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Abstract— We present analytical and numerical conditions to
verify whether limit cycle oscillations synchronize in diffusively
coupled systems. We consider both compartmental ODE mod-
els, where each compartment represents a spatial domain of
components interconnected through diffusion terms with like
components in different compartments, and reaction-diffusion
PDEs with Neumann boundary conditions. In both the discrete
and continuous spatial domains, we assume the uncoupled
dynamics are determined by a nonlinear system which admits
an asymptotically stable limit cycle. The main contribution of
the paper is a method to certify when the stable oscillatory
trajectories of a diffusively coupled system are robust to
diffusion, and to highlight cases where diffusion in fact leads
to loss of spatial synchrony. We illustrate our results with a
relaxation oscillator example.

I. INTRODUCTION

Diffusively coupled models are crucial to understanding the
dynamical behavior of a range of engineering and biological
systems. Synchronization of diffusively coupled models has
been an active research area [1]. Conversely, developing
conditions that rule out synchrony are also important, as they
can facilitate study of the opposite problem of patterning.
One of the major ideas behind pattern formation in cells and
organisms is based on diffusion-driven instability [2], [3],
which occurs when higher-order spatial modes in a reaction-
diffusion PDE are destabilized by diffusion [4]–[8].

The majority of synchronization studies address phase cou-
pled oscillators [9]–[12], which rely on the assumption of
weak coupling to be able to represent the subsystems with a
single phase variable. Full state models have been studied in
[13]–[16]; however, these references derive global results that
may be conservative when synchronization of trajectories
close to a specific attractor, such as a limit cycle, is of
interest.

In this paper, we study diffusively coupled nonlinear systems
that exhibit limit cycles in the absence of diffusion. We
develop analytical and numerical tools to determine whether
diffusion stabilizes the spatially homogeneous limit cycle
trajectories, thereby synchronizing the oscillations across the
spatial domain. Our methods apply to compartmental ODEs
and reaction-diffusion PDEs with Neumann boundary condi-
tions. In the former case, each compartment has identical dy-
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namics and represents a well-mixed spatial domain wherein
like components in adjacent compartments are coupled by
diffusion.

We first linearize the system about an asymptotically stable
limit cycle trajectory, and then study the resulting periodic
linear time varying system. In the case of sufficiently small
or large diffusion, we use Floquet theory to decompose the
linearized system into fast and slow time scales, and present
results using two-time scale averaging theory [17], [18] that
guarantee synchrony. In the case of diffusion coefficients
of intermediate strength, we turn to a numerical approach,
in which we use harmonic balance [19], [20] to represent
the linearized system as an infinite-dimensional linear time
invariant system. We make use of concepts from robust
control, in particular the structured singular value [21], to
determine stability of the linearized system in the presence
of diffusion coefficients spanning a specified finite interval.
We find that diffusion can indeed lead to loss of spatial
synchrony and divergence of trajectories.

The paper is organized as follows. In Section 2, we formulate
the problem, and present an example of a system with an
asymptotically stable limit cycle that loses spatial synchrony
in the presence of diffusion. In Section 3, we outline ana-
lytical tests for synchrony in the case of sufficiently small
or sufficiently large perturbations. In Section 4, we give a
numerical test to study synchrony on the remaining interval
of intermediate diffusion coefficients. We present a relaxation
oscillator example in Section 5, and give the conclusions in
Section 6.

II. PROBLEM FORMULATION

In this section, we formulate the problem of synchronization
of limit cycle oscillations in diffusively-coupled systems.
For both reaction-diffusion systems of PDEs with Neumann
boundary conditions and compartmental systems of ODEs,
we show that synchrony amounts to examining stability of
a linear system with time-periodic coefficients. To motivate
our developments, we also provide an example of a system
with an asymptotically stable limit cycle that loses spatial
synchrony in the presence of large enough diffusion.

We first discuss systems governed by reaction-diffusion
PDEs, and, next, systems of compartmental ODEs. For both
cases, we investigate whether diffusive coupling synchro-
nizes limit cycle oscillations.

