals.
The diagonal matrices M and D are positive definite with
diagonal elements being the generator inertia and damping
coefficients, and Lp = LTp ∈ Rn×n is the network suscep-
tance matrix, We assume that the network is connected so
that Lp1 = O, where 1 and O are vectors of unit entries
and zeros of appropriate sizes.

If one assumes the existence of a synchronous steady-state
with θ̇i = ωsync ∈ R for all i ∈ {1, . . . , n}, then by summing
all equations in (1) in steady state, we obtain the synchronous
frequency explicitly as

ωsync =

∑n
i=1 ui∑n
i=1 Di

+

∑n
i=1 ηi∑n
i=1 Di

. (2)

The control objective is to design a secondary control strat-
egy so that the frequency deviations converge to zero.

Aside from driving the frequency deviations to zero it is
also desirable to schedule the injections ui(t) to balance load
and generation while minimizing the operational cost [2]:

minimize
u

n∑

i=1

Ei u
2
i

subject to

n∑

i=1

(ui + ηi) = 0.

(3)

Here Ei > 0 is the cost coefficient for source i ∈ {1, . . . , n}.
The optimization problem (3) is convex and the essential

insight from the optimality conditions is that all units should
produce at identical marginal costs of generation:

Ei u
∗
i = Ej u

∗
j for all i, j ∈ {1, . . . , n}. (4)

Observe that the budget constraint equation in (3) also
guarantees a zero frequency deviation in (2). A special case
of the identical marginal cost requirement is the classical
proportional power sharing [23] criterion

u∗i
Pi

=
u∗j
Pj
, (5)

where Pi is the rating of source i. Clearly, the power
sharing objective is a special case of the resource allocation
problem (3) if one sets each cost coefficient Ei to 1/Pi.

III. DISTRIBUTED INTEGRAL CONTROL

In this section, we first introduce the problem setup and
describe a model for frequency control of power systems.
We then formulate the design of distributed integral action
as a static output-feedback control problem. In the absence
of sparsity constraints, we use an augmented Lagrangian
method to determine optimal centralized integral controller.

A. Problem setup

The frequency error can in principle be driven to zero via
decentralized integral action of the form

u = −K1 s

ṡ = ω,
(6)

where s denotes the auxiliary integral states, and K1 is a di-
agonal feedback matrix. It is well known, however, that such
decentralized integral controllers do not achieve steady-state
optimality [6]. Furthermore, they are prone to instabilities
that may arise from biased measurement errors [8].

To remedy these shortcomings, we consider the distributed
averaging-based integral controller also used in [5]–[9]

u = −E−1 z

ż = K̃1 ω − LI z.
(7)

Here, z is the vector of auxiliary distributed integral states,
E and K̃1 are diagonal matrices of cost coefficients and
positive gains, respectively, LI is the Laplacian matrix of
a connected communication graph in the integral controller.
Since

∑n
i=1 żi =

∑n
i=1 K̃1,i ωi, any steady-state solution

of (7) satisfies ωi = 0, i.e., the frequency deviations are
driven to zero. Because of LIz = −LIEu = 0, any steady-
state solution of (7) also satisfies the identical marginal
cost criterion (4). Hence, the controller (7) achieves optimal
frequency regulation.

By substituting (7) to (1) yields the closed-loop system

θ̇ = ω

M ω̇ = −Lp θ − Dω − E−1 z + η

ż = K̃1 ω − LI z.

(8)

In this paper, without loss of generality, we assume that
integral controllers are installed on all the generators. We
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also assume that K̃1 is a known diagonal matrix and confine
our attention to the design of the Laplacian matrix LI . Our
objective is to identify topology of LI and to design the
corresponding edge weights in order to optimally enhance
performance of the closed-loop network (8) in the presence
of stochastic disturbances η.

B. Static output-feedback control problem

The design of LI can be formulated as a static output-
feedback problem for a system with a state-space model

˙̂x = Â x̂ + B̂1 η + B̂2 v , (9)

where x̂ =
[
θT ωT zT

]T
is the state vector, and the

auxiliary control is defined as v = −GĈ2x̂. Here, G := LI
is the control gain to be designed, and the matrices in (9)
are partitioned conformably with the state x̂

Â =




0 I 0
−M−1Lp −M−1D −(EM)−1

0 K̃1 0




B̂1 =




0
M−1

0


 , B̂2 =




0
0
I


 , Ĉ2 =

[
0 0 I

]
.

(10)
The closed-loop system resulting from (9) is given by,

˙̂x = (Â − B̂2GĈ2) x̂ + B̂1 η

y =

[
Q1/2

−R1/2GĈ2

]
x̂.

