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On the Ill-Posedness of Certain Vehicular Platoon
Control Problems
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Abstract—We revisit the vehicular platoon control problems for-
mulated by Levine and Athans and Melzer and Kuo. We show that
in each case, these formulations are effectively ill-posed. Specifi-
cally, we demonstrate that in the first formulation, the system’s sta-
bilizability degrades as the size of the platoon increases, and that
the system loses stabilizability in the limit of an infinite number
of vehicles. We show that in the LQR formulation of Melzer and
Kuo, the performance index is not detectable, leading to nonstabi-
lizing optimal feedbacks. Effectively, these closed-loop systems do
not have a uniform bound on the time constants of all vehicles. For
the case of infinite platoons, these difficulties are easily exhibited
using the theory of spatially invariant systems. We argue that the
infinite case is a useful paradigm to understand large platoons. To
this end, we illustrate how stabilizability and detectability degrade
as functions of a finite platoon size, implying that the infinite case
is an idealized limit of the large, but finite case. Finally, we show
how to pose 2 and versions of these problems where the
detectability and stabilizability issues are easily seen, and suggest
a well-posed alternative formulation based on penalizing absolute
positions errors in addition to relative ones.

Index Terms—Optimal control, spatially invariant systems,
Toeplitz and circulant matrices, vehicular platoons.

I. INTRODUCTION

I N THIS paper, we consider optimal control of vehicular pla-
toons. This problem was originally studied by Levine and

Athans [1], and for an infinite string of moving vehicles by
Melzer and Kuo [2], both using linear quadratic regulator (LQR)
methods. We analyze the solutions to the LQR problem pro-
vided by these authors as a function of the size of the forma-
tion, and show that these control problems become effectively
ill-posed as the size of the platoon increases. We investigate var-
ious ways of quantifying this ill-posedness. In Section II, we
show that essentially, the resulting closed-loop systems do not
have a uniform bound on the rate of convergence of the regu-
lated states to zero. In other words, as the size of the platoon
increases, the closed-loop system has eigenvalues that limit to
the imaginary axis.

In Section II, we setup the problem formulations of [1] and
[2] and investigate the aforementioned phenomena for finite pla-
toons both numerically and analytically. In Section III, we also
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consider the infinite platoon case as an insightful limit which
can be treated analytically. We argue that the infinite platoons
capture the essence of the large-but-finite platoons. The infinite
problem is also more amenable to analysis using the theory for
spatially invariant linear systems [3], which we employ to show
that the original solutions to this problem are not exponentially
stabilizing in the case of an infinite number of vehicles. The
reason for this is the lack of stabilizability or detectability of
an underlying system. Thus, these control problems are inher-
ently ill-posed even if methods other than LQR are used. In Sec-
tion IV, we suggest alternative problem formulations which are
well-posed. The main feature of these alternative formulations is
the addition of penalties on absolute position errors in the perfor-
mance index. Well-posed LQR, , and problem formula-
tions for infinite strings are proposed. In Section V, we consider
a platoon of vehicles arranged in a circle, which is an idealiza-
tion of the case of equally spaced vehicles on a closed track.
For a spatially invariant LQR problem, we investigate whether
one can impose uniform bounds on the convergence rates by
appropriate selection of state and control penalties. We show
that in the formulation of Levine and Athans [1] this is possible
at the expense of using a high-gain feedback. Specifically, the
feedback gains increase with the size of the platoon and they
grow unboundedly in the limit of an infinite number of vehi-
cles. We end our presentation with some concluding remarks in
Section VI.

II. OPTIMAL CONTROL OF FINITE PLATOONS

In this section, we consider the LQR problem for finite vehic-
ular platoons. This problem was originally studied by Levine
and Athans [1] and subsequently by Melzer and Kuo [2], [4].
The main point of our study is to analyze the control strategies
of [1], [2], and [4] as the number of vehicles in platoon increases.
We show that the solutions provided by these authors yield the
nonuniform rates of convergence toward the desired formation.
In other words, we demonstrate that the time constant of the
closed-loop system gets larger as the platoon size increases.

