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a b s t r a c t

Wedevelop analytical andnumerical conditions to determinewhether limit cycle oscillations synchronize
in diffusively coupled systems. We examine two classes of systems: reaction–diffusion PDEs with Neu-
mann boundary conditions, and compartmental ODEs, where compartments are interconnected through
diffusion terms with adjacent compartments. In both cases the uncoupled dynamics are governed by a
nonlinear system that admits an asymptotically stable limit cycle. We provide two-time scale averaging
methods for certifying stability of spatially homogeneous time-periodic trajectories in the presence of
sufficiently small or large diffusion and develop methods using the structured singular value for the case
of intermediate diffusion. We highlight cases where diffusion stabilizes or destabilizes such trajectories.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Diffusively coupled models are crucial for understanding the
dynamical behavior of a range of engineering and biological sys-
tems. In particular, synchronization of diffusively coupled models
is an active and rich research area (Hale, 1997). Conversely, de-
veloping conditions that rule out synchrony is also important, as
they can facilitate study of spatial pattern formation. One of the
major ideas behind pattern formation in cells and organisms is
based on diffusion-driven instability (Segel & Jackson, 1972; Tur-
ing, 1952), which occurs when higher-order spatial modes in a
reaction–diffusion partial differential equation (PDE) are destabi-
lized by diffusion (Cross & Hohenberg, 1993; Hsia, Holtz, Huang,
Arcak, & Maharbiz, 2012; Jovanović, Arcak, & Sontag, 2008; Mur-
ray, 2002; Othmer, Painter, Umulis, & Xue, 2009).

The majority of synchronization studies address phase cou-
pled oscillators (Chopra & Spong, 2009; Dörfler & Bullo, 2012; Ku-
ramoto, 1975; Strogatz, 2000), which rely on the assumption of
weak coupling to be able to represent the subsystemswith a single
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phase variable. Full state models have been studied in Arcak
(2011), Pogromsky and Nijmeijer (2001), Russo and Di Bernardo
(2009), Scardovi, Arcak, and Sontag (2010), Stan and Sepulchre
(2007) and Wang and Slotine (2005); however, these references
derive global results that may be conservative when synchroniza-
tion of trajectories close to a specific attractor, such as a limit cycle,
is of interest. The Ref. Pecora and Carroll (1998) gives a method
to determine synchronization applicable to a wide class of cou-
pled oscillators; however, it does not allow direct determination
of synchronization for intervals of diffusion coefficients and may
encounter loss of accuracy due to difficulties in numerically com-
puting the state transition matrix.

In this paper, we study diffusively coupled nonlinear systems
that exhibit limit cycles in the absence of diffusion. We develop
analytical and numerical tools to determine whether diffusion sta-
bilizes the spatially homogeneous limit cycle trajectories, thereby
synchronizing the oscillations across the spatial domain. Our
methods apply to reaction–diffusion PDEs with Neumann bound-
ary conditions as well as compartmental ODEs. In the latter case,
each compartment has identical dynamics and represents a well-
mixed spatial domain wherein like components in adjacent com-
partments are coupled by diffusion.

We first linearize the system about an asymptotically stable
limit cycle trajectory and then study the resulting periodic linear
time varying system. In both the PDE and ODE cases, synchrony
amounts to stability of an auxiliary system of the form
ẋ = (A(t)− λkD)x, (1)
where A(t) is periodic, D is a matrix of diffusion coefficients, and
λk is the kth eigenvalue of the Laplacian operator (for PDEs) or
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matrix (for ODEs). In the case of sufficiently small or large diffusion,
we use Floquet theory to decompose the linearized system into fast
and slow time scales, and present results using two-time scale aver-
aging theory (Sastry & Bodson, 1989; Teel, Moreau, & Nešić, 2003)
that guarantee synchrony. In the case of diffusion coefficients of
intermediate strength, we turn to a numerical approach, in which
we use harmonic balance (Wereley & Hall, 1990; Zhou & Hagiwara,
2002) to represent the linearized systemas an infinite-dimensional
linear time invariant system.

We make use of concepts from robust control, in particular the
structured singular value (SSV) (Packard & Doyle, 1993), to deter-
mine stability of the linearized system in the presence of diffu-
sion coefficients spanning a specified finite interval. In particular,
our method extends the notion of structured singular value to the
infinite-dimensional harmonic transfer operators thatmay be used
to describe the frequency domain behavior of periodic linear time-
varying systems. We apply our tests to a relaxation oscillator sys-
tem and find that large enough diffusion can indeed lead to loss of
synchrony. Unlike standard examples of diffusion-driven instabil-
ity of a homogeneous steady-state (Murray, 2002; Segel & Jackson,
1972; Turing, 1952), this example demonstrates destabilization of
a spatially homogeneous periodic orbit by diffusion.

The stability of (1) in which thematrix A(t) is constant has been
studied in the literature. In Casten and Holland (1977), the authors
showed that the stability of a homogeneous steady-state in a reac-
tion–diffusion PDE with Neumann boundary conditions is equiv-
alent to the simultaneous stability of a family of matrices of the
form (1). In this case, the matrix A(t) = A is constant because it
represents the Jacobian linearization of the reaction terms at the
steady-state. In the typical case where the matrix D of diffusion
coefficients is diagonal, a sufficient condition for the desired si-
multaneous stability property is that A be an additively D-stable
matrix (Kaszkurewicz & Bhaya, 2000), which means that A − D is
Hurwitz for all diagonal D ≥ 0. While recent work has sought to
characterize additiveD-stability for constantmatrices (Ge & Arcak,
2009; Kim & Braatz, 2012; Wang & Li, 2001), the periodic time-
varying case addressed here has not been studied.

