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Lyapunov-Based Distributed Control of
Systems on Lattices
Mihailo R. Jovanović and Bassam Bamieh

Abstract—We investigate the properties of systems on lattices
with spatially distributed sensors and actuators. These systems
arise in a variety of applications such as the control of vehic-
ular platoons, formation of unmanned aerial vehicles, arrays
of microcantilevers, and constellations of satellites. We use a
Lyapunov-based framework as a tool for stabilization/regula-
tion/asymptotic tracking of both linear and nonlinear systems.
We first present results for nominal design and then describe
the design of adaptive controllers in the presence of parametric
uncertainties. These uncertainties are assumed to be temporally
constant, but are allowed to be spatially varying. We show that, in
most cases, the distributed design yields controllers with architec-
ture similar to that of the original plant.

Index Terms—Backstepping, controller architecture, distributed
control, systems on lattices.

I. INTRODUCTION

SYSTEMS on lattices are encountered in a wide range of
modern technical applications. Typical examples of such

systems include: platoons of vehicles [1]–[4], arrays of mi-
crocantilevers [5], unmanned aerial vehicles in formation [6],
and satellites in synchronous orbit [7]–[9]. These systems are
characterized by the interactions between different subsystems
which often results in complex behavior. A distinctive feature of
this class of systems is that every unit is equipped with sensors
and actuators. The controller design problem is thus dominated
by architectural questions such as the choice of localized versus
centralized controller architecture. This problem has attracted a
lot of attention in the last 25–30 years. A large body of literature
in the area that is usually referred to as “decentralized control
of large-scale systems” has been created [10]–[17].

A framework for considering spatially distributed systems is
that of a spatio-temporal system [18]. In the specific case of
systems on lattices, signals of interest are functions of time and
a spatial variable , where is a discrete spatial lattice
(any countable set, e.g., or ).

A particular class of spatio-temporal systems termed linear
spatially invariant systems was considered in [19], where it
was shown that optimal controllers (in a variety of norms)
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for spatially invariant plants inherit this spatially invariant
structure. Furthermore, it was shown that optimal controllers
with quadratic performance objectives (such as LQR, , and

) have an inherent degree of spatial localization.
With a priori assumptions on the information passing struc-

ture in the distributed controller, sufficient conditions for in-
ternal stability and strict contractiveness can be expressed using
linear matrix inequality (LMI) conditions [20]. Similarly, con-
trol design for linear spatially varying distributed systems was
considered in [21]. Conditions for synthesis are expressed in
terms of convex operator inequalities, which for finite and peri-
odic spatial domains simplify to LMIs.

Adaptive identification and control are extensively studied
for both linear (see, for example, [22]–[25]) and nonlinear
[26] finite-dimensional systems. Several researchers have
also considered these problems in the infinite-dimensional
setting [27]–[30] and, for spatially interconnected systems, [9],
[11]–[15], [31], [32]. We refer the reader to these references
for a fuller discussion.

In this paper, we study distributed control of nonlinear
infinite-dimensional systems on lattices. The motivation for
studying this class of systems is twofold. First, we want to
develop tools for control of systems with large arrays of sensors
and actuators. Several examples of systems with this property
are given above. In addition to these examples, our results
can be used for control of discretized versions of PDEs with
distributed controls and measurements. Second, infinite dimen-
sional systems represent an insightful limit of large-but-finite
systems: Problems with, for example, stability of an infinite-di-
mensional system indicate issues with performance of its
large-scale equivalent. The latter point was recently illustrated
in [4] where the theory for spatially invariant linear systems was
utilized to show that care should be exercised when extending
standard results from small to large-scale or infinite vehicular
platoons.

We extend the well-known finite dimensional integrator
backstepping design tool to a more general class of systems
considered in this paper. Backstepping approach is utilized
to provide stability/regulation/asymptotic tracking of nominal
systems and systems with parametric uncertainties. In the latter
case, we assume that the unknown parameters are temporally
constant, but are allowed to be either spatially constant or
spatially varying. In both of these situations, we design adap-
tive Lyapunov-based estimators and controllers. As a result
of our design, boundedness of all signals in the closed-loop
in the presence of parametric uncertainties is guaranteed. In
addition to that, the adaptive controllers provide convergence
of the states of the original system to their desired values. We
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also show that, in most cases, the distributed design results in
controllers with architecture similar to that of the original plant.
This means, for example, that if the plant has only nearest
neighbor interactions, then the distributed controller also has
only nearest neighbor interactions. The only situation which
results in a centralized controller is for plants with constant
parametric uncertainties when we start our design with one
estimate per unknown parameter. It should be noted however
that this problem can be circumvented by the “over-parameter-
ization” of the unknown parameters. As a result, every control
unit has its own estimator of unknown parameters and avoids
the centralized architecture.