A. Problem Formulation

A system of identical unit mass vehicles is shown in Fig. 1.
The dynamics of this system can be obtained by representing
each vehicle as a moving mass with the second-order dynamics

(1)

where represents the position of the th vehicle, is the
control applied on the th vehicle, and denotes the lin-
earized drag coefficient per unit mass.
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Fig. 1. Finite platoon of vehicles.

A control objective is to provide the desired cruising velocity
and to keep the distance between neighboring vehicles at a

constant prespecified level . By introducing the absolute posi-
tion and velocity error variables

system (1) can be rewritten using a state–space realization of the
form [2], [4]

(2)

where ,
and . Alternatively, by introducing the relative
position error variable

for every , and neglecting the position dy-
namics of the first vehicle, the system under study can be repre-
sented by a realization with state–space variables [1]

(3)

with , and being an Toeplitz
matrix with the elements on the main diagonal and the first upper
diagonal equal to and 1, respectively.

Following [2] and [4], fictitious lead and follow vehicles, re-
spectively indexed by 0 and , are added to the formation
(see Fig. 2). These two vehicles are constrained to move at the
desired velocity and the relative distance between them is as-
sumed to be equal to for all times. In other words, it
is assumed that

or, equivalently

(4)

A performance index of the form [2], [4]

(5)

Fig. 2. Finite platoon with fictitious lead and follow vehicles.

is associated with (2). Using (4), can be equivalently rewritten
as

where matrices and are determined by

with being an symmetric Toeplitz matrix with the
first row given by . The control problem is
now in the standard LQR form.

On the other hand, Levine and Athans [1] studied the finite
string of vehicles shown in Fig. 1, with state–space repre-
sentation (3) expressed in terms of the relative position and ab-
solute velocity error variables. In particular, the LQR problem
with a quadratic performance index

(6)

was formulated. Furthermore, the solution was provided for a
platoon with vehicles and

. We take a slightly different approach and analyze the solu-
tion to this problem as a function of the number of vehicles in
platoon.

B. Numerical Results

1) Melzer and Kuo [4]: The top left and top right plots in
Fig. 3 respectively show the dependence of the minimal and
maximal eigenvalues of the solution to the LQR algebraic Ric-
cati equation (ARE) for system (2) with performance index
(5), for . Clearly, de-
cays monotonically toward zero indicating that the pair
gets closer to losing its detectability as the number of vehicles
increases. This also follows from the Popov–Belevitch–Hautus
(PBH) detectability test. Namely, as illustrated in the top left
plot of Fig. 5, the minimal singular values of

at decrease monotonically with . On the
other hand, converges toward the constant value
that determines the optimal value of cost functional (5) as
goes to infinity. The bottom plot in Fig. 3 illustrates the loca-
tion of the dominant poles of system (2) connected in feed-
back with a controller that minimizes cost functional (5) for

. The dotted line represents the
function which indicates that the least-stable eigen-
values of the closed-loop -matrix approximately scale in an
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Fig. 3. Minimal (top left plot) and maximal eigenvalues (top right plot) of the ARE solution P for system (2) with performance index (5), and the dominant
poles of LQR controlled platoon (2), (5) (bottom plot) as functions of the number of vehicles for f� = 0; q = q = r = 1g.

inversely proportional manner to the number of vehicles in pla-
toon. Hence, the time constant of the closed-loop system gets
larger as the size of platoon increases. This is further demon-
strated in Fig. 4, where the absolute and the relative position
errors of an LQR controlled string (2), (5) with 20 and 50 ve-
hicles are shown. Simulation results are obtained for

. These plots clearly exhibit the
platoon size dependent rate of convergence toward the desired
formation when a controller resulting from the LQR problem
formulated by [2], [4] is implemented.

We remark that a formulation of the LQR problem for finite
platoon (2)without the followfictitiousvehicleand appropriately
modified cost functional of the form

(7)

yields qualitatively similar results to the ones presented above
(as can be seen from the top right plot of Fig. 5). On the other
hand, for system (2) without both lead and follow fictitious
vehicles, the appropriately modified performance index is given
by (6). In this case, both the first and the last elements on
the main diagonal of matrix are equal to . Based on

the bottom plot of Fig. 5, it follows that the pair for
system (2), (6) is practically not detectable, irrespective of the
number of vehicles in formation. These numerical observations
are confirmed analytically in Section II-C.