(11)

Here, y is the performance output, R = RT � 0 is the
control weight, and the state weight Q = QT � 0 is selected
as

Q =



Qθ 0 0
0 Qω 0
0 0 Qz




with Qθ = Qz = I − (1/n)11T and Qω = M . The
performance output y in (11) accounts for deviations from
the averages of θ and z, as well as the kinetic energy and
the control effort of the system. The choice of performance
indices is inspired by [21] for designing wide-area con-
troller. Hence, ‖y‖22 = xTQx penalizes frequency deviations
and non-identical integral states similar to the distributed
averaging-based integral controller (7) thereby accelerating
the convergence of the integral error state. Together with the
frequency penalty Qω , the penalty Qθ on non-identical angle
variables aids in the convergence of the dynamics (1) as in
[19], [21]. Finally, inspired by the quadratic criterion (3) a
suitable choice for the control weight is R = E.

In a power system without a slack bus, the generator rotor
angles are only defined in a relative frame of reference, as
can be observed in the linearized swing equations (1). Thus,
all rotor angles θ can be rotated by a uniform amount without
changing the dynamics (1). Since only differences between
the components of θ(t) ∈ Rn enter into (8), this rotational
symmetry is preserved in the closed-loop system (10) as well.

By introducing a coordinate transformation [21], [24]

θ = U ψ + 1 θ̄, (12a)

we can eliminate the marginally stable average mode θ̄ =
1T θ/n from (8) and the preserve rotational symmetry. Here,
ψ ∈ Rn−1 and the columns of the matrix U ∈ Rn×(n−1)

form an orthonormal basis of the subspace orthogonal to
span (1). For example, the columns of U can be obtained
from the (n − 1) eigenvectors of the projector matrix(
I − (1/n)11T

)
. The matrix U has the following properties

UT U = I, U UT = I − (1/n)11T , UT 1 = O.

Furthermore, since the Laplacian matrix of the integral
controller satisfies LI1 = O, we can use similar coordinate
transformation on the auxiliary integral states z to ensure the
Laplacian property of LI in our control design,

z = U φ + 1 z̄, (12b)

where z̄ = 1T z/n is the average integral state. Note that,
in contrast to θ̄, the average of the integral state z̄ actually
enters into the closed-loop dynamics (8).

The structural constraints on θ and z are enforced by the
following conditions

Qθ 1 = O, Lp 1 = O

Qz 1 = O, LI 1 = O.

As an additional benefit, the above choice of Qz penalizes
the z variable relative to the vector 1, and thus facilitates the
achievement of the identical marginal cost criterion (4).

To eliminate the marginally stable average-angle-mode θ̄
and preserve the relative information exchange requirement
for the dynamics of z, we combine (12a) and (12b) to obtain
the following coordinate transformation



θ
ω
z




︸ ︷︷ ︸
x̂

=



U 0 0 0
0 I 0 0
0 0 1 U




︸ ︷︷ ︸
T1




ψ
ω
z̄
φ




︸ ︷︷ ︸
x

+




1

0
0
0


 θ̄.

(13)
Equivalently, x can be expressed in terms of x̂ as




ψ
ω
z̄
φ




︸ ︷︷ ︸
x

=




UT 0 0
0 I 0
0 0 (1/n)1T

0 0 UT




︸ ︷︷ ︸
T2



θ
ω
z




︸ ︷︷ ︸
x̂

.
(14)

The properties of the matrix U imply that the matrices T1

and T2 satisfy T2 T1 = I and

T1 T2 =



I − (1/n)11T 0 0

0 I 0
0 0 I


 .

In the new set of coordinates, the closed-loop system (7)
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takes the form

ẋ = (A − B2 F C2)x + B1 η

y =

[
Q1/2

−R1/2 F C2

]
x

(15)

where

A = T2 Â T1, B1 = T2 B̂1, Q = TT1 Q̂ T1,

and BT2 =
[

0 0 0 U
]T

, C2 =
[

0 0 0 I
]
. The

matrices B2 and C2 are partitioned conformably with the
partition of the state vector x. The feedback matrices G and
F (in the x̂ and x coordinates, respectively) are related by

F = GU ⇔ G = F UT .

For this static-output feedback problem (15), the control
objective is to achieve a desirable tradeoff between the H2

performance of (15) and the sparsity of the feedback gain
G. The H2 norm from the disturbance η to the output y,
which quantifies the steady-state variance (energy) of y of
the stochastically forced system (15), is defined as

J(F ) :=

{
trace

(
BT1 P (F )B1

)
F stabilizing

∞ otherwise

where the closed-loop observability Gramian P satisfies the
Lyapunov equation

(A − B2 F C2)TP + P (A − B2 F C2) =

− (Q + CT2 F
TRF C2).

