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Makan Fardad, Mihailo R. Jovanović, Member, IEEE, and Bassam Bamieh, Fellow, IEEE

Abstract—We investigate several fundamental aspects of the
theory of linear distributed systems with spatially periodic coef-
ficients. We develop a spatial-frequency domain representation
analogous to the lifted or frequency response operator representa-
tion for linear time periodic systems. Using this representation, we
introduce the notion of the � norm for this class of systems and
provide algorithms for its computation. A stochastic interpreta-
tion of the � norm is given in terms of spatially cyclostationary
random fields and spectral-correlation density operators. When
the periodic coefficients are viewed as feedback modifications of
spatially invariant systems, we show how they can stabilize or
destabilize the original systems in a manner analogous to vibra-
tional control or parametric resonance in time periodic systems.
Two examples from physics are provided to illustrate the main
results.

Index Terms—Cyclostationary random fields, frequency domain
lifting, frequency response operators, � norm, partial differen-
tial equation (PDE) with periodic coefficients, spatially periodic
systems.

I. INTRODUCTION

S PATIALLY distributed systems represent a special class of
distributed parameter systems in which states, inputs, and

outputs are spatially distributed fields. The general theory of dis-
tributed parameter systems is by now well developed and ma-
ture [1]–[4]. A recent trend has been the exploitation of special
system structures in order to derive less conservative results than
is possible for very general classes of infinite-dimensional sys-
tems. Examples of this are many, with the most closely related
to our work being the class of spatially invariant systems [5].
Although the study of special classes of systems restricts the
applicability of the given results, one should interpret these re-
sults in a wider context. An appropriate analogy might be the
theory of linear time invariant (LTI) systems, which is widely
used as a starting point in the analysis and control of systems
that are in effect time varying and nonlinear.

This paper considers a class of distributed spatially periodic
systems. These are spatially distributed linear dynamical sys-
tems over infinite spatial domains in which the underlying par-
tial differential equations (PDEs) contain spatially periodic co-
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efficients with commensurate periods. This class of systems has
rich behavior in terms of response characteristics, stability prop-
erties, and signal amplification as measured by system norms. A
particular objective of this study is to observe phenomena sim-
ilar to the change of dynamical properties of LTI systems de-
scribed by ordinary differential equations (ODEs) when tempo-
rally periodic coefficients are introduced. For example, certain
unstable LTI systems can be stabilized by being placed in feed-
back with temporally periodic gains of properly designed am-
plitudes and frequencies. This can be roughly considered as an
example of vibrational control [6]. On the other hand, certain
stable or neutrally stable LTI systems can be destabilized by pe-
riodic feedback gains. This phenomenon is sometimes referred
to as parametric resonance in the dynamical systems literature
[7]. In all of these examples, the periodic terms in the ODEs can
be considered as feedback modifications of an LTI system. The
stabilization/destabilization process depends in subtle ways on
resonances between the natural modes of the LTI subsystem and
the frequency and amplitude of the periodic coefficients.

In this paper, we provide several examples in which this sta-
bilization/destabilization process occurs in PDEs by the intro-
duction of spatially periodic coefficients. In a close analogy
with the ODE examples listed above, we consider spatially pe-
riodic systems as spatially invariant systems modified by feed-
back with spatially periodic gains. The periodicity of the coeffi-
cients can occur in a variety of ways. For example, in boundary
layer and channel flow problems with corrugated walls (referred
to as “riblets” in the literature), the linearized Navier-Stokes
equations in this geometry have periodic coefficients. This pe-
riodicity appears to influence flow instabilities and disturbance
amplification, and may ultimately explain drag reduction or en-
hancement in such geometries. Photonic crystals, meta-mate-
rials, and frequency selective surfaces are other examples of
man-made spatially periodic structures designed to change the
properties of distributed systems in a favorable way. PDEs with
spatially periodic coefficients also arise in problems of pattern
formation in chemical and biological systems, as well as op-
tical and fluid systems [8]. In these systems one deals with non-
linear PDEs whose linearization around the trivial solution has
unstable modes for certain values of the spatial frequency. The
nonlinearity then saturates the growth of the unstable modes,
leading to a bounded spatially periodic solution responsible for
pattern formation. The stability of the formation can then be ver-
ified by linearization of the equation around the spatially pe-
riodic solution, which results in a PDE with spatially periodic
coefficients [9]. The above applications represent significant re-
search efforts in themselves and we do not directly address them
in this paper. Instead, we illustrate the effects of periodic coeffi-
cients on stability properties and system norms of certain PDEs
that are of particular interest in these applications, namely the
Ginzburg–Landau and the Swift–Hohenberg equations [8].
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The objective of this paper is to lay the foundations for the
study of linear spatially periodic systems and provide more de-
tailed tests for analysis of system theoretic properties than can be
achieved by considering them as general distributed parameter
systems. The main technique used is a spatial-frequency repre-
sentation akin to that used for temporally periodic systems, and
alternatively referred to as the harmonic transfer function [10],
the frequency response (FR) operator [11], [12], or frequency
domain lifting [13], [14]. By using a similar frequency repre-
sentation in the spatial coordinate, we reduce the study of linear
spatially periodic systems to that of families of operator-valued
LTI systems, where the operators involved are bi-infinite ma-
trices with a special structure. This is in contrast to spatially in-
variant systems, where the proper frequency representation pro-
duces families of matrix-valued LTI systems. This reflects the
additional richness of the class of spatially periodic systems as
well as the fact that such systems mix frequency components in a
certain way. We pay special attention to the stochastic interpreta-
tion of this frequency representation by considering spatially dis-
tributed systems driven by random fields. The resulting random
fields are not necessarily spatially stationary but rather spatially
cyclostationary (a direct analog of the notion of temporally cy-
clostationary processes [15]). This reflects the fact that frequency
componentsofacyclostationaryfieldarecorrelatedinwaysdeter-
mined by the underlying system’s periodicity. We show how the
frequency domain representation of systems clarifies frequency
mixing in the deterministic case and frequency correlations in the
stochastic case.