2) Levine and Athans [1]: The top left and top right plots
in Fig. 6 respectively show minimal and maximal eigenvalues
of the solution to the ARE in LQR problem (3), (6) with

. The bottom plot in the same figure shows the
real parts of the least-stable poles of system (3) with a controller
that minimizes (6). Clearly, scales linearly with the
number of vehicles and, thus, the optimal value of performance
index (6) gets larger as the size of a vehicular string grows. This
is because the pair gets closer to losing its stabilizability
when the platoon size increases. Equivalently, this can be estab-
lished by observing the monotonic decay toward zero (with )
of the minimal singular value of at . In the
interest of brevity, we do not show this dependence here. Fur-
thermore, in the bottom plot, the dotted line represents the func-
tion , which implies the inversely proportional rela-
tionship between the dominant eigenvalues of the closed-loop

-matrix and the number of vehicles in platoon. This implies
again that as the number of vehicles increases, there is no uni-
form bound on the decay rates of regulated states to zero. This
is additionally illustrated in Fig. 7 where the relative position
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Fig. 4. Absolute and relative position errors of an LQR controlled string (2), (5) with 20 vehicles (left column) and 50 vehicles (right column), for f� = 0; q =
q = r = 1g. Simulation results are obtained for the following initial condition: f� (0) = � (0) = 1;8n = f1; . . . ;Mgg.

errors of an LQR controlled system (3), (6) with 20 and 50 ve-
hicles are shown. Simulation results are obtained for

.
The numerical computations of this section are strength-

ened by a rigorous analysis of finite platoons presented in
Section II-C.

C. Analytical Results

In this section, we show that the LQR formulations of Melzer
and Kuo [4] and Levine and Athans [1] are amenable to a thor-
ough analysis which clarifies the numerical observations pre-
sented in Section II-B. Without loss of generality, we perform
this analysis for a platoon in which every vehicle is modeled as
a double integrator, that is . In other words, we neglect
the linearized drag coefficient per unit mass in (1).

1) Melzer and Kuo [4]: We recall that a state–space repre-
sentation and the LQR weights in the formulation of Melzer and
Kuo [4] with are

The corresponding LQR ARE for the components of matrix

can then be decomposed into

(8a)

(8b)

(8c)

Represent as the sum of its symmetric and antisymmetric
parts: . From (8b), it follows that commutes
with . Using this and (8c) we obtain the following Sylvester
equation for :

Since is a Hurwitz matrix, this equation has a unique solu-
tion . Thus, , which renders (8) into
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Fig. 5. Minimal singular values of matrix D (�) := [A � �I Q ] at � = 0 for system (2) with performance objectives: (5) (top left plot), (7) (top right
plot), and (6) (bottom plot) as functions of the number of vehicles for f� = 0; q = q = r = 1g. These singular values are given in the logarithmic scale.

Hence, the unique positive–definite solution of the ARE is de-
termined by

By performing a spectral decomposition of

we can represent , and as

where

It is noteworthy that the eigenvalues of can be determined
explicitly (see, for example, [5])

(10)
The closed-loop -matrix is given by

which yields

Thus, the eigenvalues of are determined by the solutions to
the following system of the uncoupled quadratic equations:

(11)

The distribution of the eigenvalues of the closed-loop -matrix
in an LQR controlled string (2), (5) of vehicles with

is illustrated in Fig. 8.
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Fig. 6. Minimal (top left plot) and maximal eigenvalues (top right plot) of the ARE solution P for system (3) with performance index (6), and the dominant
poles of LQR controlled platoon (3), (6) (bottom plot) as functions of the number of vehicles for � = q = q = r = 1.

Fig. 7. Relative position errors of LQR controlled system (3), (6) with 20 vehicles (left plot) and 50 vehicles (right plot), for � = q = q = r = 1. Simulation
results are obtained for the following initial condition: f� (0) = 1; 8n = f2; . . . ;Mg; � (0) = 1;8n = f1; . . . ;Mgg.