Backstepping is a well-studied design tool [26], [33] for fi-
nite-dimensional systems. In the infinite dimensional setting,
a backstepping controller was designed to suppress compres-
sion system instabilities for the nonlinear PDE Moore–Greitzer
model [34]. Furthermore, a backstepping-like approach can be
used to obtain stabilizing boundary feedback control laws for a
class of parabolic systems (see [35] and [36] for details). Back-
stepping boundary control can also be used as a tool for vibra-
tion suppression in flexible-link gantry robots [37]. However,
backstepping has not been applied to distributed control of in-
finite-dimensional systems on lattices to the best of our knowl-
edge. We note that backstepping represents a recursive design
scheme that can be used for systems in strict-feedback form with
nonlinearities not constrained by linear bounds [26], [33]. At
every step of backstepping, a new control Lyapunov function
(CLF) is constructed by augmentation of the CLF from the pre-
vious step by a term which penalizes the error between “virtual
control” and its desired value (so-called “stabilizing function”).
A major advantage of backstepping is the construction of a Lya-
punov function whose derivative can be made negative definite
by a variety of control laws rather than by a specific control law
[26]. Furthermore, backstepping can be used for adaptive con-
trol of “parametric pure-feedback systems” in which unknown
parameters enter into equations in an affine manner [26].

Our presentation is organized as follows. In Section II, we in-
troduce the notation used throughout this paper, give an example
of systems on lattices, describe the classes of systems for which
we design feedback controllers in Section III (nominal state-
feedback design), Section IV (adaptive state-feedback design),
and Section V (output-feedback design), discuss well-posedness
of the open-loop systems, and describe different strategies that
can be used for control of systems on lattices. In Section III-D,
we design fully decentralized nominal controllers for both linear
and nonlinear mass-spring systems. In Section VI, we analyze
architecture of Lyapunov-based distributed controllers. We con-
clude by summarizing major contributions and future research
directions in Section VII.

II. SYSTEMS ON LATTICES

In this section, an example of systems on lattices is given: We
consider a mass-spring system on a line. This system is chosen
because it represents a simple nontrivial example of an unstable
system where the interactions between different plant units are
caused by the physical connections between them. Another ex-
ample of systems with this property is given by an array of

Fig. 1. Mass-spring system.

microcantilevers. The interactions between different plant units
may also arise because of a specific control objective that the
designer wants to meet. Examples of systems on lattices with
this property include: A system of cars in an infinite string,
aerial vehicles and spacecrafts in formation flights. We also in-
troduce the notation that we use, discuss well-posedness of the
open-loop systems, describe the classes of systems for which we
design state and output-feedback controllers in Sections III–V,
and briefly outline different approaches to control of systems on
lattices.

A. Notation

The sets of integers and natural numbers are denoted by and
, , and , . Discrete

spatial lattice is denoted by (e.g., or ). The space of square
summable sequences is denoted by , and the space of bounded
sequences is denoted by . Similarly, the spaces of square in-
tegrable and bounded functions are, respectively, denoted by
and . The th unit vector in is denoted by . Symbol “ ”
is used to denote transpose of a vector (matrix), and adjoint of an
operator. The state and control of the th subsystem (cell, unit)
are, respectively, represented by and ,

, . The capital letters denote infinite vectors defined,
for example, as

, . Operators are represented by ,
, etc. The th plant cell is denoted by , and the th con-

troller cell is denoted by .

B. Example: Mass-Spring System

A system consisting of an infinite number of masses and
springs on a line is shown in Fig. 1. The dynamics of the th
mass are given by

(1)

where represents the displacement from a reference posi-
tion of the th mass, represent the restoring force of the th
spring, and is the control applied on the th mass. For rela-
tively small displacements, restoring forces can be considered
as linear functions of displacements ,

, where is the th spring con-
stant. We also consider a situation in which the spring restoring
forces depend nonlinearly on displacement. One such model is
given by the so-called hardening spring (see, for example, [33])
where, beyond a certain displacement, large force increments
are obtained for small displacement increments
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For both cases (1) can be rewritten in terms of its state–space
representation for every as

(2)

where and .
If the restoring forces are linear functions of displacements

and all masses and springs are homogeneous, that is,
, , , (2) represents a

linear spatially invariant infinite dimensional system. This im-
plies that it can be analyzed using the tools of [19], [20]. The
other mathematical representations of a mass-spring system are
either nonlinear or spatially varying. One of the main purposes
of the present study is to design feedback controllers and ana-
lyze their architecture for this broader class of systems.

