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On the peaking phenomenon in the control of vehicular platoons
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Received 20 December 2006; received in revised form 10 December 2007; accepted 11 December 2007
Available online 29 January 2008

Abstract

We investigate the peaking phenomenon in the control of large-scale vehicular platoons. These systems are of considerable practical importance
as they represent an example of systems on lattices in which different subsystems are dynamically coupled only through feedback controls. We
demonstrate that imposing a uniform rate of convergence for all vehicles towards their desired trajectories may generate large transient peaks in
both velocity and control. We further derive explicit constraints on feedback gains – for any given set of initial conditions – to achieve desired
position transients without magnitude and rate peaking. These constraints are used to generate the trajectories around which the states of the
platoon system are driven towards their desired values without the excessive use of control effort. All results are illustrated using computer
simulations of platoons containing a large number of vehicles.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Control of vehicular platoons has been an intensive area
of research for almost four decades [24,25,10,30,36,26,33,34].
These systems belong to the class of systems on lattices in
which the interactions between different subsystems originate
because of a specific control objective that the designer
wants to accomplish [19]. Additional examples of systems on
lattices with this property include unmanned aerial vehicles
in formation [9,14,15] and satellites in synchronous orbit [22,
7,38]. These interactions often generate surprisingly complex
responses that cannot be inferred by analyzing the individual
plant units. Rather, intricate behavioral patterns, an instance
of which is the so-called string instability [32] (or, more
generally, the spatio-temporal instability [6]), arise because
of the aggregate effects. Another particularity of this class of
systems is that every subsystem is equipped with sensing and
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actuating capabilities. The controller design problem is thus
dominated by architectural questions such as the choice of
localized vs centralized control.

Jovanović and Bamieh [20] and Seiler et al. [29] recently
addressed some fundamental design limitations in vehicular
platoons. Jovanović and Bamieh [20] exhibited shortcomings
of several widely cited solutions [24,25] to the Linear
Quadratic Regulator (LQR) problem for large-scale vehicular
platoons. By considering infinite platoons as the limit of
the large-but-finite platoons, spatially invariant theory was
employed to show analytically how these formulations lack
stabilizability or detectability. On the other hand, Seiler
et al. [29] showed that string stability of a finite platoon
with linear dynamics cannot be achieved with any linear
controller that uses only information about relative distance
between the vehicle on which it acts and its immediate
predecessor. A similar result was previously established for a
spatially invariant infinite string of vehicles with static feedback
controllers having the same architecture [10]. This necessitates
the use of distributed strategies for control of platoons and
underscores the importance of developing distributed schemes
with favorable architectures. We refer the reader to the
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Fig. 1. Platoon of M vehicles.

references above for a fuller discussion of various algorithms
that can be used for platoon control. Additional information
about recent work on distributed control of spatially inter-
connected systems can be found in [6,4,27,12,16,13,19,8] and
the references therein.

In this paper, we study some additional fundamental
limitations and tradeoffs in the control of large-scale vehicular
platoons. In particular, we investigate the peaking phenomenon,
and show that imposing a uniform rate of convergence for all
vehicles towards their desired trajectories may generate large
transient peaks in both velocity and control. This indicates that
in very long platoons one needs to account explicitly for the
initial distances of vehicles from their desired trajectories to
avoid large position and velocity deviations and the excessive
use of control effort. We derive an initial condition dependent
set of requirements that the control gains need to satisfy to
guarantee the desired quality of position transient response,
and rule out peaking in both velocity and control. These
requirements are used to generate the trajectories around which
the states of the platoon are driven to their desired values
without the excessive use of control effort.

Our presentation is organized as follows: in Section 2,
we formulate a control problem and propose a distributed
control strategy that solves it. In Section 3, we illustrate
that commanding a uniform rate of convergence for all
vehicles towards their desired trajectories may require large
control efforts. In Section 4, we remark on some basic
design limitations and tradeoffs in vehicular platoons and
determine the conditions that control gains need to satisfy
to provide operation within the imposed saturation limits.
We also redesign the controller of Section 2 to provide the
desired quality of transient response and avoid large control
excursions. We summarize the major contributions and the
ongoing research directions in Section 5.

2. Localized distributed inversely optimal control of
vehicular platoons

A system of M identical unit mass vehicles is shown in
Fig. 1. The dynamics of this system can be captured by
representing each vehicle as a moving mass with the second
order dynamics

ẍn = un, n ∈ {1, . . . ,M}, (1)

where xn represents the position of the nth vehicle, and un is
the control applied on the nth vehicle.