We observe that is a monotonically decaying function of the number of ve-
hicles. Since converges to zero as goes to infinity,
there is an eigenvalue of that approaches imaginary axis
in the limit of an infinite number of vehicles. As can be
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Fig. 8. Eigenvalues of the closed-loop A-matrix in an LQR controlled string
(2), (5) of M = 50 vehicles with f� = 0; q = q = r = 1g.

seen from the PBH detectability test, this is because the pair
gets closer to loosing its detectability as the number

of vehicles increases. Namely, since the singular values of
at are determined by

it follows from (10) that detectability of the pair degrades
with the number of vehicles.

Furthermore, the eigenvalues of matrix are given by the
solutions to

where

Clearly, decays monotonically with , which is in agree-
ment with our numerical observations shown in the top left plot
of Fig. 3.

2) Levine and Athans [1]: The LQR problem in the formu-
lation of Levine and Athans [1] with is specified by

where represents an Toeplitz matrix with the
elements on the main diagonal and the first upper diagonal equal
to and 1, respectively. The LQR ARE for the components of
matrix

can be represented as

(12a)

(12b)

(12c)

(12d)

By introducing the following notation:

we rewrite (12) as

(13a)

(13b)

(13c)

Decompose into the sum of its symmetric and antisymmetric
parts: . From (13b), it follows that commutes
with . Using this and (13c), we obtain the following Sylvester
equation for :

Since is a Hurwitz matrix, this equation has a unique solu-
tion . Thus, , and (13) simplifies to

Thus, the unique positive–definite solution of the ARE is deter-
mined by

By performing a spectral decomposition of

we can represent and as

where

Note that the nonzero eigenvalues of
are equal to the eigenvalues of

, where represents a symmetric Toeplitz
matrix with the first row given by .
These eigenvalues are determined by (see, for example, [5])

(15)
which gives

The closed-loop -matrix is given by
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Fig. 9. Eigenvalues of the closed-loop A-matrix in an LQR controlled string
(3), (6) of M = 50 vehicles with f� = 0; q = q = r = 1g.

which yields

Based on this and the properties of matrix , we conclude
that has an eigenvalue at . The remaining eigen-
values of are determined by the solutions to the following
system of the uncoupled quadratic equations:

(16)

The eigenvalues of in an LQR controlled string (3), (6) of
vehicles with are shown in

Fig. 9.
Using similar argument as in Section II-C.1 we conclude that

the closed-loop time constant increases as the number of vehi-
cles gets larger. This is because stabilizability of the pair
degrades with the number of vehicles. Namely, based on (15)
and the fact that the singular values of
at are given by

we conclude that the pair gets closer to losing its stabi-
lizability when the platoon size increases.

The results of this section clearly indicate that control strate-
gies of [1], [2], and [4] lead to closed-loop systems with arbi-
trarily slow decay rates as the number of vehicles increases. In
Section III, we show that the absence of a uniform rate of con-
vergence in finite platoons manifests itself as the absence of ex-
ponential stability in the limit of an infinite vehicular strings.

III. OPTIMAL CONTROL OF INFINITE PLATOONS

In this section, we consider the LQR problem for infinite ve-
hicular platoons. This problem was originally studied by Melzer

Fig. 10. Infinite platoon of vehicles.

and Kuo [2]. Using recently developed theory for spatially in-
variant linear systems [3], we show that the controller obtained
by these authors does not provide exponential stability of the
closed-loop system due to the lack of detectability of the pair

in their LQR problem. We further demonstrate that the
infinite platoon size limit of the problem formulation of Levine
and Athans [1] yields an infinite-dimensional system which is
not stabilizable.

A. Problem Formulation

A system of identical unit mass vehicles in an infinite string
is shown in Fig. 10. The infinite-dimensional equivalents of (2)
and (3) are, respectively, given by

(17)

and

(18)

where is the operator of translation by (in the vehicle’s
index). As in [2] and [6], we consider a quadratic cost functional
of the form

(19)

with , and being positive design parameters.
We utilize the fact that systems (17) and (18) have spatially

invariant dynamics over a discrete spatial lattice [3]. This im-
plies that the appropriate Fourier transform (in this case the bi-
lateral -transform evaluated on the unit circle) can be used to
convert analysis and quadratic design problems into those for a
parameterized family of finite-dimensional systems. This trans-
form, which we refer to here as the -transform, is defined by