The paper is organized as follows: We begin with a motivating
example of a spatially periodic system in Section II. We review
relevant definitions in Section III and present the frequency rep-
resentation of spatially periodic operators in Section IV. We
introduce the class of spatially periodic systems and their fre-
quency domain representation in Section V. We define the
norm of spatially periodic systems in Section VI, derive for-
mulas for computing it in the spatial-frequency domain, and
discuss issues of truncation and finite-dimensional approxima-
tions. Illustrative examples are provided in Section VII where
it is shown how stability properties and input-output norms of
spatially invariant systems can be changed by the introduction
of spatially periodic coefficients. To improve readability, proofs
are relegated to the Appendix.

Terminology

Throughout the paper, we use the terms spatial operators and
spatial systems. By the former, we mean a purely spatial system
with no temporal dynamics (i.e., a memoryless operator that acts
on a spatial function and yields a spatial function, similar to
a static gain in finite-dimensional systems), whereas the latter
refers to a spatio-temporal system (i.e., a system in which, at
each time , the state is a function on a spatial domain). Also,
spatial and spatio-temporal stochastic processes will be called
random fields, to differentiate them from purely temporal sto-
chastic processes. The and norms are extensions of
the well-known and norms of stable linear systems to
purely spatial operators.

Notation

The spatial variable is denoted by . We use to
characterize the spatial-frequency variable, also known as the

wave-number. denotes all complex numbers with real part
strictly less than zero, denotes all complex numbers with
real part greater than or equal to zero, and . is the
closure of the set . For vectors (and matrices) denotes
the standard Euclidean norm (induced norm), and may also be
used to denote the induced norm on operator spaces when there
is no chance of confusion. “*” denotes the complex-conjugate
transpose of a matrix and the adjoint of a linear operator. is
the spectrum of the operator , and is its point spectrum.

is the space of square integrable functions on the real
line and is the space of square summable sequences on .

denotes the bounded operators on , the compact
operators on , and the Hilbert–Schmidt operators on

; [16]. We use the same notation
for a system/operator and its kernel representation. The spatio-
temporal function (operator ) is denoted by
(respectively ) after the application of a Fourier transform on
the spatial variable . The expected value of the spatio-temporal
random field is denoted by .

II. MOTIVATING EXAMPLE

Our aim in this section is to motivate the development in the
rest of the paper by introducing an example of a spatially peri-
odic linear system and considering the problem of its stability.

The Ginzburg–Landau (GL) equation on the real line is
studied in [17]. This equation results from nonlinear stability
theory and appears in the analysis of many problems in fluid
mechanics [8], including the Bénard problem, the Taylor
problem, Tollmien–Schlichting waves, and gravity waves. It is
worth mentioning that the GL equation describes the evolution
of a slowly varying complex amplitude of a neutral plane wave.
For more details see [8], [17] and references therein.

The linearization of this equation around its limit-cycle solu-
tion , , results in
a PDE with periodic coefficients of the form

(1)

The variable denotes the spatial coordinate and belongs to .
The spatio-temporal function represents the state and belongs
to the space at any given time , the function is the
complex-conjugate of , and

(2)

with , , being real-valued parameters. Furthermore
and .

If we introduce the following notation:

(3)

we can rewrite (1) as
(4)

The operator in this equation is given by

(5)

where is a spatially periodic function, .
Suppose we are interested in the stability of the PDE de-

scribed by (4)–(5). If , then contains only spatial deriva-
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tives and is therefore a spatially invariant operator (i.e., it com-
mutes with all spatial shifts). One can then use a Fourier trans-
formation in the variable to convert operator to a multipli-
cation operator; effectively the Fourier transform “diagonalizes”
the operator . Let , , denote the Fourier symbol
of . Then system (4) is stable if and only if for every
the eigenvalues of remain in the left-half of the complex
plane and bounded away from the imaginary axis (under some
additional technical assumptions [5]). This “decoupling” in the
frequency variable is what we refer to as diagonalization in
the Fourier domain. This property can be utilized to significantly
simplify not only the analysis but also the design of controllers
for spatially invariant systems [5].