C. Classes of Systems

In this section, we summarize the classes of systems for which
we design feedback controllers in Sections III–V. We consider
continuous time th-order subsystems over discrete spatial lat-
tice with at most interactions per plant’s cell (see As-
sumption 1). We assume that all subsystems satisfy the matching
condition [26]. This condition is satisfied for most mechanical
systems: for example, the models presented in Section II-B, the
models obtained by discretization of heat or wave equations
with distributed controls and measurements, and the model of an
array of microcantilevers [5] belong to this class of systems. In
Section III-C, we show how the matching condition assumption
can be removed. Furthermore, for systems with parametric un-
certainties we assume that unknown parameters enter into equa-
tions in an affine manner.

We consider systems without parametric uncertainties of the
form

(3a)

(3b)
...

(3c)

where nonzero numbers denote the so-called control coeffi-
cients [26].

If, on the other hand, all parameters have constant but un-
known values and , it is convenient to rewrite

and in (3) as

(4)

where represents a vectors of unknown parameters.
The most general case that we discuss is the one in which all

parameters have unknown spatially varying values that do not
depend on time. In other words, the parameters are allowed to
be a function of but not of . In this case, it is
convenient to rewrite in (3) as

(5)

A major difference between models [(3), (4)] and [(3), (5)] is in
the number of unknown parameters. In the former, the number
of unknown parameters is finite, and in the latter the number of
unknown parameters can be infinite.

We also consider output-feedback design for nominal systems

(6a)

(6b)
...

(6c)

(6d)

and systems with parametric uncertainties, for which we repre-
sent in (6) as

(7)

where denotes the distributed
output of (6) and [(6), (7)]. Clearly, for these two systems non-
linearities are allowed to depend only on the measured output.

We introduce the following assumptions.
Assumption 1: There are at most interactions

per plant cell: th plant cell interacts only with
. In other words, functions , ,

, , and depend on at most elements of
, for every . For example, for (3) with

, .
Assumption 2: Functions , , , , and are known,

continuously differentiable functions of their arguments, equal
to zero at the origins of their respective systems. In addition
to that, for each of these functions, infinite vectors defined
as satisfy:

.
Assumption 3: Functions and are bounded by polyno-

mial functions of their arguments. Furthermore, these polyno-
mials are equal to zero at the origin of [(3), (4)].

Assumption 4: The sign of in [(3), (4)] is known.
Assumption 5: The signs of , , in [(3), (5)] and

[(6), (7)] are known.
These assumptions are used in the sections devoted to the

distributed control design and the well-posedness of both open
and closed-loop systems.

Remark 1: For notational convenience, both the well-posed-
ness and the control design problems are solved for second-order
subsystems over discrete spatial lattice , that is for .

D. Well-Posedness of Open-Loop Systems

We next briefly analyze the well-posedness of the open-loop
systems of Section II-C for by considering them as
the abstract evolution equations either on a Hilbert space

or on a Banach space . Either represen-
tation is convenient for addressing the questions of existence
and uniqueness of solutions. With this in mind, we prove the
well-posedness of the open-loop systems on and remark that
similar argument can be used if the underlying state–space is
rather than .
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Fig. 2. Distributed controller architectures for centralized, localized (with nearest neighbor interactions), and fully decentralized strategies.

The unforced systems of Section II-C can be rewritten as the
abstract evolution equations of the form

(8)

A linear operator , and a (possibly) non-
linear mapping are defined as

where represents the domain of , and denotes
, , , , or

depending on whether systems (3), [(3), (4)],
[(3), (5)], (6), or [(6), (7)] are considered.

One can show that is a bounded operator and, therefore, it
generates a uniformly continuous semigroup. This automatically
implies that the semigroup generated by is strongly contin-
uous. If, in addition, is locally Lipschitz then system (8) has
a unique mild solution on (see [38, Th. 2.73]). More-
over, if is continuously (Fréchet) differentiable then (8) has
a unique classical solution on (see [38, Th. 2.74]). If

then .
It can be readily shown that for the systems described in Sec-

tion II-C that satisfy Assumptions 1 and 2, is a continuously
Fréchet differentiable function of its arguments which guaran-
tees existence and uniqueness of classical solutions for these
systems on .

E. Distributed Controller Architectures

Fig. 2 illustrates control architectures that can be used for
distributed control of systems on lattices: centralized, localized,
and fully decentralized. Centralized controllers require informa-
tion from all plant cells for achieving the desired control objec-
tive. This approach usually results in best performance, but it
requires excessive communication. On the other hand, in fully
decentralized strategies control cell uses only information
from the th plant cell on which it acts. This approach does
not require any communication which often limits performance
or even leads to instability. An example of a localized control ar-
chitecture with nearest neighbor interactions is shown in Fig. 2.
The hope is that this approach can provide a good performance
with moderate communication. For systems described in Sec-
tion II-C, we show that backstepping design yields distributed
controllers that are intrinsically decentralized with a strong sim-
ilarity between plant and controller architectures.