The paper is organized as follows. In Section 2, we formulate
the problem and present an example of a system with an asymp-
totically stable limit cycle that loses spatial synchrony in the pres-
ence of diffusion. In Section 3, we outline tests for synchrony in
the case of sufficiently small or large perturbations. In Section 4,
we develop a method to verify synchrony for an interval of diffu-
sion coefficients. We present relaxation and ring oscillator exam-
ples in Section 5 and give the conclusions in Section 6. Derivations
of our application of structured singular value to periodic linear
time-varying systems and harmonic transfer operators are given
in the Appendix.

2. Problem formulation

In this section, we formulate the problem of synchronization
of limit cycle oscillations in diffusively-coupled systems. For both
reaction–diffusion systems of PDEs with Neumann boundary con-
ditions and compartmental systems of ODEs, we show that de-
termining synchrony, in the sense of a system exhibiting spatially
homogeneous oscillations, amounts to examining stability of a lin-
ear system with time-periodic coefficients. To motivate our de-
velopments, we also provide an example of a system with an
asymptotically stable limit cycle that loses spatial synchrony in the
presence of large enough diffusion.

We first discuss systems governed by reaction–diffusion PDEs
and define the spatial domain Ω ∈ Rr with smooth boundary
∂Ω , spatial variable ξ ∈ Ω , and outward normal vector n(ξ) for
ξ ∈ ∂Ω . The PDE model is

∂x
∂t

= f (x)+ D∇
2x, (2)
subject to Neumann boundary conditions ∇xi(t, ξ) · n(ξ) = 0 for
all ξ ∈ ∂Ω , where x(t, ξ) ∈ Rn, D ∈ Rn×n, and

∇
2x = [∇

2x1 · · · ∇
2xn]T (3)

is a vector of Laplacian operators with respect to the spatial vari-
able ξ applied to each entry of x. In a reaction–diffusion system,
x(t, ξ) represents a vector of concentrations for the reactants and
D is a diagonal matrix of diffusion coefficients. However, for gener-
ality of our derivations, we will not assume D to be diagonal unless
we state otherwise.

We say that a solution x(t, ξ) of (1) synchronizes if x(t, ξj) −

x(t, ξk) → 0 for any two points ξj and ξk inΩ . We assume that the
lumped system ẋ = f (x) has an asymptotically stable limit cycle
and that x̄(t) is a solution of ẋ = f (x) along the limit cycle. Then
x(t, ξ) = x̄(t) for all ξ ∈ Ω is a solution of (2). In the absence of
diffusion (D = 0), the system (2) admits out-of-phase oscillations,
that is, solutions of the form x(t, ξ) = x̄(t + ϕ(ξ)), where ϕ(ξ)
is a phase that depends on the location ξ . To determine whether
diffusion eliminates such spatial phase differences,we examine the
Jacobian linearization about the limit cycle trajectory x̄(t, ξ):

∂ x̃
∂t

= (A(t)+ D∇
2)x̃ (4)

where x̃(t, ξ) = x(t, ξ)− x̄(t) and

A(t) = J(x̄(t)) =
∂ f
∂x


x̄(t)
. (5)

Let 0 = λ1 ≤ λ2 ≤ · · · denote the eigenvalues and φ1(ξ), φ2(ξ),
. . . denote the corresponding orthogonal eigenfunctions of the
operator L = −∇

2 onΩ with Neumann boundary conditions:

Lφi(ξ) = λiφi(ξ), ∇φi(ξ) · n(ξ) = 0 for all ξ ∈ ∂Ω. (6)

The solution to (4) can be expressed as

x̃(t, ξ) =

∞
i=1

σi(t)φi(ξ), (7)

where σi(t) ∈ Rn satisfy the decoupled system of ODEs:

σ̇i = (A(t)− λiD)σi, i = 1, 2, . . . . (8)

Since the eigenfunction φ1(ξ) for λ1 = 0 is constant, the term cor-
responding to i = 1 represents a spatially homogeneous mode σ1
governed by σ̇1 = A(t)σ1. When the subsystems (8) are asymptot-
ically stable for i = 2, 3, . . . , the contributions of the inhomoge-
neousmodesφ2(ξ), φ3(ξ), . . . to the solution x̃(t, ξ) decay to zero
in time, which implies that x(t, ξ) synchronizes.

We also study a compartmental ODE model, where each com-
partment represents a well-mixed spatial domain interconnected
with the other compartments over an undirected graph:

ẋi = f (xi)+ D

j∈Ni

(xj − xi), i = 1, . . . ,N. (9)

The vector xi ∈ Rn represents each compartment’s state, Ni de-
notes the neighbors of compartment i, and D ∈ Rn×n. We say that
a solution (x1(t), . . . , xN(t)) synchronizes if xj(t)− xk(t) → 0 for
any pair (j, k). We take the Jacobian linearization about a limit cy-
cle trajectory x̄(t) and aggregate the dynamics of the subsystems
using the state variable x̃ = [x̃T1 · · · x̃TN ]

T , x̃i(t) = xi(t) − x̄(t). We
represent the interaction between state variables by a graph Lapla-
cian matrix L = LT ∈ RN×N , defined as

L = EET , (10)

where E is an incidence matrix whose rows represent vertices
(compartments) and columns represent edges (couplings between
the compartments). The dynamics of the aggregated system may
be written as
˙̃x = (I ⊗ A(t)− L ⊗ D)x̃, (11)



S.Y. Shafi et al. / Automatica 49 (2013) 3613–3622 3615
Fig. 1. Spatio-temporal evolution of x2 for system (2)–(14) with d1 = 100, d2 = 0,
and µ = 0.1 on the one-dimensional spatial domain Ω = [0, 1] with initial con-
dition x2(0, ξ) = 5+ cos(πξ) and Neumann boundary conditions. The oscillations
do not synchronize, and in fact growth of the spatial mode φ2(ξ) is observed.

where A(t) is as in (5) and ⊗ denotes the Kronecker product. Let
U ∈ RN×N be a unitary similarity transformation that brings L into
the diagonal matrix of its eigenvalues Σ ∈ RN×N : L = UΣUT .
Choosing ỹ = (U−1