We consider and define the spatial domain Ω ∈ Rr with

2013 American Control Conference (ACC)
Washington, DC, USA, June 17-19, 2013

978-1-4799-0176-0/$31.00 ©2013 AACC 4874



smooth boundary ∂Ω, spatial variable ξ ∈ Ω, and outward
normal vector n(ξ) for ξ ∈ ∂Ω. We study the PDE model:

∂x

∂t
= f(x) +D∇2x, (1)

subject to Neumann boundary conditions ∇xi(t, ξ) · n(ξ) =
0 for all ξ ∈ ∂Ω, where x(t, ξ) ∈ Rn, D ∈ Rn×n, and

∇2x = [∇2x1 . . .∇2xn]T (2)

is a vector of Laplacian operators with respect to the spatial
variable ξ applied to each entry of x. In a reaction-diffusion
system, x represents a vector of concentrations for the
reactants and D is a diagonal matrix of diffusion coefficients.
However, for generality of our derivations, we will not
assume D to be diagonal unless we state otherwise.

We assume that the lumped system ẋ = f(x) has an asymp-
totically stable limit cycle and that x̄(t) is a solution of ẋ =
f(x) along the limit cycle. Then x̄(t, ξ) = x̄(t) for all ξ ∈
Ω is a solution of (1). In the absence of diffusion (D = 0), the
system (1) admits out-of-phase oscillations, that is, solutions
of the form x(t, ξ) = x̄(t+φ(ξ)), where φ(ξ) is a phase that
depends on the location ξ. To determine whether diffusion
eliminates such spatial phase differences, we examine the
Jacobian linearization about the limit cycle trajectory x̄(t):

∂x̃

∂t
= (A(t) +D∇2)x̃ (3)

where x̃(t, ξ) = x(t, ξ)− x̄(t) and

A(t) = J(x̄(t)) =
∂f

∂x

∣∣∣∣
x̄(t)

, (4)

with A(t) periodic with period T . Let 0 = λ1 ≤ λ2 ≤
. . . denote the eigenvalues and φ1(ξ), φ2(ξ), . . . denote the
corresponding orthogonal eigenfunctions of the operator L =
−∇2 on Ω with Neumann boundary conditions:

Lφi(ξ) = λiφi(ξ), ∇φi(ξ) · n(ξ) = 0 for all ξ ∈ ∂Ω. (5)

The solution to (3) can be expressed as:

x̃(t, ξ) =

∞∑
i=1

σi(t)φi(ξ), (6)

where σi(t) ∈ Rn satisfy the decoupled ODEs:

σ̇i = (A(t)− λiD)σi. (7)

Since the eigenfunction φ1(ξ) for λ1 = 0 is constant,
the term corresponding to i = 1 represents a spatially
homogeneous mode σ1 governed by σ̇1 = A(t)σ1. When the
subsystems (7) are asymptotically stable for i = 2, 3, . . ., the
contributions of the inhomogeneous modes φ2(ξ), φ3(ξ), . . .
to the solution x(t, ξ) decay in time, which in turn implies
that the oscillations of (1) synchronize.

We also study a compartmental ODE model, where each
compartment represents a well-mixed spatial domain inter-
connected with the other compartments over an undirected
graph:

ẋi = f(xi) +D
∑
j∈Ni

(xj − xi), i = 1, . . . , N. (8)

Fig. 1. Spatio-temporal evolution of x2 for system (1,13) with
d1 = 100, d2 = 0, and µ = 0.1 on the one-dimensional spatial
domain Ω = [0, 1] with initial condition x2(0, ξ) = 5+cos(πξ) and
Neumann boundary conditions. The oscillations do not synchronize,
and in fact growth of the spatial mode φ2(ξ) is observed.