III. NOMINAL STATE-FEEDBACK DESIGN

In this section, we extend the finite dimensional integrator
backstepping design tool to a class of nonlinear infinite dimen-

sional systems on lattices. We first design state-feedback dis-
tributed backstepping controllers for nominal systems (3). For
notational convenience, this problem is solved for second-order
subsystems over discrete spatial lattice , that is for . In
this case, the dynamics of the th cell (3) simplifies to

(9a)

(9b)

We rewrite the dynamics of the entire system as

(10a)

(10b)

where capital letters denote infinite vectors defined in Sec-
tion II-A, and . System (10) represents an
abstract evolution equation in the strict-feedback form [26]
defined on either a Hilbert space or a Banach space

. Because of that, it is amenable to be analyzed
by the backstepping. Even though a stabilizing controller can
be designed using various tools (because of the matching
condition), we choose backstepping because it gives both a
stabilizing feedback law and a CLF for a system under study.
Once CLF is constructed its derivative can be made negative
definite using a variety of control laws.

In Section III-A, we study a situation in which the desired
properties of system (10) are accomplished by performing a
global design. Unfortunately, this is not always possible. Be-
cause of this, in Section III-B, we also perform design on indi-
vidual cells (9) to guarantee the desired behavior of system (10).
In Section III-C, we show how integrator backstepping can be
employed as a constructive design tool for stabilization of nom-
inal nonlinear systems on lattices.

A. Global Backstepping Design

Before we illustrate the global distributed backstepping de-
sign, we introduce the following assumption.

Assumption 6: The initial distributed state is such that both
and .

The objective is to provide global asymptotic stability of the
origin of (10). This is accomplished using the distributed back-
stepping design. In the first step of backstepping, (10a) is stabi-
lized by considering as its control. Since is not actually a
control, but rather, a state variable, the error between and the
value which stabilizes (10a) must be penalized in the augmented
Lyapunov function at the next step. In this way, a stabilizing con-
trol law is designed for the overall infinite-dimensional system.

Step 1: The global recursive design starts with (10a) by con-
sidering as control and proposing a radially unbounded CLF

, .
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The derivative of along the solutions of (10a) is given
by .

Assumption 7: There exists a continuously differentiable
“stabilizing function” , , such that

, and
, for every
Assumption 7 is always satisfied: for example,

, , provides negative definiteness of .
Since is not actually a control, but rather, a state variable,
we introduce the change of variables

, which yields . The
sign indefinite term in will be taken care of at the second step
of backstepping.

Step 2: Augmentation of the CLF from Step 1 by a term
which penalizes the error between and yields a func-
tion

(11)

whose derivative along the solutions of

is determined by

(12)

In particular, the following choice of control law
, with

, , yields
, for every

. Thus, guarantees global asymptotic
stability of the origin of (10).

Results of this section are summarized in the following the-
orem.

Theorem 1: Suppose that system (10) satisfies Assumptions
1, 2, and 6. Then, there exists a state-feedback control law

which guarantees global asymptotic stability
of the origin of system (10). One such control law is given by:

,
where and are positive design parameters. These
properties can be established with the Lyapunov function:

.

B. Individual Cell Backstepping Design

The distributed backstepping design on the space of square
summable sequences cannot always be performed. For ex-
ample, if Assumption 6 is not satisfied the construction of a
CLF for (10) is not possible. Some additional conditions need
to be met to be able to construct a CLF for systems that do not
satisfy matching condition (see Section III-C). In this section,
we show that global asymptotic stability of the origin of (10)
can be achieved by performing design on each individual cell
(9) rather than on the entire system (10).

Step 1: The individual cell backstepping design starts with
subsystem (9a) by considering as control and proposing a
quadratic radially unbounded CLF ,

. The derivative of along the solutions of (9a)
is determined by . If were a con-
trol, subsystem (9a) could be stabilized by ,

. A change of coordinates
, yields . The sign

indefinite term in the last equation will be accounted for at the
second step of backstepping.

Step 2: Augmentation of by a term which penal-
izes yields a quadratic CLF:

. The simplest choice of controller that provides neg-
ative definiteness of is given by

, . This choice of control
gives , for every

, and every . Thus, warrants
global asymptotic stability of the origin of (9) for every ,
which implies global asymptotic stability of the origin of system
(10).

Results of this section are summarized in the following the-
orem.

Theorem 2: Suppose that system (10) satisfies Assumptions
1 and 2. Then, for every , there exists a state-feedback
control law which guarantees global asymp-
totic stability of the origin of (10). One such control law is given
by: ,
where and are positive design parameters.

Remark 2: If a control objective is to asymptotically track a
reference output , with output of system (10) being defined
as , , then the following control law:

fulfills this objective. We assume that, for every , ,
, and are known and uniformly bounded, and that is

piecewise continuous.