⊗ I)x̃, we rewrite (11) as a block diagonal
system, making use of the Kronecker product identity (M⊗S)(T ⊗

W ) = MT ⊗ SW for matrices M, T and S, W of conformable
dimensions, respectively. We then have

˙̃y = (I ⊗ A(t)−Σ ⊗ D)ỹ, (12)

which is decoupled into the subsystems

˙̃yl = (A(t)− λlD)ỹl, l = 1, . . . ,N, (13)

where ỹl ∈ Rn and λl is the lth eigenvalue of the Laplacian matrix,
respectively. In particular, λ1 = 0 and λl > 0, l = 2, 3, . . . , N
when the graph is connected. Note that (13) is analogous to (8)
except that it consists of finitely many modes l = 1, . . . ,N . If the
subsystems (13), l = 2, . . . ,N , are asymptotically stable, then for
any pair (j, k) ∈ {1, . . . ,N}×{1, . . . ,N}, we have xj(t)−xk(t) → 0
exponentially as t → ∞, which implies that (x1(t), . . . , xN(t))
synchronizes.

Motivating example

To see that a diagonal D ≽ 0 does not necessarily guarantee
synchronization, consider the system (2) with the dynamics

f (x) =

 1
µ


x1 −

1
3
x31 − x2


x1 + µx2

 and D =


d1 0
0 0


, (14)

with d1 > 0. Whenµ > 0 is sufficiently large, the vector field f (x)
has the behavior of a relaxation oscillator (Khalil, 2002) and admits
a stable limit cycle. The Jacobian linearization about the limit cycle
trajectory x̄(t) is given by

A(t) =

 1
µ
(1 − x̄21(t))

1
µ

1 µ

 . (15)

When λid1 ≫ 1/µ, system (8) exhibits two-time scale behavior,
with the slow dynamics unstable:

σ̇i2 = µσi2. (16)
Fig. 2. Trajectories of x12 (blue, solid) and x22 (red, dashed) of (9) and (14) for two
compartments synchronize under small diffusion coefficient d1 = .5 and initial
conditions (x12(0), x22(0)) = (−1, .5).

Fig. 3. Trajectories of x12 (blue, solid) and x22 (red, dashed) of (9) and (14) for two
compartments do not synchronize under larger diffusion coefficient d1 = 100 and
initial conditions (x12(0), x22(0)) = (−1, .5).

Thus, we expect the system (2), with f (x) and D as in (14), to be
unstable when λid1 is sufficiently large. Indeed, for d1 = 100 and
µ = 0.1, the simulations over the spatial domain [0, 1] demon-
strate the growth of the spatial mode φ2(ξ) = cos(πξ); see Fig. 1.
Unlike standard examples of diffusion-driven instability of a ho-
mogeneous steady-state (Murray, 2002; Segel & Jackson, 1972;
Turing, 1952), this example demonstrates destabilization of a spa-
tially homogeneous periodic orbit by diffusion.

Similar behavior can be observed for the compartmental model
(9) with two compartments, and f (x) andD given by (14). The two-
node graph representing the interconnection of the two compart-
ments has Laplacian eigenvalues λ1 = 0 and λ2 = 2. When d1 is
small, we find that oscillations synchronize spatially, as shown in
Fig. 2. When d1 is large, the trajectories corresponding to compart-
ments one and two diverge from each other, as shown in Fig. 3.

3. Synchronization under weak or strong coupling

As shown in the previous section, for both the PDE (2) and the
compartmental ODE (9), synchrony is determined by the stability
of the time-varying system (1). For simplicity of notation we drop
λk from (1) and analyze
ẋ = (A(t)− D)x, (17)
since D can be appropriately scaled to account for λk.
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When D is sufficiently small or large, we use Floquet theory to
decompose (17) into fast and slow time scales and develop stability
conditions using two-time scale averaging theory.

Recall that A(t) =
∂ f
∂x


x̄(t) is the linearization of f (x) about a limit

cycle trajectory x̄(t), and let T denote the period of oscillations:
A(t + T ) = A(t) for all t . We first consider the case with D = 0,
that is

ẋ = A(t)x, (18)

and note that it admits the periodic solution x(t) = ˙̄x(t). To see
this, observe the following:

˙̄x(t) = f (x̄(t)) H⇒ ¨̄x(t) =
∂ f
∂x


x̄(t)

˙̄x(t) = A(t)˙̄x(t). (19)

Floquet’s Theorem (Farkas, 1994, Thm. 2.2.5) implies that the
state transition matrix Φ(t, t0) of (18) is periodic and can be
written as

Φ(t, t0) = U(t) exp(F(t − t0))V (t0), (20)

where F ∈ Rn×n is a constant matrix, U(t + T ) = U(t) ∈ Rn×n

and U(t) = V−1(t) ∈ Rn×n, with the columns of U(t) given by
ui(t) and the rows of V (t) given by vTj (t). Since (18) results from
linearization about a stable limit cycle, F can be written as

F =


0 0
0 F2


, (21)

where F2 is an (n−1)×(n−1)Hurwitzmatrix andu1(t) = ˙̄x(t). The
eigenvalues of F are called Floquet exponents, and the evaluation of
the state transitionmatrix over one periodwith initial condition t0,
Φ(t0 + T , t0) = exp(FT ), is called themonodromy matrix.