While the performance is expressed in terms of the feedback
gain matrix F , we will enhance sparsity of the Laplacian
matrix G = LI in the original coordinates; see Section IV.

C. Optimal design of the centralized integral action

We first focus on the design the centralized integral
controller G = LI that minimizes theH2 norm of the closed-
loop system, we follow the augmented Lagrangian approach
for structured feedback synthesis [25]. Since the matrix Ĉ2

in (15) only contains zero and identity submatrices, we
can formulate the static output-feedback problem (15) as a
structured state-feedback optimal control problem

ẋ = (A − B2K)x + B1 η

y =

[
Q1/2

−R1/2K

]
x

(16)

where K satisfies the following structural constraint

K :=
[
Kψ Kω Kz̄ Kφ

]
=
[

0 0 0 F
]
. (17)

Finding a solution of the structured optimal control prob-
lem (16) amounts to solving

minimize
K

J(K)

subject to K ∈ S,
(18)

where J(K) is the H2 norm of system (16) parameterized as
a function of K, and S is a set of stabilizing feedback gains
K satisfying the structural constraint (17). The algebraic

characterization of the structural constraint is given by

K ∈ S ⇔ K ◦ IS = K,

where ◦ is the elementwise matrix multiplication and

IS =
[

0 0 0 11T
]

is partitioned conformably with the partition of the state x.
The augmented Lagrangian method developed in [25]

solves a sequence of unstructured problems iteratively, and
the minimizers of the unstructured problems converge to a
minimizer of the optimal control problem (18). The resulting
centralized LI = G = FUT can be used as a warm-start
for the sparsity-promoting optimal control problem that is
discussed next.

IV. SPARSITY-PROMOTING OPTIMAL CONTROL

A sparsity-promoting optimal control framework for find-
ing a state feedback that simultaneously optimizes the closed-
loop variance and induces a sparse control architecture was
developed in [15]–[17]. In this section, we extend this ap-
proach to a static output-feedback optimal control problem.

While we want to minimize the H2 norm in terms of the
feedback matrix F in the new set of coordinates, we would
like to promote sparsity of the Laplacian matrix G = LI in
the physical domain. This procedure is used to identify sparse
structure of the integral control layer. This is accomplished
by considering the regularized optimal control problem

minimize
F,G

J(F ) + γ g(G)

subject to F UT − G = 0.
(SP)

The regularization term in (SP) is determined by

g(G) :=
∑

i, j

Wij |Gij |

which is an effective proxy for inducing elementwise sparsity
in the feedback gain G [26]. The weights Wij’s are updated
iteratively using the solution to (SP) from the previous itera-
tion; see [26] for details. In (SP), γ is positive regularization
parameter that characterizes the emphasis on the sparsity
level of the feedback matrix G.

Next we describe the ADMM algorithm for solving (SP),
see [17], [24] for additional details.

1) Initialization: We follow the augmented Lagrangian
approach introduced in Section III-C to design an optimal
F0 = GU to initialize the iterative procedure.

2) Form augmented Lagrangian:

Lρ(F,G,Λ) = J(F ) + γ g(G) +

trace
(
ΛT (F UT − G)

)
+

ρ

2
‖F UT −G ‖2F

where Λ denotes the matrix of Lagrange multipliers and ‖·‖F
is the Frobenius norm of a matrix.

3) Iterative ADMM algorithm:

Fm+1 = argmin
F

Lρ (F, Gm, Λm)

Gm+1 = argmin
G

Lρ (Fm+1, G, Λm)

Λm+1 = Λm + ρ (Fm+1 UT − Gm+1).
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Here, m represents the iteration index. Using the fact that
UTU = I , it is readily shown that the F -minimization step
amounts to solving the following optimization problem

Fm+1 = argmin
F

(
J(F ) +

ρ

2
‖F − Hm‖2F

)

where Hm := (Gm − (1/ρ)Λm)U. We apply the KKT
necessary conditions [27] for optimality of Lρ(F,Gm,Λm),
and the following equations need to be satisfied

(A − B2 F C2)L + L (A − B2 F C2)T = −B1B
T
1

(A − B2 F C2)TP + P (A − B2 F C2) =

− (Q + CT2 F
TRF C2)

2 (RF C2 − BT2 P )LCT2 + ρ (F − Hm) = 0.

The resulting set of the matrix-valued equations is solved
using the iterative procedure developed in [17].

Similarly, properties of the matrix U can be used to bring
the G-minimization problem into the following form

Gm+1 = argmin
G

(
γ g(G) +

ρ

2
‖G − V m‖2F

)

where V m := Fm+1UT + (1/ρ)Λm and the unique solution
is obtained via the soft thresholding operator,

G,+1
ij =

{
(1 − a/|V mij |)V mij |V mij | > a

0 |V mij | ≤ a.