The vector xi ∈ Rn represents each compartment’s state, Ni
denotes the neighbors of compartment i, and D ∈ Rn×n. We
take the Jacobian linearization about a limit cycle trajectory
x̄(t), and aggregate the dynamics of the subsystems using the
state variable x̃ = [x̃T1 . . . x̃

T
N ]T , x̃i(t) = xi(t) − x̄(t). We

represent the interaction between state variables by a graph
Laplacian matrix L = LT ∈ RN×N , defined as

L = AAT , (9)

where A is an incidence matrix whose rows represent vertices
(state variables in this context) and columns represent edges
(couplings between state variables). The dynamics of the
aggregated system may be written:

˙̃x = (I ⊗A(t)− L⊗D)x̃, (10)

where A(t) is as in (4) and ⊗ denotes the Kronecker product.
Let U ∈ RN×N be a similarity transformation that brings
L into the diagonal matrix of its eigenvalues Σ ∈ RN×N :
L = UΣU−1. Choosing ỹ = (U−1 ⊗ I)x̃, we rewrite (10)
as:

˙̃y = (I ⊗A(t)− Σ⊗D)ỹ, (11)

which is decoupled into the subsystems:

˙̃yl = (A(t)− λlD)ỹl, l = 1, . . . , N, (12)

where ỹl ∈ Rn and λl is the lth eigenvalue of the Laplacian,
respectively. In particular, λ1 = 0 and λl > 0, l =
2, 3, . . . , N when the graph is connected. Note that (12)
is analogous to (7) except that it consists of finitely many
modes l = 1, . . . , N . If the subsystems (12), l = 2, . . . , N ,
are asymptotically stable, then for any pair xj and xk, we
have xj − xk → 0 exponentially as t→∞.

4875



To see that a diagonal D � 0 does not necessarily guarantee
synchronization, consider the system (1) with the dynamics:

f(x) =

[ 1
µ (x1 − 1

3x
3
1 − x2)

x1 + µx2

]
and D =

[
d1 0
0 0

]
,

(13)
with d1 > 0. When µ > 0 is sufficiently large, the vector
field f(x) has the behavior of a relaxation oscillator [22]
and admits a stable limit cycle. The Jacobian linearization
about the limit cycle trajectory x̄(t) is:
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Fig. 2. Trajectories of x12 (blue, solid) and x22 (red, dashed) of (8)
and (13) for two compartments and synchronize under small diffu-
sion coefficient d1 = .5 and initial conditions (x12(0), x22(0)) =
(−1, .5).
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Fig. 3. Trajectories of x12 (blue, solid) and x22 (red, dashed)
of (8) and (13) for two compartments do not synchronize un-
der larger diffusion coefficient d1 = 100 and initial conditions
(x12(0), x22(0)) = (−1, .5).

A(t) =

[ 1
µ (1− x̄2

1(t)) 1
µ

1 µ

]
. (14)

When λid1 � 1/µ, system (12) exhibits two-time scale
behavior, with the slow dynamics unstable:

σ̇i2 = µσi2. (15)

Thus, we expect (13) to be unstable when λid1 is sufficiently
large. Indeed, for d1 = 100 and µ = 0.1, the simulations
over the spatial domain [0, 1] demonstrate the growth of the
spatial mode φ2(ξ) = cos(πξ); see Figure 1. Unlike standard
examples of diffusion-driven instability of a homogeneous
steady-state [2]–[4], this example demonstrates destabiliza-
tion of a spatially homogeneous periodic orbit by diffusion.

Similar behavior can be observed for the compartmental
model (8) with two compartments, and f(x) and D given
by (13). The two-node graph representing the interconnection
of the two compartments has Laplacian eigenvalues λ1 = 0
and λ2 = 2. When d1 is small, we find that oscillations
synchronize spatially, as shown in Figure 2. When d1 is large,
the trajectories corresponding to compartments one and two
diverge from each other, as shown in Figure 3.

Thus, for both the PDE (1) and the compartmental ODE (8),
synchrony is determined by the stability of the time-varying
system

ẋ = (A(t)−D)x, (16)

where, for simplicity, we have dropped λi since D can be
appropriately scaled to account for λi.

III. SYNCHRONIZATION UNDER WEAK OR STRONG
COUPLING

We study the case of sufficiently small or large diffusion.
We use Floquet theory to decompose the linearized system
into fast and slow time scales, and develop conditions using
two-time scale averaging theory that guarantee synchrony.