In what follows, we derive a condition that relates the stability
of (17) with sufficiently small D to u1(t) and v1(t). First, we review
properties of u1(t) and v1(t) that follow from Floquet theory. The
definition of U(t) and V (t) implies that vTj (t)ui(t) = δij, where δij
is the Kronecker delta. In particular, v1(t) is a periodic solution of
the adjoint system:

ρ̇ = −AT (t)ρ. (22)

To compute u1(t) and v1(t), we follow (Demir, Mehrotra, &
Roychowdhury, 2000) and numerically integrate

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) (23)

over one period with the initial condition Φ(t0, t0) = I . We then
compute the eigenvector of themonodromymatrix corresponding
to its eigenvalue at one:

u1(t0) = Φ(t0 + T , t0)u1(t0). (24)

Using the numerically-computed state transition matrix Φ(t, t0),
we then calculate the trajectory u1(t) = Φ(t, t0)u1(t0). To ob-
tain v1(t), we begin by computing the left eigenvector of the mon-
odromy matrix corresponding to its eigenvalue at one:

vT1 (t0)Φ(t0 + T , t0) = vT1 (t0). (25)

We scale v1(t0) such that vT1 (t0)u1(t0) = 1. Finally, to obtain v1(t),
we numerically integrate the adjoint system (22) backwards in
time with the terminal condition ρ(t0 + T ) = v1(t0).

Having reviewed the case D = 0, we now prove a result about
the stability of (18) with sufficiently small D.

Proposition 3.1. Let vT1 (t) be the first row of V (t) and u1(t) be the
first column of U(t), where Φ(t, t0) = U(t) exp(F(t − t0))V (t0) as
described above. Given a matrix D0 ∈ Rn×n, if the inequality t0+T

t0
vT1 (t)D0u1(t) dt > 0 (26)
holds, then the origin of the system

ẋ = (A(t)− ϵD0)x (27)

is exponentially stable for sufficiently small ϵ > 0.

Proof. Floquet theory implies that the time-varying change of
coordinates y = V (t)x transforms (18) into a linear time invariant
system:

ẏ = Fy, (28)

where F is as in (21). Introducing the decomposition y = [wT zT ]T ,
we rewrite (28) as
ẇ
ż


=


0 0
0 F2

 
w
z


. (29)

When applied to system (27), the preceding change of coordinates
yields
ẇ
ż


=


0 0
0 F2


− ϵV (t)D0U(t)


w
z


. (30)

For small ϵ, this time-varying periodic system exhibits two-time
scale behavior, which allows us to exploit the theory of two-time
scale averaging (Sastry & Bodson, 1989; Teel et al., 2003). The
averaged slow system corresponding to (30) is given by

ẇ = −ϵaw,

a =
1
T

 t0+T

t0
vT1 (t)D0u1(t)dt.

(31)

Since F2 is Hurwitz, an application of Lemma A.1 in Appendix A
shows that if a > 0, then the equilibrium y = 0 is exponentially
stable for sufficiently small ϵ. �

Note that Proposition 3.1 does not require D0 to be diagonal. When
D0 is diagonal, the test (26) can be simplified as follows:

Corollary 3.2. Let u1i and vT1j be the ith and jth components of u1 and
vT1 , respectively. If the inequalities t0+T

t0
vT1i(t)u1i(t) dt > 0, i = 1, . . . , n (32)

hold, then given any diagonal matrix D0 ≽ 0, D0 ≠ 0, the periodic
solution of the linearized system (27) is stable for sufficiently small
ϵ > 0.

We now turn to the case where D is large. Standard results
from perturbation theory (Khalil, 2002) guarantee stability of (17)
when D is nonsingular and sufficiently large. When D is singular,
we again leverage two-time scale arguments to derive a condition
that guarantees stability of (17):

Proposition 3.3. Given a matrix D0 ∈ Rn×n, consider the linear time
varying system:

ẋ = (A(t)− ϵ−1D0)x (33)

A(t) =


A11(t) A12(t)
A21(t) A22(t)


, D0 =


0 0
0 D2


, (34)

where x ∈ Rn, A(t + T ) = A(t) for all t , A22(t) and D2 have the same
dimension, −D2 is Hurwitz, and ϵ > 0. If

Ā11 =
1
T

 t0+T

t0
A11(t) dt (35)

is Hurwitz, then x = 0 is an exponentially stable equilibrium of (33)
for sufficiently small ϵ.
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The proof follows from Lemma A.1. Note that if D0 is not block
diagonal, but is singularwith trivial Jordan blocks corresponding to
its eigenvalues at zero and all remaining eigenvalues in the closed
right half plane, there exists a similarity transformation that will
bring (33) to the form required by (34).

The tests that we have derived, while analytic in nature, may
be applied to problems of interest by computing a linearization
about a periodic solution, and numerically integrating the resulting
differential equation (23) in order to obtain u1 and v1. We
demonstrate the application of these tests in Section 5.

4. Numerical verification of synchronization using SSV

In this section, we develop numerical tools to determine the
stability of (17) for a family of matrices D parametrized as

D = M + B∆C, (36)

where M ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n are fixed matrices,
and ∆ ∈ Rm×m is a diagonal matrix whose entries take values
in [−1, 1]. For example, suppose that the system (17) has one
diffusible component, with

D = diag([d10 . . . 0]), (37)

where d1 ∈ [r, R]. Then D can be written as in (36) with M =

R+r
2 e1eT1 where ei is a standard basis vector, B =

 R−r
2 0 . . . 0

T
,

C = [1 0 . . . 0], and ∆ = δ is a scalar. The problem is then to
ascertain that the system (17) is stable for all values of δ on the
interval [−1, 1].

Structured singular value (SSV) analysis provides a useful test
for determining the robustness of a stable linear time invariant
system to structured modeling uncertainty. However, since (38) is
time-varying, in order to apply SSV analysis directly we must first
bring the system to an equivalent time invariant form. For such
analysis, it is useful to rewrite the system (17) as

ẋ = (A(t)− M)x − Bq
y = Cx
q = ∆y.

(38)

Previous efforts to apply SSV analysis to time-varying systems
have focused on the time-domain lifting idea of Bamieh, Pearson,
Francis, and Tannenbaum (1991) and Chen and Francis (1995), out-
lined in Dullerud and Glover (1996), Kim, Bates, and Postlethwaite
(2006) andMa and Iglesias (2002),where system (38) is discretized
and converted to a continuous time invariant system.