A control objective is to provide a desired constant cruising
velocity vd and to keep the inter-vehicular distance at a
constant pre-specified level δ. For each vehicle, we introduce
the position and velocity error variables with respect to the
(absolute) desired trajectories

ξn(t) := xn(t)− vd t + nδ,
ζn(t) := ẋn(t)− vd ,

and rewrite (1) as[
ξ̇

ζ̇

]
=

[
0 I
0 0

] [
ξ

ζ

]
+

[
0
I

]
u

=: Aψ + Bu, (2)

where ξ := col{ξn}, ζ := col{ζn}, and u := col{un}. The
relative position errors between neighboring vehicles are
determined by

ηn(t) := xn(t)− xn−1(t)+ δ

= ξn(t)− ξn−1(t), n ∈ {2, . . . ,M}.

We propose the following static distributed controller

u = Kψ = −
[
aI + bL cI

]
ψ, (3)

where a, b, and c denote positive design parameters, and
L ∈ RM×M is a matrix describing information exchange
between different vehicles. Clearly, controller (3) contains two
parts: a) a local feedback, aξ + cζ , that utilizes information
about absolute position and velocity of each vehicle; b) a
term, bLξ , that dynamically couples vehicles through feedback
control. For simplicity, we have selected a control architecture
that exchanges only information about vehicle’s positions;
information about vehicle’s velocities can be utilized in a
similar manner.

Fig. 2 illustrates control architectures that can be used for
distributed control of vehicular platoons. If L is a diagonal
matrix then there is no information exchange between the
vehicles and control strategy (3) is fully decentralized. This
approach ignores the fact that a vehicle is a part of the platoon
and as such is not safe for implementation. If L is a full
matrix then there is communication between all the vehicles and
controller (3) is centralized. In this case, every vehicle utilizes
information from all other vehicles for achieving the desired
control objective which usually results in best performance,
but it requires excessive communication. If L is a banded
matrix then there is a communication between few neighboring
vehicles, and (3) represents a localized distributed controller.
For example, if L is given by

L :=



1 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 0 0 0
. . .

0 0 0 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1


, (4)

then the controller for vehicle n utilizes information about
absolute position and velocity of vehicle n, and information
about the distances between vehicle n and neighboring vehicles
n − 1 and n + 1. The architecture of this localized controller
with nearest neighbor interactions is shown in the middle plot
of Fig. 2.



530 M.R. Jovanović et al. / Systems & Control Letters 57 (2008) 528–537
Fig. 2. Distributed controller architectures for centralized, localized (with nearest neighbor interactions), and fully decentralized strategies.
A spectral decomposition of L

L = V ΛV ∗, V V ∗
= V ∗V = I,

Λ = diag{λ1(L), . . . , λM (L)},

can be used to establish the stability of (2)–(4) for any choice
of positive design parameters a, b, and c. This follows directly
from the fact that the eigenvalues of L are determined by (see,
for example, [17]):

λn(L) =

{
2
(

1 − cos
nπ

M

)
n ∈ {1, . . . ,M − 1},

0 n = M.

Next, we address the question of whether it is possible to select
the weights in the LQR problem

J =
1
2

∫
∞

0

(
ξ∗Qξ ξ + ζ ∗Qζ ζ + u∗ Ru

)
dt, (5)

with Qξ = Q∗
ξ ≥ 0, Qζ = Q∗

ζ ≥ 0, and R = R∗ > 0, to
obtain a localized distributed controller for (2). Any quadratic
cost functionals for system (2) that does not penalize products
between positions and velocities, can be represented by (5). The
design of optimal distributed controllers with a priori assigned
localization constraints is, in general, a difficult problem (we
refer the reader to [4,27,37,5,23,8] and the references therein
for recent efforts in this area). Instead, we ask the following
question:

• Given a stabilizing localized distributed controller (3) and
(4) for (2), is it inversely optimal with respect to cost
functional (5)?

This problem is inverse because we start with a stabilizing
state-feedback for (2) and search for performance indices (5)
for which this state-feedback is optimal. In other words, state
and control weights Qξ , Qζ , and R in (5) are not a priori
assigned; rather, they are determined a posteriori by stabilizing
control law (3) and (4). Optimality of the closed-loop system
is desirable because it guarantees, among other properties,
favorable gain and phase margins [21,3]. These margins provide
robustness to different types of uncertainty.

System (2) with a state-feedback control law u = Kψ can
be equivalently represented by a feedback arrangement shown
in Fig. 3.