Here, a := (γ/ρ)Wij and, for a given V mij , Gm+1
ij is either

set to zero or it is obtained by moving V mij towards zero with
the amount (γ/ρ)Wij .

4) Stopping criterion:

‖Fm+1 UT −Gm+1‖ ≤ ε, ‖Gm+1 −Gm‖ ≤ ε

The ADMM algorithm stops when both primal and dual
residuals are smaller than specified thresholds.

5) Polishing step: Finally, we fix the sparsity pattern of G
identified using ADMM and solve the optimal control prob-
lem with the identified structural constraints. This polishing
step improves the H2 performance relative to the feedback
gain identified by ADMM; see [17] for additional details.

V. CASE STUDY:IEEE 39 NEW ENGLAND MODEL

The IEEE 39 New England Power Grid model consists
of 39 buses and 10 detailed two-axis generator models; see
Fig. 1. All loads are modeled as constant power loads. As
previously mentioned, we assume that all the generators
are equipped with integral controllers. We extract network
susceptance matrix Lp and inertia matrix M of the IEEE
39 New England model from Power System Toolbox [28].
We set the the damping coefficients Di of each generator to
be 0.1Mi, and the diagonal positive control gain matrix K̃1

to be identity matrix. The values of the cost coefficients Ei
are chosen to be Ei = 0.9 for i ∈ {1, 2, 3, 4, 6, 7, 8, 9, 10},
E5 = 0.1, i.e., we assume that generator 5 cost the least
to operate while all other generators have the same cost
coefficients. The state matrices and performance indices are
defined as outlined in Section III-B.

Next, we illustrate that our proposed static output feedback
sparsity-promoting optimal control framework is an efficient
way to achieve a balance between the system performance
and sparsity level of LI . In Fig 2, we show the sparsity
pattern of the feedback matrix G = LI ∈ R10×10 for
different value of γ. The blue dots denote local feedback
control gains, and the red dots identify information that
needs to be communicated between different generators. For
γ = 0.001, LI is dense and recovers the communication
pattern of the conventional integral controller as shown in
Fig. 2a. When γ increases from 0.001 to 0.101, the 5th
column of LI becomes sparse while the 5th row becomes
the only row with all nonzero elements. This indicates that
most generators do not care about generator 5 that has the
smallest cost coefficient. At the same time, integral controller
on generator 5 has to gather information from all other
generators to achieve desired performance of the network.
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs
ω̇i = −Diωi + Pmi − GiiE

2
i −

10∑

j=1,j ̸=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},

⎫
⎪⎪⎬
⎪⎪⎭

(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π × 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0), ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ, ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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Fig. 1: The IEEE 39 New England Power Grid.

(a) γ = 0.001, card (G) = 100 (b) γ = 0.101, card (G) = 91

(c) γ = 4.715, card (G) = 23 (d) γ = 10, card (G) = 20

Fig. 2: Sparsity pattern of G resulting from (SP).

By further increasing γ to 4.715, the structure of LI shows
that integral state information of generator 1, 3, 6, 9, 10,
which have the five largest inertia, is gathered by other
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integral controllers. Apparently, six other generators need to
access information from generator 10, since it has the largest
inertia and thus the most reliable frequency measurement in
the integral control. Finally, when γ = 10, only 11 long-
range links are required, and integral controller on generator
10 is no longer needed. Since generator 10 is an equivalent
aggregated model representing the transmission network of
a neighboring area, it has an oversized inertia coefficient
and thus also little control agility. Hence, it is not surprising
to drop this virtual controller. Our observation shows that
the optimal communication architecture correlates with both
inertia and cost coefficients.
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Fig. 3: Performance vs sparsity comparison of sparse G and
the optimal centralized controller Gc for 50 logarithmically-
spaced points γ ∈ [ 10−3 , 10 ].

In Fig. 3, we compare performance degradation and spar-
sity level for different values of γ. Compared to the optimal
centralized integral controller Gc, our sparse G in Fig 2d
degrades system performance by only 16.15%. Therefore,
by constructing only 11 long-range links for the integral
controller architecture, reasonable performance is achieved
compared to the optimal centralized feedback gain Gc.

VI. CONCLUDING REMARKS

In this paper, we propose a distributed PI-control strategy
for frequency control in power systems. We formulate the
topology identification and design of integral controller as a
static output-feedback control problem. A coordinate trans-
formation is introduced to enforce the structural constraints
on the rotor angles and auxiliary integral states. We find the
solution by solving the sparsity-promoting optimal control
problem, which balances the tradeoff between system per-
formance and sparsity of the controller. Our development is
validated by a benchmark power system example.
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