Instead, we pursue an SSV analysis that makes use of the har-
monic balance approach (Wereley & Hall, 1990) and frequency do-
main lifting as in Fardad, Jovanovic, and Bamieh (2008) and avoids
the numerical difficulties and sensitivity of computing the state
transition matrix and discretizing with an adequate number of
samples in the lifting approach. Our computational experiments
show that the harmonic balance approach frequently leads to less
conservative results in establishing the values of diffusion coeffi-
cients that lead to instabilities. We first give a brief summary of
harmonic balance and then outline its application to the problem
of determining the stability of (17).

We assume that each entry of the matrix A(t) is a continuous
function of t that has an absolutely convergent Fourier series, and
so A(t)may be expressed as

A(t) =


m∈Z

Amejmωpt , (39)

where ωp is the fundamental frequency. Define doubly infinite
vectors representing the harmonics of the state:

X = [· · · xT
−1 xT0 xT1 · · ·]

T , (40)
and do the same for the input Q and output Y . The doubly infinite
block Toeplitz matrix A is determined by the harmonics of A(t):

A =


. . .

...
...

...
. . . A0 A−1 A−2 . . .
. . . A1 A0 A−1 . . .
. . . A2 A1 A0 . . .

...
...

...
. . .

 . (41)

We define the doubly infinite matrices I = blkdiag(I), B =

blkdiag(B), and C = blkdiag(C), and define the modulation fre-
quency matrix as
N = blkdiag{jmωpI}, ∀m ∈ Z. (42)

We define the matrix ∆̃ = blkdiag(∆) to be block diagonal with
copies of the diagonal matrix ∆ in each block, and the matrix
M = blkdiag(M) to be a block diagonal scaling matrix with copies
of the matrix M in each block. We now introduce the harmonic
state space model, where s = jω:

sX = (A − M − N )X − BQ
Y = CX
Q = ∆̃Y .

(43)

We perform SSV analysis to determine if there exist matrices D
such that (17) is unstable. For the precise definition of the struc-
tured singular value in the context of periodic linear-time varying
systems represented by a harmonic state spacemodel, we refer the
reader to Appendix B. To obtain a computationally tractable test,
we truncate the doubly infinite system. As shown in Appendix B,
wemay approximate (43) arbitrarily well. In the exampleswe con-
sider there exist fewer than ten significant harmonics, and we rep-
resent the doubly infinite system by a finite dimensional system.
We then perform SSV analysis on the truncated version of (43) to
determine the range of matrices ∆ for which (17) remains stable.
In particular, we use the MATLAB command mussv in the Robust
Control Toolbox, which performs SSV analysis to test if there ex-
ists ∆ such that (43) is unstable. We summarize our procedure in
Algorithm 1.

Algorithm 1 Numerical verification of synchrony using harmonic
balance
1: Using the parametric decomposition (36) for the given family

of matrices D under consideration, determine the matrices B
and C in order to express (17) in the form of (38).

2: Determine the Fourier series coefficients of A(t).
3: Define the truncated linear time invariant harmonic state space

model as in (43).
4: Compute the structured singular valueµ of the harmonic state

space model.

Following the completion of Algorithm 1, if µ > 1, we com-
pute the correspondingmatrix∆with smallest norm such that the
truncated harmonic state spacemodel is unstable.We then use the
computed matrix ∆ and (36) to compute a candidate for a matrix
D that makes (17) unstable. Ifµ ≤ 1, appealing to the convergence
properties in Appendix B provides evidence that system (17) is sta-
ble. The choice of the number of terms in the truncation resulting
from Step 3 involves a tradeoff between numerical accuracy and
computation time.

Since the problem of computing the structured singular value
of a system is NP complete (Packard & Doyle, 1993), the Robust
Control Toolbox employs linear matrix inequality relaxations as
well as a discretization of the continuous frequency domain, which
can lead to numerical inaccuracies and conservatism. This conser-
vatism can pose a problem in certifying stability over large inter-
vals. In many cases, it may be necessary to perform SSV analysis on
smaller intervals, and to certify the remaining (possibly infinite)
interval using the perturbation arguments of Section 3.
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Fig. 4. Three-stage ring oscillators as in (44) coupled through node 1.

5. Examples

Example 1 (Relaxation Oscillator). We first discuss numerical re-
sults for the relaxation oscillator example given by (14) in Section 2.
We set the parameter µ = 0.1, and first study the two compart-
ment ODE model (9). When D is small, the techniques of Section 3
apply, and we can easily check that the conditions of Corollary 3.2
are satisfied for nonnegativeλid1 < ϵ∗, where ϵ∗ is computed from
the proof of Lemma A.1. In Fig. 2, we show the oscillations of the
solution of x2 synchronizing spatially under small D, as expected.

We next examine the case of larger D for both (9) and (2). To
apply the harmonic balance method, we compute the harmonic
components of x1(t) and find that eight harmonics are sufficient
to represent the signal. We then use the harmonic expansion to
generate a corresponding finite dimensional approximation of the
matrix A. Because D is diagonal and nonnegative, we set M =
r+ϵ∗
2 e1eT1 , B = [

r−ϵ∗
2 0]T , C = [1 0], and ∆ = δ, and perform

SSV analysis to determine values of d1 that lead to instabilities. We
find that at λid1 ≥ 87.6, stability is lost.

Indeed, when the product λid1 ≥ 87.6, the two compartment
ODE, with λ2 = 2, will exhibit trajectories that diverge, and the re-
action–diffusion PDEmodel, with λi = (i−1)2, i = 2, 3, . . . ,will
lose spatial uniformity for initial spatial modes with large enough
wavenumber i regardless of d1. In Figs. 1 and 3, we show that the
oscillations of the solution of x2 do not synchronize spatially for
large D and observe increasing spatial inhomogeneity over time.