C. Distributed Integrator Backstepping

We next present results that allow for constructive design
of stabilizing controllers for systems on lattices without para-
metric uncertainties. We show how to extend previously de-
scribed nominal state-feedback controllers to a more general sit-
uation in which a system

(13)

is augmented by an infinite number of integrators. We as-
sume that and satisfy Assumptions 1 and 2 [with
the exception that does not have to be equal to zero
at the origin of (13)], and denote the system’s state and
control vectors by ,

, with and
for all . For the purpose of global design, it is

convenient to rewrite (13) as

(14)
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where and
. Note that

represents an operator from ( ) to ( ).
The results summarized in Lemmas 3 and 4 represent exten-

sions of the well-known finite dimensional integrator backstep-
ping design tool [26], [33], and they are, respectively, based on
the following assumptions.

Assumption 8: There exists a continuously differentiable
state-feedback control law , , and a
smooth positive–definite radially unbounded function ,

, for the th subsystem of (13) such that
, for

every , where is a positive–defi-
nite function for every .

Assumption 9: There exists a continuously differentiable
state-feedback control law , , such that

, and a smooth positive–definite radi-
ally unbounded functional , , for (14) such
that , for
every , where is a positive–definite
functional.

Assumption 8 guarantees global asymptotic stability of the
origin of the th subsystem of (13) for every , which
implies global asymptotic stability of the origin of (14). Simi-
larly, if the conditions of Assumption 9 are satisfied, then global
asymptotic stability of the origin of (14) can be concluded as
well. Moreover, Assumption 9 guarantees existence of a CLF
for infinite-dimensional system (14). This can be used to obtain
controllers with less interactions, as illustrated in Section III-D.

In the remainder of this section, we consider (13) augmented
by an infinite number of integrators

(15a)

(15b)

or, equivalently

(16a)

(16b)

Individual Cell Distributed Integrator Backstepping:
Lemma 3: Suppose that, for every , the th sub-

system of (15a) satisfies Assumption 8 with as
its control. Then, the augmented function

, represents a CLF for the th
subsystem of (15). Thus, there exists a state-feedback control
law which guaran-
tees global asymptotic stability of the origin of (16). One such
control law is given by

Global Distributed Integrator Backstepping:
Lemma 4: Suppose that (16a) satisfies Assumption 9

with as its control. Then, the augmented function
, represents

a CLF for system (16). Thus, there exists a state-feedback con-
trol law which guarantees global asymptotic
stability of the origin of system (16). One such control law is
given by

Remark 3: Results of Lemma 3 (Lemma 4) can be also ap-
plied to a more general class of systems

(17a)

(17b)

where we assume that , for all
. In this case, the input transformation:

, renders (17)
into (15), which allows for the application of Lemma 3
(Lemma 4).

D. Fully Decentralized Controllers for Mass-Spring System

We next demonstrate how global backstepping design can be
utilized to obtain fully decentralized controllers for mass-spring
system. This is accomplished by a careful analysis of the in-
teractions in the underlying system, and feedback domination
rather than cancellation of harmful interactions. For notational
convenience we consider a situation in which all masses and
springs are homogeneous. We note that similar procedure can
employed in the nonhomogeneous case, as long as all parame-
ters have known values.

1) Linear Mass-Spring System: We first consider a linear
spatially invariant mass-spring system described by (2) with

and

(18)

The backstepping design closely follows the procedure
described in Section III-A: by choosing

, , , expression (12) sim-
plifies to the equation shown at the bottom of the page, where

. We now invoke Young’s
Inequality (see [26, (2.254)]): ,

, , , and choose
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to obtain:
. Thus, the aforementioned fully decentral-

ized controller guarantees global asymptotic stability of
the origin of the closed-loop system if and satisfy

. Since [(2), (18)] is
a spatially invariant system it may be of interest to preserve this
property under feedback. This can be achieved by assigning
constant values and to all design parameters and ,
that is .

We can also analyze properties of system [(2), (18)] using
the tools of [19]. Application of the “bilateral –transform”
evaluated on the unit circle transforms [(2), (18)] into
the –parameterized family of second-order systems

(19)

where, for example, . Properties of
system [(2), (18)] are completely determined by properties of
(19). Namely, [(2), (18)] is exponentially stable (stabilizable) if
and only if (19) is exponentially stable (stabilizable) for every

(see [19, Cor. 3]). Since the transformed system is
exponentially stabilizable, the original system can be stabilized
by a fully decentralized state-feedback if and only if there
exist a constant matrix such that is
Hurwitz for every . Clearly, this is the case when
both and . Thus, the Lyapunov-based design
yields somewhat conservative estimates on feedback gains to
guarantee stability. This is not surprising and we certainly do
not recommend the use of backstepping for control of linear
spatially invariant systems since, for example, quadratically
optimal controllers can be easily obtained for these systems
[19]. However, we remark that backstepping does not give one
fixed controller, but rather a CLF that can be used to generate
a variety of different control laws. Furthermore, backstepping
can be applied as a constructive design tool for a broad class of
systems, including spatially varying and nonlinear systems. We
illustrate in Section III-D.2 that it can be used to obtain a fully
decentralized stabilizing controller for a nonlinear mass-spring
system. This further demonstrates the power of backstepping
and its flexibility as a design tool.

