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Architecture Induced by Distributed Backstepping Design

Mihailo R. Jovanović and Bassam Bamieh

Abstract—An important problem in the distributed control of large-scale
and infinite dimensional systems is related to the choice of the appropriate
controller architecture. We utilize backstepping as a tool for distributed
control of nonlinear infinite dimensional systems on lattices, and provide
the answer to the following question: what is the controller architecture in-
duced by distributed backstepping design? In particular, we study the case
in which we start backstepping design with decentralized control Lyapunov
function (CLF), and cancel all interactions at each step of backstepping.
For this control law we quantify the number of control induced interac-
tions necessary to guarantee desired dynamical behavior of the infinite di-
mensional system. We also demonstrate how the controllers with favorable
architectures can be designed.

Index Terms—Controller architecture, distributed backstepping design,
systems on lattices.

I. INTRODUCTION

System on lattices are ubiquitous in modern technological applica-
tions. These systems can range from the macroscopic–such as cross di-
rectional control in the process industry [1], vehicular platoons [2]–[5],
unmanned aerial vehicles (UAVs) [6]–[8], and satellites in formation
flight [9], [10]—to the microscopic, such as arrays of micro-mirrors
[11] or micro-cantilevers [12]. Systems on lattices are characterized by
interactions between different subsystems which often results into in-
tricate behavioral patterns, an example of which is the so-called string
instability [13]. The complex dynamical responses of these systems are
caused by the aggregate effects, and they cannot be predicted by ana-
lyzing the individual plant cells.

System on lattices are characterized by a special structure: each sub-
system is equipped with sensing and actuating capabilities. Thus, the
key design issues in the control of these systems are architectural such
as the choice of localized versus centralized control. This problem has
attracted a lot of attention in the last 25–30 years. A large body of lit-
erature in the area that is usually referred to as “decentralized control
of large-scale systems” has been created [14]–[19]. We also refer the
reader to [20]–[25] and the references therein for information about re-
cent work on distributed control of systems on lattices.

In this note, we study distributed control of nonlinear infinite di-
mensional systems on lattices. Our results are applicable to classes
of systems characterized by their structural properties; this particular
structure is encountered in several distributed problems such as control
of micro-cantilevers. The motivation for studying infinite dimensional
systems is twofold: a) our results can be used for control of systems
consisting of large arrays of sensors and actuators (e.g., discretized ver-
sions of PDEs with distributed controls and measurements), and b) in-
finite dimensional systems represent useful abstractions of large-scale

Manuscript received January 19, 2005; revised December 19, 2005 and July
4, 2006. Recommended by Associate Editor S. S. Ge.
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systems: problems with, for example, stability of an infinite dimen-
sional system indicate issues with performance of its large-scale equiv-
alent. The latter point was recently illustrated in [4] where the spa-
tially invariant linear systems theory [20] was utilized to show that a
care must be exercised when extending standard results from small to
large-scale vehicular platoons.

In addition to showing how backstepping can be employed as a tool
for distributed control design, we also provide the answer to the fol-
lowing question: what is the controller architecture induced by dis-
tributed backstepping design? We show that distributed backstepping
design produces controllers that are intrinsically decentralized, with a
strong similarity between plant and controller architectures. In partic-
ular, we confine our attention to a situation in which we: a) start back-
stepping design with decentralized CLF and b) cancel all interactions
at each step of backstepping. For this situation, we quantify the number
of control induced interactions necessary to provide desired dynamical
behavior of the infinite dimensional system. More precisely, we estab-
lish that a cancellation backstepping controller has a constant multiple
more cell-to-cell interactions than the plant. We also demonstrate how
flexibility of backstepping can be utilized to obtain distributed con-
trollers with less interactions among controller cells.