Example 2 (Ring Oscillator). We next study a coupled three-stage
ring oscillator model (Fig. 4), with the dynamics of each circuit
given by

ẋi1 = −η1xi1 − α1 tanh(β1xi3)+ wi1
ẋi2 = −η2xi2 − α2 tanh(β2xi1)
ẋi3 = −η3xi3 − α3 tanh(β3xi2),

(44)

with coupling at node 1 of each circuit. The parameters ηi =
1

RiCi
,

α1, and β1 correspond to the gain of each inverter. The coupling is
defined by

wi1 = −d1


j∈Ni

(xi1 − xj1)


, (45)

where d1 = 1/(RC1) andNi denotes the set of circuits towhich cir-
cuit i is connected. The Laplacian matrix describing the interaction
between three coupled circuits as in Fig. 4 is given by

L =

 2 −1 −1
−1 2 −1
−1 −1 2


. (46)

Following (9), the vector field f (x) is given by (44) with D =

diag([d1 0 0]).
In order for (44) with wi1 to admit a limit cycle, it must have

αiβi > 2 (Ge, Arcak, & Salama, 2010). We set ηi = 1, αi = 2, and
βi = 1.2 for all i. When d1 is small, we use the techniques of Sec-
tion 3 to study the effects of small D on (9). Upon computing u1(t)
and v1(t), it is readily seen that the conditions of Corollary 3.2 are
satisfied. Thus, the equilibrium at x = 0 is exponentially stable for
nonnegative λid1 < ϵ∗, where ϵ∗ is computed from the proof of
Lemma A.1.

We next apply Proposition 3.3 to study the effects of large D on
(9). Linearization about a limit cycle trajectory x̄(t) brings (44) to
the form:ẋ1
ẋ2
ẋ3


= −


λid1 0 0
0 0 0
0 0 0



−

 1 0 γ1(x̄1)
γ2(x̄2) 1 0

0 γ3(x̄3) 1

x1
x2
x3


, (47)

with γ1(x̄1) = α1β1 sech(β1x̄3)2, γ2(x̄2) = α2β2 sech(β2x̄1)2, and
γ3(x̄3) = α3β3 sech(β3x̄2)2. When d1 is large, the system exhibits
two-time scale behavior. Since D ≽ 0 is diagonal and the averaged
slow system corresponding to [x2 x3]T , given by
ẋ2
ẋ3


= −

 t0+T

t0


1 0

γ3(x̄3) 1


dt


x2
x3


, (48)

has an exponentially stable equilibrium at zero, we conclude from
Proposition 3.3 that the equilibrium at x = 0 is exponentially
stable for λid1 > m∗, where m∗ is computed from the proof of
Lemma A.1.

We use SSV analysis to certify synchrony for the remaining in-
terval [ϵ∗,m∗

]. Following Section 3, we set M =
m∗

+ϵ∗

2 e1eT1 , B =
m∗

−ϵ∗

2 0 . . . 0
T

, C = [1 0 . . . 0], and∆ = δ. A discrete Fourier
transform of a periodic trajectory x̄(t) suggests that eight harmon-
ics are sufficient to represent the truncated harmonic state space
model for the time-varying system. SSV analysis indicates that co-
efficients λid1 ∈ [ϵ∗,m∗

]will result in (9) being stable. In Fig. 5 we
show an example of a coefficient d1 ∈ [ϵ∗,m∗

] with synchronized
oscillations.

6. Conclusion

We have studied diffusively coupled compartmental ODEs as
well as reaction–diffusion PDEs that admit stable limit cycles. We
have established analytic tests using two-time scale averaging the-
ory to study the case of weak or strong coupling. We then pre-
sented a numerical method applying the harmonic balance and
structured singular value analysis on intervals of intermediate cou-
pling strength to determine whether limit cycle oscillations syn-
chronize. Finally, we applied our tests to examples, where we
identified cases in which diffusion leads to loss of spatial syn-
chrony. The effect of truncation of bi-infinite matrices on the accu-
racy of the numerical results is currently being studied. Our results
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Fig. 5. Coupled identical three-staged ring oscillators as in (44)with ηi = 1,αi = 2,
and βi = 1.2 for all i. Oscillations synchronizewith initial conditions x11 = 1 (blue),
x21 = −5 (red), and x31 = 2 (green). For brevity we show only the first component.

could also be used to decide on coupling strengths in diffusively
coupled systems, such as multiagent systems and voltage con-
trolled oscillators, to guarantee synchrony.

Appendix A. Two-time scale averaging

We state a lemma that follows from standard results in two-
time scale averaging (see, e.g., Sastry and Bodson (1989, Thm.
4.4.3)).

Lemma A.1. Let w ∈ Rp and z ∈ Rq, and consider the linear time
varying system:
ẇ
ż


=


0 0
0 G


− ϵ


H11(t) H12(t)
H21(t) H22(t)


w
z


, (A.1)

where each Hij(t), i, j ∈ {1, 2} is a bounded piecewise continuous
matrix-valued function of time such that Hij(t + T ) = Hij(t), G ∈

Rq×q, and ϵ > 0. Define the associated averaged slow system:

ẇ = −ϵH̄11w, H̄11 =
1
T

 t0+T

t0
H11(t) dt. (A.2)

If −H̄11 and G are Hurwitz, then there exists ϵ∗ such that [wT zT ]T =

0 is an exponentially stable equilibrium of (A.1) for 0 < ϵ < ϵ∗.