2) Nonlinear Mass-Spring System: We next employ global
backstepping to obtain a fully decentralized stabilizing con-
troller for a nonlinear mass-spring system described by (2) with

and

(20)

The backstepping design closely follows the procedure de-
scribed in Section III-A. In particular, we select

, ,
and use Young’s Inequality (see [26, (2.253) and (2.254)])

to bound the interactions between and its immediate
neighbors and ,

,
,

Based on this, it can be shown that the following fully decen-
tralized controller:

provides global asymptotic stability of the origin of a nonlinear
mass-spring system [(2), (20)] if the design parameters satisfy:

, ,
, , , , and for

every .
Remark 4: Fully decentralized controllers for mass-spring

system cannot be obtained using the individual cell backstep-
ping procedure of Section III-B. This is because the harmful in-
teractions that are dominated by feedback in the global design
are treated as the exogenous signals in the individual cell de-
sign. Thus, the cancellation controller for a mass-spring system
in which interacts with and is pretty much the
only controller that can come out of the individual cell back-
stepping design.

IV. ADAPTIVE STATE-FEEDBACK DESIGN

In this section, we study adaptive distributed design for sys-
tems with time independent unknown parameters that are either
spatially constant or spatially varying. The dynamic controllers
that guarantee boundedness of all signals in the closed-loop and
achieve “regulation” of the plant’s state are obtained using back-
stepping.

We show that systems with constant unknown parameters are
amenable to a global design. This implies that an adaptive CLF
(ACLF) can be constructed for the entire infinite dimensional
system. Based on our experience with nominal backstepping
this may seem advantageous, but we demonstrate that this ap-
proach yields centralized dynamical controllers, which is un-
desirable. On the other hand, for systems with spatially varying
unknown parameters global design is not possible without some
a priori information about values of these parameters. For this
class of systems we perform an individual cell adaptive back-
stepping design which yields localized distributed dynamical
controllers. As in the nominal case, the architecture of these con-
trollers has strong similarity with the plant architecture. Further-
more, the dynamical order of is determined by the number
of unknown parameters in . We also note that this approach
can be utilized to obtain localized distributed controllers for sys-
tems with constant unknown parameters.
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A. Constant Unknown Parameters

We first study adaptive state-feedback design for systems
with constant unknown parameters [(3), (4)]. We establish that
global adaptive backstepping yields centralized controllers.

For , [(3), (4)] simplifies to

where and represent constant unknown parame-
ters. We rewrite dynamics of the entire system as

(22a)

(22b)

where is an operator ( , ) defined by:
. Using Assump-

tions 1 and 3, we conclude boundedness of .
The first step of backstepping is the same as in Section III-A,

where we choose , . At the second
step we have to account for the lack of knowledge of parameters
in (22b): we need to estimate and reciprocal of , , to
avoid the division with an estimate of which can occasionally
be zero.

Step 2: We augment CLF (11) by two terms that account for
the errors between and and their estimates and

(23)

where , , is a positive definite
matrix, and is a positive constant. The derivative of along
the solutions of

is determined by

where . We can

eliminate from by selecting: . A choice
of control law of the form: , , together
with parameter update law and the relationship

, yields

sign

With the following choice of update law for the estimate
sign , we finally obtain:

.
Boundedness of all signals in the closed-loop and asymptotic
convergence of and to zero is established in Appendix.

The developments of this section are summarized in the fol-
lowing theorem.

Theorem 5: Suppose that system (22) satisfies Assumptions
1–4 and 6. Then, the following centralized dynamical controller:

sign (24)

guarantees boundedness of all signals in the closed-loop system
[(22), (24)] and asymptotic convergence of the state of (22) to
zero. These properties can be established with the Lyapunov
function

B. Spatially Varying Unknown Parameters

Here, we consider state-feedback design for systems with
time independent spatially varying unknown parameters. An ex-
ample of such a system is given by [(3), (5)], which for
becomes

(25a)

(25b)

where .
Remark 5: Even if Assumption 6 holds, the infinite number

of unknown parameters in (25) rules out a global design.
Namely, the finiteness of the global ACLF candidate for (25)
at

would imply that most of unknown parameters are initially
known, which is somewhat artificial. If we have some a
priori information about values that these parameters can
assume we can choose a sequence of positive–definite ma-
trices and positive parameters such that

is finite. How-
ever, this would lead to parameter update laws with very large
gains since elements of these sequences have to increase their
values as . Clearly, this is not desirable for implemen-
tation.