Consider system (16), where A(t) = ∂f
∂x

∣∣
x̄(t)

is the lineariza-
tion of f(x) about a limit cycle trajectory x̄(t), and let T
denote the period of oscillations: A(t+ T ) = A(t) for all t.
We first consider the case with D = 0, that is:

ẋ = A(t)x, (17)

and note that it admits the periodic solution x(t) = ˙̄x(t). To
see this, observe the following:

˙̄x(t) = f(x̄(t)) =⇒ ¨̄x(t) =
∂f

∂x

∣∣∣∣
x̄(t)

˙̄x(t) = A(t) ˙̄x(t). (18)

Floquet’s Theorem (Thm. 2.2.5, [23]) implies that the state
transition matrix Φ(t, t0) of (17) is periodic and can be
written as

Φ(t, t0) = U(t) exp (F (t− t0))V (t0), (19)

where U(t + T ) = U(t) and U(t) = V −1(t), with the
columns of U(t) given by ui(t) and the rows of V (t) given
by vTj (t). Since (17) results from linearization about a stable
limit cycle, F can be written as

F =

[
0 0
0 F2

]
, (20)

where F2 is an (n−1)×(n−1) Hurwitz matrix and u1(t) =
˙̄x(t). The eigenvalues of F are called Floquet exponents, and

4876



the evaluation of the state transition matrix over one period
with initial condition t0, Φ(t0 +T, t0) = exp(FT ), is called
the monodromy matrix.

In what follows, we derive a condition that relates the
stability of (16) with sufficiently small D to u1(t) and v1(t).
First, we review properties of u1(t) and v1(t) that follow
from Floquet theory. The definition of U(t) and V (t) implies
that vTj (t)ui(t) = δij , where δij is the Kronecker delta. In
particular, v1(t) is a periodic solution of the adjoint system:

ρ̇ = −AT (t)ρ. (21)

To compute u1(t) and v1(t), we follow [24] and numerically
integrate

∂

∂t
Φ(t, t0) = A(t)Φ(t, t0) (22)

over one period with the initial condition Φ(t0, t0) = I .
We then compute the eigenvector of the monodromy matrix
corresponding to its eigenvalue at one:

u1(t0) = Φ(t0 + T, t0)u1(t0). (23)

Using the numerically-computed state transition matrix, we
then calculate the trajectory u1(t) = Φ(t, t0)u1(t0). To
compute v1(t), we begin by computing the left eigenvector
of the monodromy matrix corresponding to its eigenvalue at
one:

vT1 (t0)Φ(t0 + T, t0) = vT1 (t0). (24)

We scale v1(t0) such that vT1 (t0)u1(t0) = 1. Finally, to
obtain v1(t), we numerically integrate the adjoint system (21)
backwards in time with the terminal condition ρ(t0 + T ) =
v1(t0).

Having reviewed the case D = 0, we now prove a result
about the stability of (17) with sufficiently small D.

Proposition 3.1: Let vT1 (t) be the first row of V (t) and
u1(t) be the first column of U(t), where Φ(t, t0) =
U(t) exp (F (t− t0))V (t0) as described above. Given a ma-
trix D ∈ Rn×n, if the inequality∫ t0+T

t0

vT1 (t)Du1(t) dt > 0 (25)

holds, then the origin of the system

ẋ = (A(t)− εD)x (26)

is exponentially stable for sufficiently small ε > 0.

Proof: Floquet theory implies that the time-varying
change of coordinates y = V (t)x transforms (17) into a
linear time invariant system:

ẏ = Fy, (27)

where F is as in (20). Introducing the decomposition y =
[wT zT ]T , we rewrite (27) as:[

ẇ
ż

]
=

[
0 0
0 F2

] [
w
z

]
. (28)

When applied to system (26), the preceding change of
coordinates yields:[

ẇ
ż

]
=

([
0 0
0 F2

]
− εV (t)DU(t)

)[
w
z

]
. (29)

For small ε, this time-varying periodic system exhibits two-
time scale behavior, which allows us to exploit the theory
of two-time scale averaging [17], [18]. The averaged slow
system corresponding to (29) is given by

ẇ = −εaw,

a =
1

T

∫ t0+T

t0

vT1 (t)Du1(t)dt.
(30)

Since F2 is Hurwitz, an application of Lemma A.1 in the
Appendix shows that if a > 0, then the equilibrium y = 0
is exponentially stable for sufficiently small ε.