In the case where is a non-constant spatially periodic func-
tion, the operator is no longer spatially invariant and thus the
Fourier transform no longer diagonalizes . Nevertheless, the
Fourier transform of the spatially periodic operator continues
to have a special structure. In the rest of the paper we describe
this structure and explain how it can be exploited to convert the
problem to a form amenable to the application of system theo-
retic concepts.

III. PRELIMINARIES

In this section we briefly review some of the definitions used
throughout the paper.

A. Spatial Operators and Spatial Systems

We consider spatial operators that can be described by a
kernel function; we assume that if and are two spatial func-
tions related by a linear operator , then the relation between
them is described by the equation

(6)

where with an abuse of notation we use to represent both
the operator and its kernel function. A linear spatially periodic
operator with period is one whose kernel has the property

for all and .
We consider spatially distributed systems for which the

spatio-temporal input and spatio-temporal output are re-
lated by the equation

(7)

A spatially periodic LTI system with spatial period , is one
whose kernel satisfies

for all , , and . From
time-invariance it follows that

for all , where is the temporal (oper-
ator-valued) impulse response of the system, i.e., (7) can
also be expressed as the temporal convolution

.

B. Stochastic Processes and Random Fields

A spatial random field is called wide-sense cyclostationary
if its autocorrelation satisfies

(8)

for all , , and some .
Let denote a spatio-temporal random field with autocorre-

lation . If is wide-
sense stationary in both the temporal and spatial directions, then

for all , and some function . If is
wide-sense stationary in the temporal direction but wide-sense
cyclostationary in the spatial direction, then

for all , , and some function . In
this paper we abuse notation by writing instead
of . The value is the
variance of at spatial location .

IV. FREQUENCY REPRESENTATION OF PERIODIC OPERATORS

In this section we review the representation of spatially pe-
riodic operators in the Fourier (frequency) domain. We show
that it is possible to exploit the particular structure of spatially
periodic operators in the frequency domain to obtain a matrix
representation of these operators that lends itself more easily to
analysis and numerical computations.

Let and denote the Fourier transforms of two spatial func-
tions and , respectively. If and are related by (6) then their
Fourier transforms and satisfy

(9)

where the kernel functions and may contain distributions
in general, see Fig. 1(a).

It is a standard fact that if the operator is a spatially in-
variant operator (i.e., if it commutes with all spatial shifts) then
its representation in the Fourier domain is a multiplication op-
erator [5], [18], that is, there exists a function such that

(10)

This means that the kernel in (9) can be represented
by

In other words, spatially invariant operators have Fourier kernel
functions that are “diagonal”, i.e., they are a function
of only . This can be visualized as an “impulse sheet”
along the diagonal whose strength is given by the func-
tion .

We now investigate the structure of the kernel functions of
spatially periodic operators. Consider a spatially periodic mul-
tiplication operator with period defined by
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Fig. 1. (a) Schematic representation of ����� � � ����� � ���������, to be
thought of as a generalization of matrix-vector multiplication. (b) The frequency
domain kernel representation �� of a spatially periodic operator. The kernel is
made of an array of equally-spaced diagonal impulse sheets.

From the standard shift property of the Fourier transform we
have

i.e., is a shifted version of . Such shifts are represented in (9)
by kernel functions of the form

This can be visualized as an impulse sheet of constant strength
along the subdiagonal .

Now consider multiplication by a general spatially periodic
function of period . Let be the Fourier series
coefficients of ,

Using the above series, the shift property of the Fourier trans-
form, and the linearity of multiplication operators, we conclude
that

i.e., is the sum of weighted shifts of . Thus the kernel function
of a periodic pure multiplication operator is of the form

which converges in the sense of distributions. This can be visu-
alized as an array of diagonal impulse sheets at
with relative strength given by , where is the th Fourier se-
ries coefficient of the function .

Let us now find the structure of a general spatially periodic
operator. The cascade of a pure multiplication by followed
by a spatially invariant operator with Fourier symbol has
a kernel function given by

It is easy to see that sums and cascades of such basic periodic op-
erators produce an operator with a kernel function (in the space
of distributions) of the form

(11)

where , for each , can in general be a matrix. Such a
kernel function can be visualized in Fig. 1(b). It is not difficult
to show that (11) describes the most general form of a spatially
periodic operator [19].

Consider spatially periodic operators with kernel functions
described by (11). These operators are completely specified by
the family of (matrix-valued) functions . We further
assume that , are continuous functions of . It is
interesting to observe certain special subclasses of these opera-
tors:

1) A spatially invariant operator has a kernel function of the
form (11) in which for (it is purely “diag-
onal”).

2) A periodic pure multiplication operator has a kernel func-
tion of the form (11) in which all the functions are con-
stant in their arguments (it is a “Toeplitz” operator).