Our presentation is organized as follows: In Section II, we introduce
the notation used throughout this note. In Section III, we describe the
classes of systems for which we design distributed backstepping con-
trollers in Section IV. In Section V, we discuss the architecture of dis-
tributed controllers induced by a backstepping design that starts with
decentralized CLF and cancels all interactions at each step of the recur-
sive procedure. In Section VI, we provide an example of systems on lat-
tices, show how flexibility of backstepping can be utilized for obtaining
controllers with less cell-to-cell interactions, and illustrate performance
of backstepping controllers by performing numerical simulations on a
large-scale system. We end our presentation with some concluding re-
marks in Section VII.

II. NOTATION

The sets of integers and natural numbers are denoted by and , re-
spectively, 0 := f0g [ , and N := f�N; . . . ; Ng; N 2 0. The
space of square summable sequences is denoted by l2, and the space of
bounded sequences is denoted by l1. The state and control of the nth
subsystem (cell, unit) are, respectively, represented by [ 1n . . . mn]

T

and un;m 2 ; n 2 . The capital letters denote infinite vectors
defined, for example, as 	k := [� � � k;n�1 k;n k;n+1 � � �]

T =:
f kngn2 ; k 2 f1; . . . ;mg. The nth plant cell is denoted byGn, and
the nth controller cell is denoted byKn. The standard l2 inner product
is denoted by h�; �i, e.g., h	1;	1i := n2

 21n.

III. CLASSES OF SYSTEMS

In this section, we summarize the classes of systems for which we
design feedback controllers in Section IV. We consider continuous time
mth-order subsystems over discrete spatial lattice with at most 2N
interactions per plant’s cell (see Assumption 1)

_ 1n = f1n(	1) +  2n; n 2 (1a)
_ 2n = f2n(	1;	2) +  3n; n 2 (1b)

...
_ mn = fmn(	1; . . . ;	m) + un; n 2 : (1c)

We rewrite the dynamics of the entire system as

_	1 = F1(	1) + 	2 (2a)
_	2 = F2(	1;	2) + 	3 (2b)

...
_	m = Fm(	1; . . . ;	m) + U: (2c)

System (2) represents an abstract evolution equation in the strict-feed-
back form [26] defined on either a Hilbert space := lm2 or a Banach
space := lm1.

We introduce the following assumptions about the system under
study.

Assumption 1: There are at most 2N interactions per plant
cell: nth plant cell Gn interacts only with fGn�N ; . . . ; Gn+Ng.
In other words, functions fkn depend on at most 2N + 1 ele-
ments of 	1; . . . ;	k; k 2 f1; . . . ;mg; n 2 . For example,
f2n(	1;	2) = f2n(f 1;n+jgj2 ; f 2;n+jgj2 ).

Assumption 2: Functions fkn are known, continuously differen-
tiable functions of their arguments, equal to zero at the origin of system
(2). In addition to that, infinite vectors Fk := ffkngn2 for every k 2
f1; . . . ; mg satisfy: f	1 2 l1; . . . ;	k 2 l1g) Fk(	1; . . . ;	k) 2
l1:

Under these assumptions the well-posedness of both open and
closed-loop systems is readily established.

IV. DISTRIBUTED BACKSTEPPING CONTROL DESIGN

We next briefly outline design of distributed backstepping controllers
for systems described in Section III. For notational convenience, the
control design problem is solved for second order subsystems over dis-
crete spatial lattice , that is for m = 2. In this case, the dynamics of
the nth cell (1) and the entire infinite-dimensional system (2) are, re-
spectively, given by

_ 1n = f1n(	1) +  2n; n 2 (3a)
_ 2n = f2n(	1;	2) + un; n 2 (3b)
_	1 = F1(	1) + 	2 (4a)
_	2 = F2(	1;	2) + U: (4b)

In Section IV-A, we study a situation in which the desired dynamical
properties of system (4) are accomplished by performing a global de-
sign. Unfortunately, this is not always possible. Because of this, in Sec-
tion IV-B, we also perform design on individual cells (3) to guarantee
the desired behavior of system (4).

A. Global Backstepping Design

The design objective is to provide global asymptotic stability of the
origin of system (4). This is accomplished using the distributed back-
stepping design under the following assumptions.

Assumption 3: The initial distributed state is such that both	1(0) 2
l2 and 	2(0) 2 l2.