Using this, system (17) and cost functional (19), respectively,
transform to

(20)
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where , and

Similarly, system (18) and cost functional (19) transform to

(21)

respectively, where

If is stabilizable and is detectable for all
, then the -parameterized ARE

has a unique positive–definite solution for every .
This positive definite matrix determines the optimal stabilizing
feedback for system (20) for every

If this is the case, then there exist an exponentially stabilizing
feedback for system (17) that minimizes (19), [3]. This optimal
stabilizing feedback for (17) is given by

where

B. Melzer and Kuo

It is clear that the pair in (20) is controllable for
every . On the other hand, the pair is not
detectable at . In particular, the solution to the ARE at

is given by

which yields the following closed-loop -matrix at :

(22)

with . Therefore, matrix is not
Hurwitz, which implies that the solution to the LQR problem
does not provide an exponentially stabilizing feedback for the
original system [3]. We remark that this fact has not been real-

Fig. 11. Spectrum of the closed-loop generator in an LQR controlled spatially
invariant string of vehicles (17) with performance index (19) and f� = 0; q =

q = r = 1g.

ized in [2] and [6]. The spectrum of the closed-loop generator
for is shown in Fig. 11 to illustrate
the absence of exponential stability.

Remark 1: The spectrum of the closed-loop generator in an
LQR controlled spatially invariant string of vehicles (17) with
performance index (19) at is given by the solutions to the
following -parameterized quadratic equation:

(23)

By comparing (10), (11), and (23), we see that the closed-loop
eigenvalues of the finite platoon are points in the spectrum of
the closed-loop infinite platoon. Furthermore, from these equa-
tions it follows that as the size of the finite platoon increases,
this set of points becomes dense in the spectrum of the infinite
platoon closed-loop -operator. In this sense, the finite platoon
is a convergent approximation to the infinite platoon, or alterna-
tively, the infinite platoon is a useful paradigm for studying the
large-scale, but finite platoon.

It is instructive to consider the initial states that are not stabi-
lized by this LQR feedback. Based on (22), it follows that the
solution of system (20) at with the controller of [2] is
determined by

We have assumed that , which can be accomplished for
any by choosing . Thus
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Fig. 12. Example of a position initial condition for which there is at least one
vehicle whose absolute position error does not asymptotically converge to zero
when the control strategy of [2] is used.

Fig. 13. Example of a position initial condition for which there is at least a
pair of vehicles whose relative distance does not asymptotically converge to the
desired intervehicular spacing � when a control strategy of [1] is used.

which implies that unless

(24)

Therefore, if the initial condition of system (17) does not satisfy
(24) than cannot be asymptotically driven toward
zero. It is not difficult to construct a physically relevant initial
condition that violates (24). For example, this situation will be
encountered if the string of vehicles at cruises at the
desired velocity with all the vehicles being at their desired
spatial locations except for a single vehicle. In other words, even
for a seemingly benign initial condition of the form

there exist at least
one vehicle whose absolute position error does not converge to
zero as time goes to infinity when the control strategy of Melzer
and Kuo [2] is employed. This nonzero mean position initial
condition is graphically illustrated in Fig. 12.

C. Levine and Athans

We note that system (21) is not stabilizable at , which
prevents system (18) from being stabilizable [3]. Hence, when
infinite vehicular platoons are considered the formulation of de-
sign problem of Levine and Athans [1] is ill-posed (that is, un-
stabilizable). In particular, the solution of the “ -subsystem” of
(21) at does not change with time, that is ,
which indicates that . Therefore,
for a nonzero mean initial condition , the sum of all
relative position errors is identically equal to a nonzero constant
determined by . An example of such initial condi-
tion is given by , and
it is illustrated in Fig. 13. It is quite remarkable that the control
strategy of Levine and Athans [1] is not able to asymptotically
steer all relative position errors toward zero in an infinite platoon
with this, at first glance, innocuously looking initial condition.

Therefore, we have shown that exponential stability of an
LQR controlled infinite platoon cannot be achieved due to the
lack of detectability (in the case of [2] and [4]) and stabiliz-
ability (in the case of [1]). These facts have very important
practical implications for optimal control of large vehicular pla-
toons. Namely, our analysis clarifies results of Section II, where
we have observed that decay rates of a finite platoon with con-
trollers of [1], [2], and [4] become smaller as the platoon size
increases.