We next show how the special structure of (11) can be ex-
ploited to yield a new representation for . Consider (9) and
rewrite as for some and . Then
using (11) we have

(12)

Forming the bi-infinite vectors and
, (12) becomes

...

...
. . .

...
...

...

...
...

...
. . .

...

...
(13)

which we simply denote by

(14)
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As varies in the bi-infinite matrix fully describes the
kernel . We will henceforth refer to the representation (13) as
the lifted representation [12], [13]. In this setting, the special
subclasses of operators mentioned previously have particularly
simple forms:

1) Spatially invariant operators have the diagonal representa-
tion

(15)

For example, if then the Fourier symbol of is
and is given by (15) with .

2) Periodic pure multiplication operators have the Toeplitz
representation

(16)

where the boxed element corresponds to the main diagonal
of . Notice that is independent of . For example, if

then is given by
(16) with and .

Remark 1: A way to interpret the matrix representation in-
troduced above is to think of , for every given , as being
composed of equally-spaced “samples” of the impulse sheets of

. As changes in , this sampling grid slides on the im-
pulse sheets of , picking up the values ,
that constitute the elements of .

Remark 2: Let denote the unitary lifting operator in the
frequency domain [13]. Then , , and

. Furthermore , is unitary and
therefore preserves norms. To see this, suppose belongs to a
subset of such that

Then

where is the standard Euclidean norm. We also have

(17)

with being the square of the
Hilbert–Schmidt norm1 of .

V. REPRESENTATIONS OF SPATIALLY PERIODIC SYSTEMS

In this section we use the lifting transform introduced in the
previous section to represent a general spatially periodic LTI
system as a family of decoupled bi-infinite matrix-valued LTI
systems.

1The Hilbert–Schmidt norm of an operator is a generalization of the Frobenius
norm of finite-dimensional matrices ��� � �� � � ����� ��� �.

Consider the spatially periodic LTI system described by

(18)

where belongs to and the operators , , , and are
spatially periodic2 with common period . The operator is
defined on a dense domain , is closed, and gen-
erates a strongly continuous semigroup (also known as -semi-
group) denoted by [4]. The operators , , and are
bounded. The functions , , and are the spatio-temporal
input, output, and state of the system, respectively, and

for . We refer to as the infinitesimal generator of
the system.

Example 1: An example of (18) is the spatially periodic heat
equation on the real line

(19)

with real and . Here with
domain

and are the identity operators on , and .
System (18) can also be represented by a spatio-temporal

kernel ,

with

(20)

for all , , and . It can be shown that if
and is a bounded function of , then

, , and are guaranteed to reside in for every
and we can apply the spatial Fourier transform to both sides of
(18) to get

(21)

where the spatial-frequency variable belongs to . Applying
the lifting transform to both sides of (21) we have

(22)

where the new frequency variable belongs to . System
(22) is now fully decoupled in , i.e., the original system (18) is
equivalent to the family of systems (22) parameterized by

. Finally, system (22) has impulse response

(23)

2Any number of these operators can be spatially invariant, such operators
constituting a subclass of spatially periodic operators.
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and transfer function

Example 1 Continued: Let us return to the example of the
periodic heat equation described by (19). Rewriting the system
in its lifted representation (22) we have , ,

is given by

. . .
...

...
...

...
...

...
. . .

Remark 3: An advantage of the lifted representation is that
it allows for (22) to be treated like a multivarible system, under
some technical assumptions. It is then possible to extend many
existing tools from linear systems theory to (22). For example
[20] uses the fact that in general has discrete spectrum for
every to generalize the Nyquist criterion to determine the sta-
bility of (22), and [21] employes Geršgorin-like arguments to
locate the spectrum of . Also [22], [23] use the lifted repre-
sentation to investigate the occurrence of parametric resonance
in spatially periodic systems. Finally [21] utilizes the bi-infinite
matrix structure of the lifted representation to perform a pertur-
bation analysis of the norm.

Remark 4: It is often useful to think of a spatially periodic
system as the feedback interconnection of a spatially invariant
system and a spatially periodic operator [19]. For example,
system (19) can be rewritten as the feedback interconnection of
the spatially invariant system described by

and the spatially periodic pure multiplication operator
,

as in Fig. 2(a). More generally, a wide class of spatially periodic
systems (18) can be written as the linear fractional transforma-
tion (LFT) [24] of a spatially periodic system with spatially
invariant infinitesimal generator and a bounded spatially pe-
riodic operator , i.e.,

(24)

as shown in Fig. 2(b). The (possibly unbounded) operators ,
, are spatially invariant and the bounded operators , ,

, are spatially periodic.

Stability Conditions and the Spectrum

We next briefly summarize some basic facts regarding the
spectrum of spatially periodic operators and the exponential sta-
bility of spatially periodic LTI systems.

Fig. 2. (a) A spatially periodic system, represented as the closed-loop intercon-
nection of spatially invariant system � and spatially periodic operator � . (b)
A spatially periodic system can be represented as the LFT of system � with
spatially invariant dynamics and spatially periodic operator � .