In view of Remark 5, we carry out the individual cell adaptive
backstepping design for (25) with spatially varying parametric
uncertainties. This approach can be also used for adaptive con-
trol of systems with constant unknown parameters, and we will
demonstrate that it yields localized distributed controllers. Thus,
individual cell adaptive design for infinite dimensional systems
on lattices has advantages over global adaptive design of Sec-
tion IV-A, because the latter leads to centralized dynamical con-
trollers.
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The first step of backstepping is the same as in Section III-B.
However, at the second step we need to estimate the values of

and .
Step 2: We augment from Section III-B by two terms to

account for and

where is a positive–definite matrix, and is a positive con-
stant. It is readily established that the following localized dis-

tributed controller: , ,
sign ,

, with , , renders for
every into . Boundedness
of all signals in the closed-loop and asymptotic convergence of
both and to zero, for all , can be established
using similar argument as in Appendix.

The main result of this section is summarized in the following
theorem.

Theorem 6: Suppose that system (25) satisfies Assumptions
1, 2, and 5. Then, the following distributed dynamical controller:

sign

(26)

with ,
guarantees boundedness of all signals in the closed-loop system
[(25), (26)] and asymptotic convergence of the state of (25) to
zero.

Remark 6: It is readily shown that the following distributed
adaptive controller:

sign

(27)

with ,
guarantees boundedness of all signals in the closed-loop system
[(25), (27)] and asymptotic convergence of to , for
all . It is assumed that, for every , the reference
signal , and its first two derivatives , and are known and
uniformly bounded, and that is piecewise continuous.

V. OUTPUT-FEEDBACK DESIGN

The controllers of Sections III and IV provide desired proper-
ties of the closed-loop systems under the assumption that the full
state information is available. In this section, we study a more re-
alistic situation in which only a distributed output is measured.

We show that, as for finite-dimensional systems [26], the ob-
server backstepping can be used as a tool for fulfilling the de-
sired objective for systems on lattices in which nonlinearities
depend only on the measured signals. The starting point of the
nominal output-feedback approach is a design of an observer
which guarantees the exponential convergence of the state esti-
mates to their real values. Once this is accomplished, the com-
bination of backstepping and nonlinear damping is used to ac-
count for the observation errors and provide closed-loop sta-
bility. In the adaptive case, filters which provide “virtual esti-
mates” of unmeasured state variables also need to be designed.

We solve output-feedback problems for systems of local dy-
namical order two ( ) that satisfy the matching condition.
General case can be handled using similar tools. In this situa-
tion, systems (6) and [(6), (7)], respectively, simplify to

(28a)

(28b)

(28c)

and

(29a)

(29b)

(29c)

Both nominal and adaptive output-feedback problems are
solved using individual cell backstepping design. We note that
nominal output-feedback problem can be also solved using
global backstepping if the initial state of (28) satisfies Assump-
tion 6.

A. Nominal Output-Feedback Design

We rewrite (28) in a form suitable for observer design

(30a)

(30b)

where

We proceed by designing an equivalent of Krener–Isidori ob-
server (see, for example, [26] and [39]) for (30)

(31a)

(31b)

where is chosen such that
is a Hurwitz matrix for every . Clearly, this is going to be
satisfied if and only if , , . In this
case, an exponentially stable system of the form

(32)

is obtained by subtracting (31) from (30). The properties of
imply the exponential convergence of to zero
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and the existence of the positive–definite matrix that satis-
fies

(33)

The main result of this section, whose proof can be found in
[40], is summarized in the following theorem.

Theorem 7: Consider (28) with Assumptions 1–2 and ob-
server (31). The output-feedback distributed controller

(34)

with , guar-
antees global asymptotic stability of the origin of closed-loop
system [(28), (32), (34)]. These properties can be established
with

where .

B. Adaptive Output-Feedback Design

We rewrite (29) in a form suitable for adaptive output-feed-
back design

(35a)

(35b)

where, for every , and

We proceed by designing filters which provide “virtual esti-
mates” of unmeasured state variables (see [26, § 7.3])

(36a)

(36b)

(36c)

where is chosen such that
is Hurwitz for every . Clearly, is going to be Hurwitz
if and only if , , . In this case,
an exponentially stable system: , is obtained by
combining (35) and (36) for every , with

. The properties of imply the
exponential convergence of to zero and the existence of the
positive definite matrix that satisfies (33).

The main result of this section, whose proof can be found in
[40], is summarized in the following theorem.