In Section IV, we demonstrate that exponential stability of an
infinite string of vehicles can be guaranteed by accounting for
position errors with respect to absolute desired trajectories in
both the state–space representation and the performance crite-
rion.

IV. ALTERNATIVE PROBLEM FORMULATIONS

In this section, we propose an alternative formulation of
optimal control problems for vehicular platoons. In particular,
we study distributed optimal control design with respect to
quadratic performance criteria (LQR, ), and show that
the problems discussed in Sections II and III can be overcome
by accounting for the absolute position errors in both the
state–space realization and the performance criterion. We also
briefly remark on the choice of the appropriate state–space.

A. Alternative LQR Problem Formulation

In this section, we suggest an alternative formulation of the
LQR problem in order to overcome issues raised in Section II
and Section III. Since consideration of infinite platoons is better
suited for analysis, we first study the LQR problem for a spa-
tially invariant string of vehicles, and then discuss practical im-
plications for optimal control of finite vehicular platoons.

We represent system shown in Fig. 10 by its state–space rep-
resentation (17) expressed in terms of absolute position and ve-
locity error variables, and propose the quadratic performance
index

(25)

with , and being positive design parameters. It should
be noted that in (25) we account for both absolute position errors

and relative position errors . This is in contrast to perfor-
mance index (19) considered by Melzer and Kuo [2] and Chu
[6], where only relative position errors are penalized in . The
main point of this section is to show that if one accounts for ab-
solute position errors in the cost functional, then LQR feedback
will be exponentially stabilizing.

Application of -transform renders (17) into (20), whereas
(25) simplifies to

where , and

As shown in Section III, the pair is controllable for
every . Furthermore, it is easily established that the
pair is detectable if and only if

Even if is set to zero, this condition is satisfied as long as
. However, in this situation the intervehicular spacing is

not penalized in the cost functional which may result into an un-
safe control strategy. Because of that, as in [2] and [6], we assign
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Fig. 14. Spectrum of the closed-loop generator in an LQR controlled spatially
invariant string of vehicles (17) with performance index (25) and f� = 0; q =

q = q = r = 1g.

a positive value to . In this case, if , the pair
is not detectable at , which implies that accounting for
the absolute position errors in the performance criterion is es-
sential for obtaining a stabilizing solution to the LQR problem.
The spectrum of the closed-loop generator shown in Fig. 14 il-
lustrates exponential stability of infinite string of vehicles (17)
combined in feedback with a controller that minimizes perfor-
mance index (25) for .

For a finite platoon with vehicles the appropriately modi-
fied version of (25) is obtained by adding an additional term that
accounts for the absolute position errors to the right-hand side
of (5)

(26)

Equivalently, (26) can be rewritten as

where and are and matrices given by

respectively. Toeplitz matrix has the same meaning as in
Section II.

The top left and top right plots in Fig. 15, respectively, show
the minimal and maximal eigenvalues of the ARE solution for
system (2) with performance index (26), and the right plot in
the same figure shows the real parts of the least-stable poles in
an LQR controlled string of vehicles (2), (26) for

. Clearly, when the absolute position errors
are accounted for in both the state–space realization and , the

problems addressed in Section II are easily overcome. In partic-
ular, the least-stable closed-loop eigenvalues converge toward a
nonzero value determined by the dominant pole of the spatially
invariant system.

Absolute position errors of an LQR controlled string (2), (26)
with 20 and 50 vehicles are shown in Fig. 16. Simulation re-
sults are obtained for and
the initial condition of the form

. These plots clearly demonstrate the uniform rate
of convergence toward the desired formation. This is accom-
plished by expressing the state–space realization in terms of the
errors with respect to the absolute desired trajectories and by
accounting for the absolute position errors in the performance
index.

We note that qualitatively similar results are obtained if LQR
problem is formulated for system (2) with either functional (7)
or functional (6) augmented by a term penalizing absolute po-
sition errors.

In Section IV-B, we formulate the distributed and
design problems for a spatially invariant string of vehicles, and
discuss necessary conditions for the existence of stabilizing con-
trollers.