Assumption 4: There exist a continuously differentiable “stabilizing
function” 	2d := �(	1);�(0) = 0, such that 	1 2 l2 ) �(	1) 2
l2; and W1(	1) := �h	1;F1(	1) + �(	1)i > 0; for every 	1 2
l2 n f0g.

Theorem 1: Suppose that system (4) satisfies Assumptions 1–4.
Then there exists a state-feedback control law U = �(	1;	2) which
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guarantees global asymptotic stability of the origin of system (4) on
l22 . One such control law is given by

U = � (	1 + F2(	1;	2) + k2(	2 � �(	1))�

@�(	1)

@	1

(F1(	1) + 	2)) ; k2 > 0:

These properties can be established with the Lyapunov function

V (	1;	2) =
1

2
h	1;	1i+

1

2
h	2 � �(	1);	2 � �(	1)i:

B. Individual Cell Backstepping Design

As already mentioned, the distributed backstepping control design
on the space of square summable sequences cannot always be per-
formed. For example, if either Assumption 3 or Assumption 4 is not
satisfied the construction of a quadratic CLF for system (4) is not pos-
sible. In this section, we show that global asymptotic stability of the
origin of (4) can be achieved by performing design on each individual
cell (3) rather than on the entire system (4). For a moment, let the con-
trol objective be the regulation of  1n(t) and boundedness of  2n(t),
that is f 1n(t) ! 0 as t ! 1; j 2n(t)j < 1; 8t � 0g; for every
n 2 , and for all  1n(0) 2 ,  2n(0) 2 . We will achieve this ob-
jective by providing the global asymptotic tracking of the following tra-
jectory: ( 1n;  2n) = (0;�f1n(	1)j =0). If this is accomplished
for each individual cell Gn (i.e., for every n 2 ), then by virtue of
the fact that 	1 is driven to zero and that f1n(	1) vanishes at 	1 = 0
for every n 2 (see Assumption 2), we conclude global asymptotic
stability of the origin of system (4).

Theorem 2: Suppose that system (4) satisfies Assumptions 1–2.
Then, for every n 2 , there exists a state-feedback control law
un = 
n(	1;	2) which guarantees global asymptotic stability of the
origin of system (4). One such control law is given by

un = �  1n + f2n(	1;	2) + k2( 2n � �n(	1))�

@�n(	1)

@	1

(F1(	1) + 	2) ; k2 > 0

�n(	1) = �(f1n(	1) + k1 1n); k1 > 0:

These properties can be established with

Vn(	1;  2n) =
1

2
 
2

1n +
1

2
( 2n � �n(	1))

2
:

V. ARCHITECTURE INDUCED BY BACKSTEPPING DESIGN

In this section, we analyze the architecture of distributed controllers
induced by a backstepping design. In particular, we study a situation
in which all interactions are canceled at each step of backstepping. We
show that backstepping design yields distributed controllers that are
inherently decentralized, and that there is a strong similarity between
plant and controller architectures. More precisely, the controller archi-
tecture is determined by two factors: a) the plant architecture and b)
the largest number of integrators that separate control from certain in-
teractions. For example, since there are m� 1 integrators between in-
teractions f1n(	1) in (1a) and location at which control un enters, this
largest number of integrators in system (1) is equal tom�1. We estab-
lish that a cancellation backstepping controller has a constant multiple
more cell-to-cell interactions than the plant, where this constant mul-
tiple is exactly equal to m.