Note that Proposition 3.1 does not require D to be diagonal.
When D is diagonal, the test (25) can be simplified as
follows:

Corollary 3.2: Let u1i and vT1j be the ith and jth compo-
nents of u1 and vT1 , respectively. If the inequalities∫ t0+T

t0

vT1i(t)u1i(t) dt > 0, i = 1, . . . , n (31)

hold, then given any diagonal matrix D � 0, D 6= 0, the
periodic solution of the linearized system (26) is stable for
sufficiently small ε > 0.

We now turn to the case where D is large. Standard results
from perturbation theory [22] guarantee stability of (16)
when D is nonsingular and sufficiently large. When D is
singular, we again leverage two-time scale arguments to
derive a condition that guarantees stability of (16):

Proposition 3.3: Consider the linear time varying system:

ẋ = (A(t)− ε−1D)x (32)

A(t) =

[
A11(t) A12(t)
A21(t) A22(t)

]
, D =

[
0 0
0 D2

]
, (33)

where x ∈ Rn, A(t + T ) = A(t) for all t, A22(t) and D2

have the same dimension, −D2 is Hurwitz, and ε > 0. If

Ā11 =
1

T

∫ t0+T

t0

A11(t) dt (34)

is Hurwitz, then x = 0 is an exponentially stable equilibrium
of (32) for sufficiently small ε.

The proof follows from Lemma A.1. Note that if D is not
block diagonal, but is singular with trivial Jordan blocks
corresponding to its eigenvalues at zero and all remaining
eigenvalues in the closed right half plane, there exists a
similarity transformation that will bring (32) to the form
required by (33).
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IV. NUMERICAL VERIFICATION OF SYNCHRONIZATION
USING SSV

In this section, we develop numerical tools to determine the
stability of (16) for a family of matrices D parametrized as:

D = M +B∆C, (35)

where M ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n are fixed
matrices, and ∆ ∈ Rm×m is a diagonal matrix whose entries
take values in [−1, 1]. For example, suppose that the system
(16) has one diffusible component, with

D = diag([d1 0 · · · 0]), (36)

where d1 ∈ [r,R]. Then D can be written as in (35) with
M = R+r

2 e1e
T
1 where ei is a standard basis vector, B =[

R−r
2 0 · · · 0

]T
, C = [1 0 · · · 0], and ∆ = δ is a scalar.

The problem is then to ascertain that the system (16) is stable
for all values of δ on the interval [−1, 1].

Structured singular value (SSV) analysis provides a useful
test for determining the robustness of a stable linear time in-
variant system to structured modeling uncertainty. However,
since (37) is time-varying, in order to apply SSV analysis
directly we must first bring the system to an equivalent time
invariant form. For such analysis, it is useful to rewrite the
system (16) as:

ẋ = (A(t)−M)x−Bq
y = Cx

q = ∆y.

(37)

Previous efforts to apply SSV analysis to time-varying sys-
tems have focused on the lifting idea of [25], [26], outlined
in [27], [28], where system (37) is discretized and converted
to a continuous time invariant system.

Instead, we pursue an SSV analysis that makes use of the
harmonic balance approach [19], which avoids the numerical
difficulties and sensitivity of computing the state transition
matrix and discretizing with an adequate number of samples
in the lifting approach. Our computational experiments show
that the harmonic balance approach frequently leads to less
conservative results in establishing the values of diffusion
coefficients that lead to instabilities. We give a brief summary
of harmonic balance, and then outline its application to the
problem of determining the stability of (16).

We assume that each entry of the matrix A(t) is a continuous
function of t that has an absolutely convergent Fourier series,
and so A(t) may be expressed as:

A(t) =
∑
m∈Z

Ame
jmωpt, (38)

where ωp is the fundamental frequency. Define doubly infi-
nite vectors representing the harmonics of the state:

XT = [· · · xT−1 xT0 xT1 · · · ], (39)

and do the same for the input Q and output Y . The
doubly infinite block Toeplitz matrix A is determined by
the harmonics of A(t):

A =



. . .
...

...
...

. . . A0 A−1 A−2 . . .

. . . A1 A0 A−1 . . .

. . . A2 A1 A0 . . .
...

...
...

. . .