The so-called return difference of the system whose block
diagram is shown in Fig. 3 is defined by [21,3]

H(s) := I − K (s I − A)−1 B =: I − K G(s)B.

It is well known that H( jω) for every ω ∈ R satisfies the return
difference equality [21,3]

R + B∗G∗( jω)QG( jω)B = H∗( jω)RH( jω), (6)
Fig. 3. Block diagram of (2) with u = Kψ .

where, for example, G( jω) := ( jωI − A)−1 and G∗( jω) :=

−( jωI + A∗)−1. A direct consequence of this equality is

H∗( jω)RH( jω) ≥ R. (7)

Relationships (6) and (7) can be used to obtain a frequency
domain condition for inverse optimality [21,3]:

σmin

(
R1/2 H( jω)R−1/2

)
≥ 1, ∀ω ∈ R, (8)

where σmin denotes the minimal singular value. By selecting
R = r I in (5) with r > 0, a spectral decomposition of L can be
used to show that controller (3) and (4) represents an inversely
optimal controller for the LQR problem (2) and (5) if and only
if

c2
≥ 2(a + bλ1(L)).

If this condition is not satisfied than (3) and (4) fail to be optimal
in the LQR sense. If this condition is satisfied, the state penalty

Q :=

[
Qξ 0
0 Qζ

]
,

can be determined from (6), and it is given by

Qξ = r (aI + bL)2 , Qζ = r
(
(c2

− 2a)I − 2bL
)
.

These penalties on ξ and ζ represent unique solutions to (6)
provided that the products between positions and velocities are
not penalized in J . However, for given R := r I > 0, there are
many other matrices

Q =

[
Qξ Qξζ

Q∗
ξζ Qζ

]
≥ 0,

with non-zero off-diagonal elements (that is, Qξζ 6= 0) that
satisfy (6) and give controller (3) and (4) as a solution to the
corresponding LQR problem.

The main result of this section – which is summarized in
Theorem 1 – is a direct consequence of the above derivations.

Theorem 1. A localized distributed controller

u = −((aI + bL)ξ + cζ ),
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Fig. 4. Simulation results of system (2) using control law (3) and (4) with a = 1, b = 2, and c = 5. The initial state of the platoon system is given by (10) with
M = 50 and µ = 0.5.
with {a > 0, b > 0, c ≥
√

2(a + bλ1(L))} and L given by (4),
represents a stabilizing solution to the following LQR problem:[
ξ̇

ζ̇

]
=

[
0 I
0 0

] [
ξ

ζ

]
+

[
0
I

]
u,

J =
1
2

∫
∞

0

(
ξ∗Qξ ξ + ζ ∗Qζ ζ + ru∗u

)
dt, r > 0,

Qξ = r (aI + bL)2 , Qζ = r
(
(c2

− 2a)I − 2bL
)
.

Remark 1. The controller of Theorem 1 represents an example
of localized distributed controllers that can be used to achieve
an optimal stabilization (in the LQR sense) of formation of
vehicles. Many other controllers with localized architectures
can meet the same objective. Performance comparison of
different localized distributed strategies is beyond the scope of
this paper.

3. Peaking in control strategies with uniform convergence
rates

In this section, we show that imposing a uniform rate of
convergence for all vehicles towards their desired trajectories
may generate large control magnitudes. Our results indicate that
in very large platoons one needs to select the control gains
judiciously to avoid the excessive use of control effort. To
demonstrate that these issues are not caused by the specific
control strategy, we consider three different designs: (a) design
of Section 2, (b) LQR design for a platoon of M vehicles
arranged in a circle, and (c) ‘controller with information
of lead and preceding vehicles’, originally proposed by
Hedrick et al. [18], and subsequently studied by Swaroop and
Hedrick [31,33]. In all three cases we assume that each vehicle
has a limited amount of control effort at its disposal, that is
un(t) ∈ [−umax, umax], for all t ≥ 0, with umax > 0. Examples
of physically relevant initial conditions are provided to establish
that fast stabilization of large-scale platoons leads to large
transient peaks.

3.1. Design of Section 2

We first consider a platoon of vehicles (2) with controller (3)
and (4) and {a > 0, b > 0, c ≥

√
2(a + bλ1(L))}. It is readily
shown that under these conditions the eigenvalues of the closed-
loop A-matrix are uniformly bounded (away from the origin).