The cancellation backstepping controller for system (4) (cf. Theorem
2) is given by

U = � (1 + k1k2)	1 + (k1 + k2)(	2 + F1(	1))+

F2(	1;	2) + P(	1) + Q(	1;	2)

where

P(	1) :=
@F1(	1)

@	1

F1(	1) Q(	1;	2) :=
@F1(	1)

@	1

	2:

Equivalently, the nth cell controller is given by

un = � (1 + k1k2) 1n + (k1 + k2)( 2n + f1n(	1))+

f2n(	1;	2) + pn(	1) + qn(	1;	2) 8n 2

where pn(	1) and qn(	1;	2), respectively, denote the nth compo-
nents of infinite vectors P(	1) and Q(	1;	2). Based on Assumption
1 and definitions of P(	1) and Q(	1;	2), these two quantities are
determined by

pn(	1) =
@f1n(	1)

@	1

F1(	1)

=
j2

@f1n(	1)

@ 1;n+j
f1;n+j(f 1;n+j+igi2 )

qn(	1;	2) =
@f1n(	1)

@	1

	2 =
j2

@f1n(	1)

@ 1;n+j
 2;n+j :

The case in which no integrators separate interactions and location
at which control enters is referred to as the “matched” case (or, equiva-
lently, we say that the “matching condition” is satisfied). The architec-
ture of distributed backstepping controllers for this class of systems was
studied in [25]. For completeness, we briefly summarize observations
of [25] here. If system (4) satisfies the matching condition then f1n = 0
for every n 2 (i.e., F1 � 0). Clearly, in this case both pn � 0 and
qn � 0 which implies that the cancellation backstepping controller
simplifies to: un = �((1+k1k2) 1n+(k1+k2) 2n+f2n(	1;	2));
for every n 2 . Thus, when (interactions are) matched (by control)
the cancellation distributed backstepping controller inherits the plant
architecture.

On the other hand, if the matching condition is not satisfied the ad-
ditional interactions are induced by the backstepping design. This is
because of cancellation of the interactions at the first step of backstep-
ping, their propagation through an integrator, and subsequent cancel-
lation at the second step of our recursive design. Information about
these additional interactions is contained in function pn(	1). Based
on the expression for pn(	1) we are able to explicitly quantify the
number of interactions induced by a distributed backstepping design
that starts with decentralized CLF, and cancels all interactions at each
step: For system (4) with at most 2N interactions per plant cell, the
distributed backstepping design induces at most 4N interactions per
controller cell.

This statement can be generalized for system (2): If the nth plant
cell Gn of system (2) interacts with fGn�N ; . . . ; Gn+Ng and if
f1n( 1;n�N ; . . . ;  1;n+N) 6= 0 for every n 2 , then the nth
cell Kn of the cancellation backstepping controller interacts with
fKn�mN ; . . . ; Kn+mNg. In other words, for system (2) with at
most 2N interactions per plant cell, the distributed backstepping
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Fig. 1. The architecture of the cancellation distributed backstepping controller
for system (5).

design—that starts with decentralized CLF and cancels all interactions
at each step—induces at most 2mN interactions per controller cell.

Remark 1: The above observations follow from the fact that back-
stepping involves repeated differentiations of the virtual control laws
 jnd; j = 2; . . . ;m, and they underline an important feature of the
cancellation backstepping controller: the influence of “temporal delay”
(that is, the presence of integrators that separate interactions and loca-
tion at which control enters) can be neutralized by introducing com-
munication with a certain number of “spatial” neighbors. The number
of controller interactions is determined by the spatial extent of plant
units and the largest number of integrators that separate control from
certain interactions. In Section VI, we show that domination of harmful
interactions, rather than their cancellation, provides less controller in-
teractions.

VI. EXAMPLE

We consider the following example:

_ 1n =  
2

1;n�1 +  
2

1n +  
2

1;n+1 +  2n (5a)
_ 2n = un (5b)

where n 2 . Clearly, (5) is in the form (3) with f1n(	1) :=  21;n�1+
 21n +  21;n+1, and f2n � 0.

A. Cancellation Backstepping Controller

The architecture of the cancellation distributed backstepping con-
troller for this system is illustrated in Fig. 1. Thus, to provide global
asymptotic stability of system (5) whose nth cell has only the nearest
neighbor interactions, the nth cellKn of the cancellation backstepping
controller has to interact with fKn�2;Kn�1;Kn+1; Kn+2g. In Sec-
tion VI-B, we show that domination of harmful interactions, rather than
their cancellation, provides less controller interactions.