 . (40)

We define the doubly infinite matrices I = blkdiag(I), B =
blkdiag(B), and C = blkdiag(C), and define the modulation
frequency matrix as:

N = blkdiag{jmωpI}, ∀m ∈ Z. (41)

We define the matrix ∆̃ = blkdiag(∆) to be block diagonal
with copies of the diagonal matrix ∆ in each block, and
the matrix M = blkdiag(M) to be a block diagonal scaling
matrix with copies of the matrix M in each block. We now
introduce the harmonic state space model, where s = jω:

sX = (A−M−N )X − BQ
Y = CX
Q = ∆̃Y.

(42)

We perform SSV analysis to determine if there exist matrices
D such that (16) is unstable. For the precise definition of the
structured singular value in the context of periodic linear-
time varying systems represented by a harmonic state space
model, we refer the reader to [29]. To obtain a computation-
ally tractable test, we truncate the doubly infinite system.
In the examples we consider, there exist fewer than ten
significant harmonics, and we represent the doubly infinite
system by a finite dimensional system. We then perform
SSV analysis on the truncated version of (42) to determine
the range of matrices ∆ for which (16) remains stable. In
particular, we use the MATLAB command mussv in the
Robust Control Toolbox, which performs SSV analysis to
test if there exists a ∆ such that (42) is unstable.

V. EXAMPLE

We discuss numerical results for the relaxation oscillator
example given by (13) in Section II. We set the parameter
µ = 0.1, and first study the two compartment ODE model
(8). When D is small, the techniques of Section III apply,
and we can easily check that the conditions of Corollary
3.2 are satisfied for nonnegative λid1 < ε∗, where ε∗ is
computed from the proof of Lemma A.1. In Figure 2, we
show the oscillations of the solution of x2 synchronizing
spatially under small D, as expected.

We next examine the case of larger D for both (8) and (1).
To apply the harmonic balance method, we compute the har-
monic components of x1(t) and find that eight harmonics are
sufficient to represent the signal. We then use the harmonic
expansion to generate a corresponding finite dimensional
approximation of the matrix A. Because D is diagonal and
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nonnegative, we set M = r+ε∗

2 e1e
T
1 , B = [ r−ε

∗

2 0]T ,
C = [1 0], and ∆ = δ, and perform SSV analysis to
determine values of d1 that lead to instabilities. We find that
at λid1 ≥ 87.6, stability is lost.

Indeed, when the product λid1 ≥ 87.6, the two compartment
ODE, with λ2 = 2, will exhibit trajectories that diverge, and
the reaction-diffusion PDE model, with λi = (i − 1)2, i =
2, 3, . . ., will lose spatial uniformity for initial spatial modes
with large enough wavenumber i regardless of d1. In Figures
1 and 3, we show that the oscillations of the solution of x2 do
not synchronize spatially for large D, and observe increasing
spatial inhomogeneity over time.

VI. CONCLUSION

We have studied diffusively coupled systems that admit
stable limit cycles, and shown an example demonstrating
destabilization of a spatially homogeneous periodic orbit.
This intriguing phenomenon underscores the necessity of es-
tablishing analytic and numerical methods that may be used
to determine whether limit cycle oscillations synchronize.
Furthermore, our tests could also aid in determining coupling
strengths in diffusively-coupled multiagent systems.

APPENDIX

We state a lemma that follows from standard results in two-
time scale averaging (see, e.g., [17], Thm. 4.4.3). Its proof
may be found in [29].

Lemma A.1: Let w ∈ Rp and z ∈ Rq , and consider the linear
time varying system:[

ẇ
ż

]
=

([
0 0
0 G

]
− ε
[
H11(t) H12(t)
H21(t) H22(t)

])[
w
z

]
,

(43)
where each Hij(t), i, j ∈ {1, 2} is a bounded piecewise
continuous matrix-valued function of time such that Hij(t+
T ) = Hij(t), G ∈ Rq×q , and ε > 0. Define the associated
averaged slow system:

ẇ = −εH̄11w, H̄11 =
1

T

∫ t0+T

t0

H11(t) dt. (44)

If −H̄11 and G are Hurwitz, then there exists ε∗ such that
[wT zT ]T = 0 is an exponentially stable equilibrium of (43)
for 0 < ε < ε∗.
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