Proof. We provide a proof for completeness and to exhibit a pro-
cedure for obtaining ϵ∗. We begin by introducing a change of coor-
dinates:

w =


I − ϵ

 t

0


H11(τ )− H̄11


dτ

ŵ. (A.3)

Upon substitution, we have
I − ϵ

 t

0


H11(τ )− H̄11


dτ


˙̂w − ϵ[H11(t)− H̄11]ŵ

= −ϵH11(t)

I − ϵ

 t

0


H11(τ )− H̄11


dτ

ŵ − ϵH12(t)z. (A.4)

Since each Hij(t) is bounded, we have |Hij(t)| ≤ ĥij for all t . Fur-
thermore, since each

 t
0


H11(τ )− H̄11


dτ is periodic, we have t

0


H11(τ )− H̄11


dτ
 ≤ 2T ĥ11. (A.5)
Then for ϵ < ϵ1 , 1
2T ĥ11

, the change of coordinates is invertible.
Rewriting, we have

˙̂w = −ϵ


I − ϵ

 t

0


H11(τ )− H̄11


dτ
−1

×H11(t)

I − ϵ

 t

0


H11(τ )− H̄11


dτ

ŵ

− ϵ


I − ϵ

 t

0


H11(τ )− H̄11


dτ
−1

H12(t)z

− ϵ


I − ϵ

 t

0


H11(τ )− H̄11


dτ
−1

× [H̄11 − H11(t)]ŵ. (A.6)

With a similar change of coordinates, we have

ż = Gz − ϵH21(t)

I − ϵ

 t

0


H11(τ )− H̄11


dτ

ŵ

− ϵH22(t)z. (A.7)

Define the positive definite matrices Pw and Pz such that

PwH̄11 + H̄T
11Pw = I

PzG + GTPz = −I.
(A.8)

We next consider the candidate Lyapunov function

V = ŵTPwŵ + zTPzz. (A.9)

Define the scalar γ , 1
1−2ϵ1T ĥ11

. Differentiating V , we have

V̇ ≤ −(ϵγ − 2ϵ2γ T ĥ2
11)|ŵ|

2
+ ϵγ ĥ12|ŵ||z|

− (1 − ϵĥ22)|z|2 + ϵĥ21|z||ŵ|

+ ϵ2(2T ĥ21ĥ11)|z||ŵ|. (A.10)

Because ϵ < ϵ1, the first term of (A.10) is negative. Similarly,
choosing ϵ < ϵ2 , 1

ĥ22
guarantees that the second term of (A.10)

is negative. If the condition
M11 M12
M12 M22


≺ 0, with

M11 = −(ϵγ − 2ϵ2γ T ĥ2
11)

M12 =
1
2


ϵγ ĥ12 + ϵĥ21 + ϵ2(2T ĥ21ĥ11)


M22 = −(1 − ϵĥ22),

(A.11)

is satisfied, then (A.10) is negative. Using the Schur complement,
we rewrite the condition as

− (ϵγ − 2ϵ2γ T ĥ2
11)+

1
4


ϵγ ĥ12 + ϵĥ21 + ϵ2(2T ĥ21ĥ11)

2
× (1 − ϵĥ22)

−1 < 0. (A.12)

Therefore, there exists ϵ3 > 0 such that for 0 < ϵ < ϵ3, (A.12)
holds. Thus, with ϵ∗

= min{ϵ1, ϵ2, ϵ3}, [wT zT ]T = 0 is an expo-
nentially stable equilibrium of (A.1). �

Appendix B. Structured singular value for periodic systems
using harmonic balance

To justify the SSV analysis proposed in Section 4, in this ap-
pendix we extend the concept of structured singular value to peri-
odic systems using a generalized Nyquist result and a classic result
from robust control. We begin by reviewing the Nyquist criterion
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for periodic linear time varying systems studied by Hall andWere-
ley (1990) and Zhou and Hagiwara (2005). We consider the system

ẋ = A(t)x + B(t)q
y = C(t)x
q = −∆y,

(B.1)

withA(t), B(t), C(t) ∈ Rn×n.We assume thatA(t), B(t), and C(t)
are periodic with period T and continuous with absolutely conver-
gent Fourier series, and ∆ ∈ Rn with |∆ij| ≤ 1. The bi-infinite
harmonic state space model of (B.1) is given by

(sI + N )X = AX + BQ
Y = CX
Q = −∆̃Y ,

(B.2)

where thematrix ∆̃ = blkdiag(∆), andN , I, andA as in Section 4,
andB andC defined similarly toA. The (infinite-dimensional) har-
monic open loop transfer operator of the system is

G(s) = C[sI − (A − N )]−1B. (B.3)

We rewrite (B.2), substituting for Y :
I − (sI + N )−1A (sI + N )−1B

∆̃C I

 
X
Q


=


0
0


. (B.4)

Following Zhou and Hagiwara (2005), suppose M is a linear com-
pact operator. Denote by λi(M) and σi(M) the ith eigenvalue and
singular value of M, respectively. Denote by Cp(l2) the set of linear
compact operators M : l2 → l2 that satisfy

∥M∥p =


i

σi(M)p

 1
p

< ∞. (B.5)

Elements in C1(l2) are called trace-class operators, and the deter-
minant

det(I + M) , Π∞

k=−∞
(1 + λk) (B.6)

of a trace-class operator is well-defined in the sense that it con-
verges absolutely. Elements in C2(l2) are called Hilbert–Schmidt
operators and may not have absolutely-convergent determinants.