In particular, we study the situation in which at t = 0 the
string of vehicles cruises at the desired velocity vd . We also
assume that the distance between the vehicles indexed by n and
n − 1, for every n ∈ {2, . . . ,M},M ≥ 2, is equal to δ + µ. In
other words, we consider the following initial condition

xn(0) = −n(δ + µ)

ẋn(0) = vd

}
n ∈ {1, . . . ,M}, (9)

which translates into:

ξn(0) = −nµ
ζn(0) = 0

}
n ∈ {1, . . . ,M}. (10)

For this choice of initial condition the initial amount of control
effort is given by

un(0) =

(a − b)µ n = 1,
naµ n ∈ {2, . . . ,M − 1},

(aM + b)µ n = M,

which implies that for any choice of positive design parameters
a and b there exist m ≤ M such that |un(0)| > umax, for
every n > m, provided that M is large enough. For example,
if a = 1, b = 2, c = 5, µ = 0.5, umax = 5, for M =

50, u10(0) = umax = 5, and |un(0)| > umax,∀n > 10.
Simulation results for this choice of design parameters and
initial conditions given by (10), using controller (3) and (4),
are shown in Fig. 4.

3.2. LQR design for a platoon of vehicles arranged in a circle

In this section, we consider a spatially invariant LQR design
for a platoon of M vehicles arranged in a circle (see Fig. 5),
which is an idealization of the case of equally spaced vehicles
on a closed track. By exploiting the spatial invariance, we
analytically establish that any LQR design leads to large control
signals for the appropriately selected, physically relevant set of
initial conditions.

The control objective is the same as in Section 2: to drive the
entire platoon at the constant cruising velocity vd , and to keep
the distance between the neighboring vehicles at a pre-specified
constant level δ. Clearly, this is possible only if the radius of a
circle is given by rM = Mδ/2π . We rewrite system (1) for
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Fig. 5. Circular platoon of M vehicles.

n ∈ {0, . . . ,M − 1} in terms of a state-space realization of the
form[
ξ̇n

ζ̇n

]
=

[
0 1
0 0

] [
ξn
ζn

]
+

[
0
1

]
un

=: Anϕn + Bnun, (11)

where ξn(t) := xn(t)−vd t −nδ and ζn(t) := ẋn(t)−vd denote
the absolute position and velocity errors of the nth vehicle,
respectively. We propose the following cost functional

J :=
1
2

∫
∞

0

M−1∑
n=0

M−1∑
m=0

ϕ∗
n (t)Qn−mϕm(t)dt

+
1
2

∫
∞

0

M−1∑
n=0

M−1∑
m=0

u∗
n(t)Rn−mum(t)dt, (12)

where

M−1∑
n=0

M−1∑
m=0

ϕ∗
n Qn−mϕm ≥ 0, Q∗

−n = Qn,

for all sequences ϕn , and

M−1∑
n=0

M−1∑
m=0

u∗
n Rn−mum > 0, R∗

−n = Rn,

for all non-zero sequences un . All arithmetic with indices is
done (mod M).

We utilize the fact that system (11) has spatially invariant
dynamics over a circle. This implies that the Discrete Fourier
Transform (DFT) can be used to convert analysis and quadratic
design problems into those for a parameterized family of
second order systems [6]. DFT is defined by: x̂k :=

1
√

M

∑M−1
n=0 xne− j 2πnk

M , k ∈ {0, . . . ,M−1}, and the inverse DFT

is defined by: xn :=
1

√
M

∑M−1
k=0 x̂ke j 2πnk

M , n ∈ {0, . . . ,M − 1}.
Using this, system (11) and quadratic performance index (12)
transform to ˙̂
ξ k

˙̂
ζ k

 =

[
0 1
0 0

] [
ξ̂k

ζ̂k

]
+

[
0
1

]
ûk

=: Âk ϕ̂k + B̂k ûk, k ∈ {0, . . . ,M − 1}, (13)

and

J =

√
M

2

M−1∑
k=0

∫
∞

0

(
ϕ̂∗

k (t)Q̂k ϕ̂k(t)+ û∗

k(t)R̂k ûk(t)
)

dt,
where, for every k ∈ {0, . . . ,M − 1}, R̂k > 0 and

Q̂k :=

[
q̂11k q̂∗

21k

q̂21k q̂22k

]
≥ 0.

Clearly, the pair ( Âk, B̂k) is stabilizable for every k ∈

{0, . . . ,M − 1}. On the other hand, the pair (Q̂k, Âk) is
detectable if and only if q̂11k > 0 for every k ∈ {0, . . . ,M −1}.
These conditions are necessary and sufficient for the existence
of a stabilizing optimal solution to the LQR problem (11) and
(12). For additional information about proper formulation of
quadratically optimal (i.e., LQR, H2, H∞) distributed control
problems for large-scale and infinite vehicular platoons, we
refer the reader to [20].