B. and Control of Spatially Invariant Platoons

In this section, we consider a spatially invariant string of ve-
hicles shown in Fig. 10 in the presence of external disturbances

(27)

and formulate and control problems. A disturbance
acting on the th vehicle is denoted by and it can account for
the external forces such as wind gusts, rolling resistance friction,
pot holes, and nonhorizontal road slopes. For simplicity, we as-
sume that there are no model uncertainties and rewrite (27) in
the form suitable for solving a standard robust control problem
[7]

(28)

for every , where

with denoting the measurement noise for the th vehicle.
With these choices, matrices , and are, respectively,
determined by

We further assume the “exogenous” and “sensed” outputs for
the th vehicle of the form
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Fig. 15. Minimal (top left plot) and maximal eigenvalues (top right plot) of the ARE solution P for system (2) with performance index (26), and the dominant
poles of LQR controlled platoon (2), (26) (bottom plot) as functions of the number of vehicles, for f� = 0; q = q = q = r = 1g.

where , and represent positive design parameters.
Thus, operators and , for every , are deter-
mined by

Application of -transform renders (28) into the -parameter-
ized finite dimensional family of systems

(29)

with , and

Solving the distributed and design problems for system
(28) amounts to solving the and design problems for a
parameterized family of finite-dimensional linear time-invariant
(LTI) systems (29) over [3].

The following properties of (29) are readily established.

1) Pairs and are respectively stabi-
lizable and detectable for every .

2) .
3) .
4) .
5) Pair is stabilizable for every .

Pair is detectable for every if
and only if .

If properties 4) and 5) hold, then

(30a)

(30b)

which are necessary conditions for the
existence of exponentially stabilizing solutions to these infinite
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Fig. 16. Absolute position errors of an LQR controlled string (2), (26) with 20 vehicles (left plot) and 50 vehicles (right plot), for f� = 0; q = q = q = r =
1g. Simulation results are obtained for the following initial condition: f� (0) = � (0) = 1;8n = f1; . . . ;Mgg.

dimensional and control problems [3]. It is noteworthy
that condition (30a) is going to be violated unless . This
further underlines the importance of incorporating the absolute
position errors in the performance index.

In Section IV-C, we briefly comment on the initial conditions
that cannot be dealt with the quadratically optimal controllers of
this section.

C. On the Choice of the Appropriate State–Space

In this section, we remark on the initial conditions that are
not square summable (in a space of the absolute errors) and as
such are problematic for optimal controllers involving quadratic
criteria.

Motivated by example shown in Fig. 13 we note that the initial
relative position errors cannot be nonzero mean un-
less the absolute position errors at sum to infinity. Namely,
if is bounded, then

Clearly, for the initial condition shown in Fig. 13, that is

sequence sums to infinity if . In addition to
that, , whereas . Therefore, de-
spite the fact that the intervehicular spacing for all but a single
vehicle is kept at the desired level , a relevant nonsquare sum-
mable initial condition (in a space of the absolute position er-
rors) is easily constructed. It is worth noting that LQR, , and

controllers of Section IV are derived under the assumption
of the square summable initial conditions and as such cannot be
used for guarding against an entire class of physically relevant

initial states. This illustrates that a Hilbert space may repre-
sent a rather restrictive choice for the underlying state–space of
(17). Perhaps the more appropriate state–space for this system
is a Banach space . The control design on this state–space is
outside the scope of this work. We refer the reader to [8] for ad-
ditional details.

V. LQR DESIGN FOR A PLATOON OF VEHICLES ARRANGED

IN A CIRCLE

In this section, we consider the LQR problem for a platoon of
vehicles arranged in circle. This is an idealization of the case

of equally spaced vehicles on a closed track. As we show, this
problem is analytically solvable since it represents a spatially
invariant system on the discretized circle. We use this solution to
address the possibility of whether one can impose uniform rates
of convergence in the formulation of Levine and Athans [1] by
appropriate selection of weights. For a certain class of weights,
we show that if one imposes a uniform bound on closed-loop
time constants, then high-gain feedback results. Specifically, the
feedback gains increase with the size of the platoon. This is
a rather intuitive result and we obtain explicit bounds for this
analytically solvable case.