Since the Fourier and lifting transformations are both unitary
and the spectral properties of operators remain preserved under
unitary transformations, we have

(25)

with the last equality being valid under the assumption of con-
tinuous dependence of on . In the case where is spatially
invariant and thus , (25) sim-

plifies to
A strongly continuous semigroup on a Hilbert space is expo-

nentially stable if there exist positive constants and such
that for [4]. The temporal growth
properties of spatially distributed systems are preserved under
Fourier and lifting transformations and thus (18) is exponen-
tially stable if and only if (22) is exponentially stable for all
values of the parameter .

VI. NORM OF SPATIALLY PERIODIC SYSTEMS

In this section we introduce the notion of norm for spa-
tially periodic LTI systems and give both deterministic and sto-
chastic interpretations of this norm. To this end, we first examine
a similar norm, which we denote by , for the case of spa-
tially periodic operators. We demonstrate that the lifted repre-
sentation (22) plays a central role in allowing us to extend tools
from standard linear systems theory to the analysis of spatially
periodic systems. Furthermore, we use the lifted representation
to investigate numerical approximations in computing the
norm. Due to space limitations we do not discuss the norm
of spatially periodic systems here and instead refer the interested
reader to [19]. Throughout this section we assume that spatially
periodic systems are exponentially stable.

A. Deterministic Interpretation of the Norm

1) Spatially Periodic Operators: The norm of a linear
time-periodic system was defined in [25]. Here we employ a
similar approach to define the norm of a spatially periodic
operator.

Let us consider a scalar-valued spatially periodic operator
with kernel that satisfies ,

. Note that is the output of when the input
is a spatial impulse at . Since is not

spatially invariant the output corresponding to the input is in
general different from the output corresponding to the input
if . This is true unless and satisfy ,

, in which case the output corresponding to the second
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input will be merely an -shifted version of the output cor-
responding to the first input. This means that to fully capture
the effect of the spatially periodic operator, one needs to eval-
uate all its outputs corresponding to impulsive inputs applied at
every point inside one spatial period . Therefore we define the

norm of a spatially periodic operator as

(26)

We next provide a characterization of this norm in the frequency
domain.

Theorem 1: Let be a scalar-valued spatially periodic oper-
ator with period . Then

(27)

where .
Proof: See Appendix I-B .

2) Spatially Periodic LTI Systems: Consider a scalar-valued
spatially periodic LTI system described by (18) whose kernel

satisfies (20). Let us assume for now that
. Based on an argument similar to the one presented in the

previous paragraph and using the time invariance of we define

where .
Notation: We shall denote by the system described by

(18) without the feed-through operator , i.e., .
For an exponentially stable multi-input multi-output (MIMO)

spatially periodic LTI system with , the appropriate
definition of the norm is

����� � � � ����� ������

�
�

�

�

�

�

�

���	
 ���� �� �������� ����� �� ��� ����� 	

(28)

The next theorem provides a procedure for computing the
norm in the spatial-frequency domain using (operator-valued)
algebraic Lyapunov equations.

Theorem 2: Let be an exponentially stable spatially peri-
odic system for which as defined in (28) is finite. Then

where and

as given by Theorem 1. Further-
more

Fig. 3. A spatially periodic operator � with wide-sense stationary input � has
a wide-sense cyclostationary output �. The diagonal lines depict the support of
impulse sheets in the frequency domain kernel representation.

where and are solutions of the -parameterized algebraic
Lyapunov equations

(29)

Proof: See Appendix I-C.
In practice, to calculate the norm of a spatially periodic

system one has to perform a finite-dimensional truncation of the
bi-infinite matrices , , , and . In Section VI-C we
investigate the convergence properties of such truncations.

B. Stochastic Interpretation of the Norm

The stochastic interpretation of the norm for spatially pe-
riodic operators and LTI systems uses the notion of cylcosta-
tionary random fields and spectral-correlation density operators.
These are briefly discussed in Appendix I-A.

1) Spatially Periodic Operators: Consider a scalar-valued
spatially periodic operator with Fourier kernel

. Assume that the input to is a
wide-sense stationary spatial random field with autocorrela-
tion and spectral-correlation density

, where is the spectral
density of . Then, as shown in Appendix I-A, the output

has the spectral-correlation density

which can be visualized as in Fig. 3. The operator inherits
the structure of and therefore becomes a cyclostationary
random field. More specifically,

(30)

where

(31)

All other , , can be found by forming the com-
position (30) but are not relevant to the discussion here. The au-
tocorrelation , which is the inverse Fourier transform of ,
satisfies

for all , and we have the following theorem.
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Theorem 3: Consider the scalar spatially periodic operator .
If and is a white random field, then

Proof: See Appendix I-D.
Thus the norm of a spatially periodic operator has the

stochastic interpretation of being the average over one period of
the variance of the output random field when the input is a white
random field.