Theorem 8: Consider (29) with Assumptions 1, 2, and 5 and
filters (36). The output-feedback distributed controller

Fig. 3. Finite-dimensional mass-spring system.

sign ,
,

,

,
,

, ,
with

guarantees boundedness of all signals in the closed-loop adap-
tive system and asymptotic convergence of , , and to
zero for every . These properties can be established with

Remark 7: The results established in Sections III–V are valid
only if the solution to the resulting system of equations exists.
The well-posedness of closed-loop systems can be established
using similar argument as in Section II-D. Since control design
guarantees boundedness of all signals in the closed-loop, we
conclude that the backstepping yields systems with unique clas-
sical solutions on time interval .

Remark 8: In applications, we clearly have to work with sys-
tems that contain large-but-finite number of units. All infinite
dimensional results are applicable here, but with minor modifi-
cations. For example, for the mass-spring system shown in Fig. 3
with masses ( ) both the equations presented in
Section II-B and the control laws of Sections III–V are still valid
with appropriate “boundary conditions”: ,

. The performance of distributed back-
stepping controllers is validated using computer simulations of
mass-spring system with units in [40].

VI. ARCHITECTURE OF DISTRIBUTED CONTROLLERS

In this section, we remark on the architecture of controllers
developed in Sections III–V.

The controllers of Theorems 1, 2, and 6–8 inherit the plant
architecture. Thus, when matching condition is satisfied the de-
sign objective can be always achieved using controller of the
same architecture as the original plant. Furthermore, as illus-
trated in Section III-D, nominal controllers with less interactions
can be obtained by performing a global backstepping design to



432 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 50, NO. 4, APRIL 2005

identify beneficial interactions, and/or to dominate harmful in-
teractions.

On the other hand, since information from all plant cells is
used to determine estimates of constant unknown parameters

and , dynamical controller (24) of Theorem 5
is centralized. This controller builds one estimate per unknown
parameter, and its dynamical order is equal to . We remark
that results of Theorem 6 can be also applied for the control
of systems with constant parametric uncertainties. Controller
(26) of Theorem 6 has different parameter update laws (for
and ) in every control unit , even when all unknown pa-
rameters are constant. The dynamical order of , for every

, is equal to the number of unknown parameters: .
This “over-parameterization” is advantageous in applications
because it allows for implementation of localized distributed
adaptive controllers. This useful property cannot be achieved
with controller (24) because it requires information about entire
distributed state to estimate unknown parameters. Furthermore,
the design procedure described in Section IV-B does not require
Assumptions 3 and 6 to hold and, consequently, it can be applied
to a broader class of problems.

VII. CONCLUDING REMARKS

This paper studies the distributed control of infinite di-
mensional systems on lattices. It is illustrated that Lya-
punov-based approach can be successfully used to obtain state
and output-feedback controllers for both nominal systems and
systems with parametric uncertainties. It is also shown that
the control problem can always be posed in such a way to
yield controllers of the same architecture as the original plant.
Therefore, as a result of Lyapunov-based design systems with
an intrinsic degree of decentralization are obtained. For a nom-
inal mass-spring system we illustrate that fully decentralized
stabilizing controllers can be obtained by a careful analysis of
nonlinearities and interactions between different subsystems.

Our current efforts are directed toward development of
modular adaptive schemes in which parameter update laws
and controllers are designed separately. The major advantage
of using this approach rather than the Lyapunov-based design
is the versatility that it offers. Namely, adaptive controllers of
this paper are limited to Lyapunov-based estimators. From a
practical point of view it might be advantageous to use the
appropriately modified standard gradient or least-squares type
identifiers.

APPENDIX

COMPLETING THE PROOF OF THEOREM 5

Negative semidefiniteness of implies that is a nonin-
creasing function of time. Hence, based on the definition of
and its boundedness at (see Assumption 6), we conclude
that , , , and are globally uniformly bounded, that is

In view of this, properties of functions and (see
Assumptions 1–3), and definition of , it follows that

, and
, which in turn implies

. Using Assumption
3 and the fact that ,

we also conclude that .
This follows from the properties of functions and

(see Assumptions 1–3) and a simple observation that
when-

ever . Furthermore, since
is a nonincreasing nonnegative

function, it has a limit as . Thus, integration of
yields

which together with the definition of ( )
implies . Therefore, we have shown
that .
Using the Barbălat lemma (see, for example, [25] and [33]), we
conclude that both and go to zero as , for
all . Therefore, the dynamical controller of Section IV-A
guarantees boundedness of all signals in the closed-loop and
asymptotic convergence of the state
of (22) to zero.
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JOVANOVIĆ AND BAMIEH: LYAPUNOV-BASED DISTRIBUTED CONTROL OF SYSTEMS ON LATTICES 433
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