In applications, we encounter large-scale systems on lattices. All
considerations related to infinite dimensional systems are applicable
here, but with minor modifications. For example, if we consider system
(5) with M 2 cells (n = 1; . . . ;M) results of Section IV are still
valid with the appropriate “boundary conditions”:  1j =  2j = uj =
f1j � 0;8j 2 n f1; . . . ;Mg :

Fig. 2 shows simulation results of uncontrolled (upper left) and con-
trolled system (5) withM = 100 cells using the cancellation backstep-
ping controller with k1 = k2 = 1. The initial state of the system is ran-
domly selected. Clearly, the desired control objective is achieved with
a reasonable quality of the transient response. This transient response
can be further improved with a different choice of design parameters
k1 and k2 at the expense of increasing the control effort.

B. Design of Controllers With Less Interactions

Next, we demonstrate how global backstepping design can be
utilized to obtain controllers with less interactions. In particular, for
system (5), whose initial state satisfies Assumption 3, we design a

Fig. 2. Control of system (5) withM = 100 cells using the cancellation back-
stepping controller with k = k = 1.

distributed controller with the nearest neighbor interactions and a fully
decentralized controller. This is accomplished by a careful analysis of
the interactions in (5), and feedback domination rather than feedback
cancellation of harmful interactions. The procedure presented here can
be generalized to a class of systems in which interactions are bounded
by polynomial functions of their arguments.

1) Nearest Neighbor Interaction Controller:
Step 1: The global design starts with subsystem (5a) by considering

	2 as control and proposing a quadratic radially unbounded decentral-
ized CLF V1 : l2 !

V1(	1) =
1

2
n2

 
2

1n (6)

whose derivative along the solutions of (5a) is given by:

_V1 =
n2

 1n  
2

1;n�1 +  
2

1n +  
2

1;n+1 +  2n :

We now use Young’s Inequality (see [26, exp. (2.254)]) to bound the
interactions betweenGn and its immediate neighborsGn�1 andGn+1,
for every n 2

 1n 
2

1i � � 
2

1n +
1

4�
 
4

1i; � > 0; i = fn� 1; n+ 1g:

Hence, _V1 is upper-bounded by

_V1 �
n2

 1n 2� 1n +  
2

1n +
1

2�
 
3

1n +  2n : (7)

Clearly, the following choice of  2nd := �n( 1n), with k1 > 0,

�n( 1n) = � (k1 + 2�) 1n +  
2

1n +
1

2�
 
3

1n (8)
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and a coordinate transformation

�2n :=  2n � �n( 1n) (9)

yield:

_V1 � �k1
n2

 21n +
n2

 1n�2n:

The sign indefinite term in the last equation will be accounted for at the
second step of backstepping.

Step 2: CLF from Step 1 is augmented by a term which penalizes the
deviation of  2n from  2nd, V2(	1;Z2) := V1(	1) +

1

2 n2
�22n:

The derivative of V2 along the solutions of

_ 1n = �k1 1n + �2n; n 2

_�2n = �
@�n( 1n)

@ 1n
(f1n(	1) +  2n) + un; n 2

is determined by

_V2 � �k1
n2

 21n+

n2

�2n  1n �
@�n( 1n)

@ 1n
(f1n(	1) +  2n) + un :

We choose a control law of the form

un = �  1n �
@�n( 1n)

@ 1n
(f1n(	1) +  2n) + k2�2n (10)

with k2 > 0, to obtain

_V2 � �k1
n2

 21n � k2
n2

�22n:

Hence, controller (10) guarantees global exponential stability of the
origin of the infinite dimensional system (5). This controller has the
very same architecture as the original plant: the nth controller cellKn

interacts only with its nearest neighbors Kn�1 and Kn+1.
Fig. 3 shows simulation results of uncontrolled (upper left) and con-

trolled system (5) with M = 100 cells using the nearest neighbor in-
teraction backstepping controller (8; 9; 10) with k1 = k2 = 1 and
� = 0:5. The initial state of the system is randomly selected. The de-
sired control objective is achieved with a good quality of the transient
response and a reasonable amount of control effort.