We next apply the Schur determinant lemma to the left hand
side of (B.4):

ψcl(∆) , det

I − (sI + N )−1A − (sI + N )−1B∆̃C


= det


I − (sI + N )−1(A − B∆̃C)


. (B.7)

The operator H(s) = (sI + N )−1(A − B∆̃C) is not in C1(l2),
and in particular, ψcl(∆) does not converge absolutely. Thus, it is
not possible to develop a Nyquist criterion making use of the stan-
dard infinite determinant ψcl(∆). To deal with this problem, Zhou
andHagiwara (2005) proposed an approach using the 2-regularized
determinant. Since H(s) ∈ C2(l2), it holds that R2(H) = (I +

H) exp(−H) − I ∈ C1(l2), and so the 2-regularized determinant
det2(I + H) , det(I + R2(H)) is well-defined. We note that
the Sylvester determinant lemma holds for the 2-regularized de-
terminant: det2(I + KH) = det2(I + HK). Making use of the
2-regularized determinant, it can be shown that

ψG(∆) , det2(I + ∆̃G(s)) exp(−r(s + ρ))

=
det2(I − ((s + ρ)I + N )−1(A − B∆̃C + ρI))

det2(I − ((s + ρ)I + N )−1(A + ρI))
, (B.8)

with r(s + ρ) = −tr[((s + ρ)I + N )−1(A + ρI)(sI + N −

A)−1B∆̃C], and ρ > 0. The generalized Nyquist stability crite-
rion for periodic linear time varying systems follows (see Zhou and
Hagiwara (2005, Theorem 3.1)).
Theorem B.1. Assume that A(t), B(t), and C(t) are piecewise-
continuously differentiable and have absolutely convergent Fourier
series expansions. Let ρ > 0 be an arbitrary positive number, and
let np be the number of unstable eigenvalues in the fundamental strip
of the open loop operator A − N . The closed loop system (B.2) is
asymptotically stable if and only if the Nyquist locus of ψG(∆) is not
zero for all points along the Nyquist contour about the closed right half
plane intersected with the fundamental strip (Hall &Wereley, 1990):

S ,

s ∈ C : −

ωp

2
< Im(s) ≤

ωp

2


, (B.9)

and ψG(∆) encircles the origin np times in the counterclockwise
direction.

We now generalize a key result from MIMO robust control
theory (Doyle & Stein, 1981; Zames, 1966) to periodic time-varying
systems, making use of Theorem B.1:

Theorem B.2. Given a proper harmonic transfer operator G(s) ∈

C2(l2) with no unstable poles and a bounded uncertainty set Φ ∈

Rn×n with a given sparsity structure, the closed loop system (B.2) is
asymptotically stable if and only if det2(I + ∆̃G(jω)) ≠ 0 for all
∆ ∈ Φ and ω ∈


−
ωp
2 ,

ωp
2


.

Proof. First, we shall prove necessity by contradiction. Suppose
(B.2) is not asymptotically stable. By the Nyquist criterion in Theo-
rem B.2, the Nyquist plot ofψG(∆) = det2(I+ ∆̃G(s)) exp(−r(s+
ρ)) encircles or touches the origin for some ω ∈


−
ωp
2 ,

ωp
2


. Con-

sider the homotopy

h(ϵ) = det2(I + ϵ∆̃G(s)) exp(−rϵ(s + ρ)), (B.10)

with ϵ ∈ [0, 1], Im(s) = ω, and rϵ(s + ρ) = −tr[((s + ρ)I +

N )−1(A + ρI)(sI + N − A)−1Bϵ∆̃C]. Because ψG(∆) is mero-
morphic (analytic except at a countable number of points) (Zhou
& Hagiwara, 2005), it holds by Lemma A.1.18 in Curtain and Zwart
(1995) that if h(ϵ) vanishes nowhere, then h(0) and h(1)must have
the samewinding number, or Nyquist index. However, the curve at
ϵ = 0 is a point at 1, while the curve at ϵ = 1 encircles or touches
the origin. Thus h(ϵ)must vanish for some ϵ0 ∈ (0, 1]. Now since
∆ ∈ Φ implies that∆0 , ϵ∆ ∈ Φ , and because exp(−rϵ(s+ρ)) ≠

0 since r(s+ρ) is bounded (see Zhou andHagiwara (2005), Lemma
2.3), it must hold that det2(I + ∆̃0G(jω)) = 0 for some∆0 ∈ Φ .

Next, we prove sufficiency, also by contradiction. Suppose
that there exist ω ∈


−
ωp
2 ,

ωp
2


and ∆ ∈ Φ such that

det2(I + ∆̃G(jω)) = 0. Then (B.2) has a pole on the imaginary
axis and is not asymptotically stable. �

We now define the structured singular value for periodic linear
time-varying systems in terms of the harmonic transfer operator:

µ1(G) ,
1

min{σ̄ (∆) : ∆ ∈ 1, det2(I + G(s)∆̃) = 0}
, (B.11)

where 1 denotes a bounded structured uncertainty set and
where we have invoked the Sylvester determinant lemma. Then
Theorem B.2 may be recast using the structured singular value.

Theorem B.3. Let Φ = {∆ : ∆ ∈ 1, σ̄ (∆) ≤ γ }. Then the closed
loop system (B.2) is stable if and only if µ1(G(s)) < 1

γ
for all s ∈ S

given in (B.9).

The final step of the analysis is developing a computationally
tractable test, which requires a finite dimensional truncation of
the infinite-dimensional operator G(s). In Sandberg, Mollerstedt,
and Bemhardsson (2005), the authors showed that G(s) could
be approximated arbitrarily well by a finite truncated operator
consisting of only the first N terms of the Fourier series expansion
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of A(t), B(t), and C(t). We denote by GN(s) the truncated operator
given by

GN(s) = CN [sI − (AN − N )]−1BN (B.12)

where AN is the (N + 1)× (N + 1) submatrix of A centered along
the A0 diagonal, and BN and CN defined similarly. In particular, it
was shown that ∥G − GN∥2 ≤ K(N) , O(N−1). From this fact and
following the proof technique of Lemma 4.1 in Zhou and Hagiwara
(2005), it then holds that

| det2(I + G)− det2(I + GN)|

≤ ∥G − GN∥2 exp

1
2
[∥G∥2 + ∥GN∥2 + 1]


≤ K(N) · M, (B.13)

where the second inequality follows from the boundedness of G
and GN . With the observation that the matrix ∆ may be incorpo-
rated into the matrix B(t) or C(t), we see that the term det2(I +

G∆̃) appearing in Theorem B.2 and (B.11) may be asymptotically
approximated by det2(I + GN∆̃N), where ∆̃N is the truncated ver-
sion of ∆̃.
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