2) Spatially Periodic LTI Systems: Consider a scalar-valued
spatially periodic LTI system described by (18) whose kernel

satisfies (20). Let us assume for now that .
Suppose that the system is given an input which is a
wide-sense stationary random field in both the temporal and the
spatial directions with autocorrelation function that satisfies

for all and . Therefore, from the discussion
presented in the previous paragraph, it follows that the output

is a random field with autocorrelation
that satisfies

for all , , and . Namely, the
output random field remains wide-sense stationary in the tem-
poral direction due to the time-invariance of , but inherits
the spatial-periodicity of and thus becomes a cyclostationary
random field in the spatial direction. In particular, if input is a
white random field in both the spatial and temporal directions,

, then

Notation: We shall denote by the output autocorrela-
tion of system subject to an input with autocorre-
lation .

For an exponentially stable MIMO spatially periodic LTI
system with , the stochastic definition of the norm
is

where is the spatio-temporal Fourier transform of .

C. Numerical Implementation and Finite-Dimensional
Truncations

In order to numerically calculate the norm of a spatially
periodic LTI system, one has to perform a finite-dimensional
truncation of the infinite-dimensional operators that describe the
system. To calculate the norm using the Lyapunov equations
in Theorem 2, a truncation of the operators , , and has
to be performed. It is then necessary to verify that the norm

of the original system is approximated arbitrarily-well by in-
creasing the truncation size.

Notation: We use to denote the
truncation of the bi-infinite matrix representation of an operator

on , where is the projection operator defined by

Here is the identity matrix with dimension equal to that of
the elements of . The operator commutes with all (block)
diagonal operators, i.e., for diagonal .
Furthermore, and .
The following notational conventions may seem rather tedious
but the main idea is very simple. The operator
denotes the bi-infinite matrix made from by replacing all
elements outside the center block with
zeros. The operator , the restriction of to
the subspace , denotes the finite matrix equal to the center

block of , or equivalently, the center
block of . Thus

. . .
...

...
. . .

where and are infinite-dimensional matrices acting on
, and is a finite-dimensional matrix. The same notational

conventions apply to , , , , , and , , , , .
In addition, , and we recall that

, .
For a Hilbert–Schmidt operator with matrix rep-

resentation , we have [26]

In particular, this means that , ,
and all approach zero as grows large,
where . In this paragraph and in
the proof of Theorem 4 below we make use of the fact
that Hilbert–Schmidt operators form a two-sided ideal in
the algebra of bounded operators on [16]. Namely, if

and , then and
.

We assume that the spatially periodic system can be written
in the form described by (24) and depicted in Fig. 2(b), i.e.,

is a system resulting from the LFT of a spatially periodic
system with spatially invariant infinitesimal generator
and a bounded spatially periodic operator . We assume that

and are bounded operators, , and that both and
are exponentially stable and have finite norm. The latter

assumption implies that and both contain , and
in particular, the imaginary axis. We further assume

Then it can be shown [19] that the operators ,
, and belong to for all and
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. Since is a Hilbert–Schmidt operator it can be
approximated to any degree of accuracy by .

Our desired scenario in evaluating norms is to work with the
finite-dimensional systems

In particular, we would like to compute the norm by solving
Lyapunov equations involving only the finite-dimensional ma-
trices , , and . The following theorem uses

to establish the connection between and .
Theorem 4: Consider an exponentially stable spatially peri-

odic system described by (24) with finite norm, and assume
that . Then

as . In particular, if exists for all and
, then

as .
Proof: See Appendix I-E.

The significance of the above theorem is that the norm of
the spatially periodic system can now be computed from

where and are the solutions of the finite-dimensional Lya-
punov equations

Obviously this is much simpler than solving the infinite-dimen-
sional Lyapunov (29) of Theorem 2.

Remark 5: In many problems it is often needed to take ex-
tremely large truncations of the system matrices to capture the
important characteristics of the spatially periodic system. This
can lead to expensive computations. It is often physically mean-
ingful to regard the spatially periodic operators as additive or
multiplicative perturbations of spatially invariant ones. For ex-
ample, the infinitesimal generator in (24) can often be decom-
posed as where where is a spatially in-
variant operator, is a spatially periodic operator, and is
small. This has prompted a perturbation analysis of the norm
[21]. Using the mentioned perturbation setup, [21] shows that
the problem of computing the norm of a spatially periodic
system collapses to solving recursive sequences of finite-dimen-
sional Lyapunov equations. These Lyapunov equations involve
matrices that are of the same size as the Euclidean dimension
of the spatially periodic system (18). The procedure outlined in

[21] does not involve truncations and is exact in the sense of
perturbations.

VII. EXAMPLES OF PDES WITH SPATIALLY

PERIODIC COEFFICIENTS

In this section we illustrate how stability properties and
system norms of PDEs can be changed by introducing spatially
periodic feedback gains. Our results reveal that, depending on
the values of amplitude and frequency of the periodic gain,
both the stability and the input-output norms of the system can
be modified.