2) Fully Decentralized Controller:
Step 1: We start the recursive design with subsystem (5a) by

proposing a CLF (6). The derivative of V1(	1) along the solutions
of (5a) is determined by (7). However, we now choose a “stabilizing
function”  2nd := �n( 1n) of the form

�n( 1n) = � (k1 + 2�) 1n +  21n + k0 +
1

2�
 31n (11)

with k0; k1 > 0, which clearly renders _V1 negative definite. Coordinate
transformation �2n :=  2n � �n( 1n) yields

_V1 � �k1
n2

 21n � k0
n2

 41n +
n2

 1n�2n:

Fig. 3. Control of system (5) with M = 100 cells using the nearest neighbor
interaction backstepping controller (8; 9; 10) with k = k = 1 and � = 0:5.

The sign indefinite term in the last equation will be taken care of at the
second step of backstepping.

Step 2: The second step of our design closely follows the procedure
outlined in Section VI-B.1. The only difference is that we employ the
Young’s inequality to upper-bound

�2n
@�n( 1n)

@ 1n
 21i � � �2n

@�n( 1n)

@ 1n

2

+
1

4�
 41i

� > 0; 8n 2 ; 8i = fn� 1; n+ 1g

in the expression for the temporal derivative of V2(	1;Z2) :=
V1(	1)+

1

2 n2
�22n. This allows us to choose a fully decentralized

controller of the form

un = �  1n �
@�n( 1n)

@ 1n
( 21n +  2n)+

( 2n � �n( 1n))(k2 + 2�(
@�n( 1n)

@ 1n
)2) (12)

with k2 > 0, to obtain

_V2 � �k1
n2

 21n � k0 �
1

2�
n2

 41n � k2
n2

�22n:

Thus, controller (12) with � > 0; k0 � 1=(2�); k1 > 0, and k2 >
0 guarantees global asymptotic stability of the origin of the infinite
dimensional system (5). This controller is fully decentralized: the nth
controller cell Kn interacts only with the plant cell on which it acts
Gn.

Fig. 4 shows simulation results of uncontrolled (upper left) and con-
trolled system (5) with M = 100 cells using the fully decentralized
backstepping controller (11), (12) with k0 = k1 = k2 = 1 and
� = 0:5. The initial state of the system is randomly selected. Clearly,
the fully decentralized controller requires big amount of initial effort to
account for the lack of information about interactions between different
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Fig. 4. Control of system (5) withM = 100 cells using the fully decentralized
backstepping controller (11,12) with k = k = k = 1 and � = 0:5.

subsystems. We remark that there is some room for improvement of
these large initial excursions of control signals by the different choice
of design parameters k0; k1; k2, and �. However, the obtained results
seem to be in agreement with our intuition: higher gain is required to
achieve the desired control objective when controller cells do not com-
municate with each other.

Remark 2: We note that neither a distributed controller with the
nearest neighbor interactions nor a fully decentralized controller for
system (5) can be obtained using the individual cell backstepping
procedure of Section IV-B. This is because the harmful interac-
tions—that are dominated by feedback in the global design—are
treated as the exogenous signals in the individual cell design. Thus,
the cancellation backstepping controller in which Kn interacts with
fKn�2;Kn�1;Kn+1; Kn+2g is pretty much the only controller that
can come out of the individual cell backstepping design.

VII. CONCLUDING REMARKS

This note deals with architectural questions in distributed control of
nonlinear infinite dimensional systems on lattices. We show that dis-
tributed backstepping design yields decentralized controllers whose ar-
chitecture can be significantly altered by different choices of stabilizing
functions during the recursive design. For a situation in which all in-
teractions are canceled at each step of backstepping we quantify the
number of control induced interactions necessary to achieve the desired
design objective. Our results are also valid for output-feedback design
of systems in which nonlinearities depend only on the measured vari-
ables.
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[26] M. Krstć, I. Kanellakopoulos, and P. Kokotovć, Nonlinear and Adap-
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