The control objective is the same as before: to drive the en-
tire platoon at the constant cruising velocity , and to keep the
distance between the neighboring vehicles at a prespecified con-
stant level . Clearly, this is possible only if the radius of a circle
is given by . For simplicity, we neglect the lin-
earized drag coefficient per unit mass in (1), and model each
vehicle as a double integrator, that is . Under this as-
sumption, the state–space representation of Levine and Athans
[1] is given by

(31)

where
, and is the
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operator of translation by (in the vehicle’s index). Note that
(31) is subject to the following constraint:

(32)

for every . This follows directly from the definition of
the relative position errors and the fact that a circular vehicular
platoon is considered.

We propose the following cost functional:

(33)

where all arithmetic with indices is done . This cost
functional can be better understood as follows: If the sequences

, and are arranged each in vectors denoted by
, and , respectively, then can be rewritten as

where , and are symmetric circulant matrices [9]
whose first rows are given by the sequences ,
and respectively. As usual, we demand ,
and . We note that any spatially invariant quadratic cost
functional for system (31), (32), that does not penalize products
between positions and velocities, can be represented by (33).

The system (31), (32) has spatially invariant dynamics over a
circle. This implies that the discrete Fourier transform

can be used to convert analysis and quadratic design problems
into those for a parameterized family of second order systems
[3]. Using this, system (31), (32) and quadratic cost functional
(33), respectively, transform to

(34a)

(34b)

(35)

where, , for every ,
and

Thus, the LQR problem (31)–(33) has been converted to a
family of uncoupled LQR problems (34), (35) parameter-
ized by . The latter problem is easy to
solve, and it yields the following optimal feedback, for every

:

with the resulting closed-loop characteristic polynomial
, where

We now pose the question of whether it is possible to select
design parameters , and that guarantee a prescribed
“degree of stability” of the closed-loop system. In other words,
we want to determine the conditions on , and to en-
sure uniform boundedness (away from the origin) of the roots
of the closed-loop characteristic polynomial

(36)

where . Since is a product of at most
second order terms, its roots can be explicitly computed. Thus,
we can determine that (36) is satisfied if and only if

, which implies the following lower bounds
on the magnitudes of and :

Thus, we have established that, in the formulation of [1], the
uniform rate of convergence for all the vehicles can be secured
by the appropriate selection of the state and control penalties.
However, this comes at the price of increasing the control gains.
For example, the lower bound
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increases unboundedly with the size of the platoon . The
reason for this is the existence of “almost uncontrollable”
modes in (34b) for large ’s. These modes introduce unfa-
vorable scaling of (that is, ) with the number
of vehicles in formation: for large platoons there are many ’s
for which scales approximately as . Clearly, this
requires the ratio between position and control penalties in
the performance index to grow unboundedly in the limit of an
infinite number of vehicles.

VI. CONCLUDING REMARKS

We have illustrated potential difficulties in the control of
large or infinite vehicular platoons. In particular, shortcomings
of previously reported solutions to the LQR problem have been
exhibited. By considering the case of infinite platoons as the
limit of the large-but-finite case, we have shown analytically
how the aforementioned formulations lack stabilizability or
detectability. We argued that the infinite case is a useful abstrac-
tion of the large-but-finite case, in that it explains the almost
loss of stabilizability or detectability in the large-but-finite case,
and the arbitrarily slowing rate of convergence toward desired
formation observed in studies of finite platoons of increasing
sizes. Finally, using the infinite platoon formulation, we showed
how incorporating absolute position errors in the cost functional
alleviates these difficulties and provides uniformly bounded
rates of convergence.

The literature on control of platoons is quite extensive, and we
have not attempted a thorough review of all the proposed control
schemes here. However, it is noteworthy that the early work of
[1], [2], [4], and [6] is widely cited, but to our knowledge these
serious difficulties have not been previously pointed out in the
literature.

As a further note, we point out that in [8] it was shown that
imposing a uniform rate of convergence for all vehicles toward
their desired trajectories may generate large control magnitudes
for certain physically realistic initial conditions. Therefore, even
though the formulation of an optimal control problem suggested
in Section IV circumvents the difficulties with [1], [2], [4], and
[6], additional care should be exercised in the control of vehic-
ular platoons.
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