A. Linearized Ginzburg–Landau Equation

We return to our example of the linearized Ginzburg–Landau
equation considered in Section II. Let ,

. While (1)–(5) can be used to analyze the stability of
the system, the equation with external excitation

(32)

also allows the characterization of other important system-theo-
retic properties such as input-output norms. Under the assump-
tion that the forcing is a real spatio-temporal function and
using the new state defined by (3) we can rewrite the system
equations in the form described by (24), where

Clearly is the sum of a spatially invariant
and a spatially periodic operator. We use the frequency repre-
sentation presented in Section IV to perform a numerical ap-
proximation of and investigate the location of its eigenvalues,
as required to determine the stability of system (32). We note
that technically (32) cannot be interpreted as the linearized GL
equation since is no longer a limit cycle
solution of the nonlinear GL equation for the choice

. Nevertheless, this problem is worth investigating be-
cause it represents an example of a system whose stability can
be changed by spatially periodic feedback gains.

Fig. 4(a) illustrates the maximum real part of [which
is equal to of the eigenvalues of the operator ]
as a function of and for , , and

; see (2). It can be readily shown that for we have
, which means that system

(1) is open-loop unstable. Clearly, closing the loop by intro-
ducing the spatially periodic operator in feedback changes
the value of significantly, as illustrated
in Fig. 4(a). Fig. 4(b) shows as a func-
tion of for .

B. Linearized Swift–Hohenberg Equation

In this example we show that the norm and stability of
a PDE with periodic coefficients can be altered by changing
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Fig. 4. (a) ����������� 	 
�� ���������� ��� as a function
of � and  for ���� 	 � ��
���, � 	 ���, � 	 ���, and 	 	 �.
(b) ����������� 	 
�� ���������� ��� as a function of � for
���� 	 � ��
���,  � �, � 	 ���, � 	 ���, and 	 	 �.

the amplitude and frequency of the periodic term. We consider
the Swift–Hohenberg equation which is of interest in hydrody-
namics [8], [27], [28] and nonlinear optics [29], [30], as well as
other branches of physics [8].

The linearization of the Swift–Hohenberg equation around its
time independent spatially periodic solution leads to a PDE with
spatially periodic coefficients of the form [9]

(33)

where and is a constant. For simplicity
we assume here that , . The spatially
periodic system (33) can be considered as the feedback intercon-
nection of a spatially invariant system and a spatially periodic
operator. Comparing (33) and (24) we have

(34)

Fig. 5(a) illustrates the dependence of the norm of this
system on amplitude and frequency of the spatially peri-
odic term for . The computations were performed by
taking a large truncation of , , and matrices and then
using the Lyapunov method of Theorem 2.3 For those pairs

that correspond to the points left blank in the plots of
Fig. 5(a) the system is not stable and thus the norm is not
defined (or can be assumed to be infinite). For small values
of the norm is close to the value of the norm of the
exponentially stable spatially invariant system corresponding

3To determine an appropriate truncation size 
 , we increase 
 from small
values until the difference between the � norms of the two systems obtained
from truncation sizes 
 and �
 becomes sufficiently small.

to . As increases the norm increases for all values
of . This increase is most significant at . It is shown
in [21], [23], [31] that this phenomenon can be interpreted as
parametric resonance occurring between ,

, and a natural frequency at of the spatially
invariant system corresponding to .

In many applications we are interested in reducing system
norms via an appropriate choice of spatially periodic coeffi-
cients. We consider the system

(35)

with and . Again, comparing (35)
and (24) we have the same system parameters as in (34) except
that now . The system is exponentially stable for

. Fig. 5(b) shows that as is increased from zero the norm
increases or decreases depending on the value of . For

the norm will decrease as the amplitude of the
periodic term is increased. This decrease is most significant at

. On the other hand, for the norm increases
as grows, this increase being most significant at .

We now take in (35), see Fig. 5(c). Notice that
the system is unstable for , and therefore its norm
is infinite. As is increased from zero, the norm remains
infinite for . On the other hand, for the

norm first becomes finite, and then decreases, as grows
in amplitude. Hence the periodic term effectively stabilizes the
system. The best choice for to most reduce the norm is
seen to be .

We remark here that the above analysis can not be performed
using conventional tools, e.g., Floquet analysis of periodic
PDEs, as these methods do not easily lend themselves to the
computation of system norms.

VIII. CONCLUSION

In this paper, we study the frequency response and
input-output norm properties of spatially periodic LTI sys-
tems on a continuous unbounded spatial domain. We use
frequency domain lifting to convert the linear spatially periodic
system to a family of infinite-dimensional matrix problems.
Such a representation lends itself readily to theoretical analysis
and numerical computations. Using this framework we analyze
the norm of spatially periodic operators and systems, and
present both deterministic and stochastic interpretations for
it. We give examples of systems in which a spatially periodic
feedback changes input-output norms, stabilizes an unstable
system, or destabilizes a stable system.

In practice, the calculation of norms or analysis of spectral
properties using the lifted representation involves taking large
truncations of the lifted system operators , , and .
The size of these truncations depends on the system under con-
sideration and can become increasingly large, which leads to
expensive computations. This has led the authors to consider
perturbation methods in the calculation of the norm [21]
and spectral analysis [23] for certain classes of spatially peri-
odic systems. The perturbation analysis framework of [21] was
recently employed to design an array of counter-rotating stream-
wise vortices to suppress turbulence in channel flows [32]. We
have also used the lifted representation to explore other aspects
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Fig. 5. (a) The ��� of the� norm of system (33) as a function of amplitude
and frequency of the spatially periodic term for � � ���. (b) The ��� of the�
norm of system (35) as a function of amplitude and frequency of the spatially
periodic term for � � ���. (c) The ��� of the � norm of system (35) as a
function of amplitude and frequency of the spatially periodic term for � � ����.

of spatially periodic systems such as parametric resonance [22],
[23] and the Nyquist stability criterion [33].

While this paper focuses on spatially periodic systems in one
spatial dimension for simplicity, [19] treats the problem in arbi-
trary spatial dimensions. It is known that for spatially distributed
systems in spatial dimensions , exponential stability is not
enough to guarantee finiteness of the norm [34]. In [19] suf-
ficient conditions are derived that guarantee a finite norm

for distributed systems in arbitrary spatial dimensions. For such
systems one can also resort to the computation of two-point cor-
relations as a substitute for the norm. Finally, due to space
limitations the norm of spatially periodic systems was not
addressed in this paper. The interested reader is referred to [19]
for a detailed treatment.

APPENDIX

A. Spectral-Correlation Density Operators

Let be a wide-sense stationary random field. We define its
Fourier transform as .4 Let

. Then it follows that:

(A1)

is the Fourier transform of and is called the spectral-
correlation density of . Since the random field is wide-sense
stationary we have . Therefore from (A1)
the spectral-correlation density of assumes the form

where is the spectral density of . Heuristically, the above
equation means that is such an irregular function of frequency
that no two samples and of , , are correlated
[15]. Notice that the spectral-correlation density is a function
of two frequency variables whereas the spectral density is a
function of only one frequency variable.

Next we consider a wide-sense cyclostationary random
field whose autocorrelation satisfies (8). The next theorem
describes the structure of .

Theorem A1: Let be a wide-sense cyclostationary
random field with autocorrelation

, . Then has the spectral-correlation
density

(A2)

for some family of functions , .
Proof: See [19, Appendix to Chapter 2].

Thus for a general cyclostationary signal the spectral-corre-
lation density, as an operator in the Fourier domain, can be vi-
sualized as in Fig. 1(b).

The spectral-correlation density of the output of a periodic
operator with a cyclostationary input is given by

4Technically, the sample paths of wide-sense stationary signals are persistent
and not finite-energy functions [15]. Hence their Fourier transforms fail to exist,
i.e., � ������ does not converge as a quadratic-mean integral. This
problem can be circumvented by introducing the integrated Fourier transform
[15], [35]. We will proceed formally and not pursue this direction here.
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where , and indicates
the composition of kernels.

The spectral-correlation density of the output of a linear
spatially periodic LTI system with input is given by

where .

B. Proof of Theorem 1

Using the Plancharel theorem we have

Let denote the composition , i.e.,
. The exact expression for is

not required here; the important point is that inherits the
structure of and , namely

Using and the structure of

where we have used that is equal to one
for and equal to zero for . It is not difficult to show
that , and thus

C. Proof of Theorem 2

We prove the theorem for . Defining
, [36], and proceeding formally

where . Using
it follows that:

Finally, it is a standard result of linear systems theory [24] that

where is the solution of the ( -parameterized) algebraic Lya-
punov equation

Therefore

D. Proof of Theorem 3

Treating as a kernel, applying the function
to from both sides, and using the Plancharel the-

orem and (30), we get

Therefore

the last equality following from (31). If is a white random field
then for all and we have
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Finally, from the proof of Theorem 1 it follows that

.

E. Proof of Theorem 4

We use , , and
to simplify notation. Our aim is to show

(A3)

as . From the identities

(A4)

(A5)

we have

�����������

���� ��
����� ���������

�� ���
��

����

� ���	
�

�� �	
�

���� ������	
�

��
�����

�� ����	
�

� ��
��� �	�

����	
�

� ����

�� �	
�

�� ������	
�

��
���


 ���	
�

�� �	
�

���� ���� �	
�

��
��� ���� (A6)

where we have used that for
and [16]. Thus

�����������
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��� �	�

����	
�

� ����

��	�
���� �
����� � ����
 ��
�� �� 
���� � ���� (A7)

We present an argument regarding the first term on the right of
(A7), with similar reasoning applying to the second and third
terms. We prove that

(A8)

as . Since is exponentially stable,
for some . On the other hand

Therefore

(A9)

where , are positive numbers that grow as the truncation
size is increased and . Since by
assumption is finite, the
first integral in ( A9 ) goes to zero as . Also, the bound-
edness of implies that goes to zero as . Thus (A8)
is proved. The same procedure can be applied to the integral of
every term on the right of (A7) and therefore

as , and (A3) is shown. In particular

which together with gives
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