It is readily shown that for ẋn(0) ≡ vd , i.e. for ζn(0) ≡ 0,
we have:

M−1∑
n=0

u2
n(0) =

M−1∑
k=0

q̂11k

R̂k
ξ̂∗

k (0)ξ̂k(0),

which in turn implies

inf
k

q̂11k

R̂k

M−1∑
n=0

ξ2
n (0) ≤

M−1∑
n=0

u2
n(0) ≤ sup

k

q̂11k

R̂k

M−1∑
n=0

ξ2
n (0).

Thus, we have established the lower and upper bounds on the
initial amount of control effort for a formation that cruises at
the desired velocity vd . These bounds are determined by the
deviations of vehicles from their absolute desired trajectories
at t = 0, and by the LQR design parameters q̂11k and R̂k .
Clearly, since q̂11k > 0 (for detectability) infk q̂11k/R̂k is
always greater than zero. We note that this quantity can be
made smaller by increasing the control penalty. In particular,
for xn(0) = n(δ − µ), 0 < µ < δ, we have

M−1∑
n=0

u2
n(0) ≥

µ2

6
M(M − 1)(2M − 1) inf

k

q̂11k

R̂k
,

which illustrates an unfavorable scaling of the initial amount of
control effort with the number of vehicles in formation. Hence,
unless umax ≥ µ2(M − 1)(2M − 1) infk q̂11k/6R̂k, there exist
at least one vehicle for which |un(0)| > umax.

3.3. Hedrick et al. [18] controller

In this section, we show that the controller of Hedrick
et al. [18] faces the very same issues as the previously discussed
control strategies with uniform convergence rates. We study this
controller because of its superior properties compared to other
‘look-ahead vehicle following algorithms’ (see Table 1 of [33]
for comparison of different constant spacing platoon strategies).

The controller of Hedrick et al. [18] for system (1) with an
additional lead vehicle, ẍ0 = u0, is given by (see Section 3.4
of [33]):

un =
1

1 + q3
(ẍn−1 + q3 ẍ0 − (q1 + λ)η̇n

− q1ληn − (q4 + λq3)(ẋn − ẋ0)

− λq4(xn − x0 + nδ)),
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where q1, q3, q4, and λ represent positive design parameters.
Equivalently, for every n ∈ {1, . . . ,M}, un is determined by
the following recursive relation

un = (1 − %)u0 + %un−1 − % fn, (14)

where

fn := (q1 + λ)η̇n + q1ληn

+ (q4 + λq3)

n∑
k=1

η̇k + λq4

n∑
k=1

ηk

= (q1 + λ)(ξ̇n − ξ̇n−1)+ q1λ(ξn − ξn−1)

+ (q4 + λq3)(ξ̇n − ξ̇0)+ λq4(ξn − ξ0),

and % := 1/(1 + q3) < 1. Finally, using (14) we express un as

un = u0 −

n∑
k=1

%n−k+1 fk, n ∈ {1, . . . ,M}.

In particular, for initial condition (10), with {ξ0(0) = 0, ζ0(0) =

0}, u0 is identically equal to 0. On the other hand, the initial
amount of control effort for the remaining vehicles is given by

un(0) = λµ

(
n

q4%

1 − %
+

q1%(1 − %n)

1 − %
−

q4%
2(1 − %n)

(1 − %)2

)
.

Thus, for any choice of design parameters q1, q3, q4, and λ
there exists m ≤ M such that |un(0)| > umax, for every n > m,
provided that M is large enough.

4. On avoiding peaking

The results of Section 3 illustrate that certain physically
relevant initial conditions in combination with fast stabilization
can lead to peaking in control. Faster rates of convergence
towards the desired formation cause larger transient peaks.
Thus, in very large platoons one needs to take into account the
initial distance of vehicles from their desired trajectories and
to adjust the control gains accordingly to avoid the excessive
control magnitudes.

In this section, we determine the conditions that control
gains need to satisfy to provide operation within the imposed
saturation limits. The peaking problem is solved by trajectory
generation:

• for any given set of initial conditions, explicit constraints on
convergence rates are derived to avoid peaking in velocity
and control and to guarantee the desired quality of position
transient response.

We demonstrate that fast convergence rates lead to small
position transients. On the other hand, slow convergence rates
are necessary to provide small velocity and control transients.
Therefore, the position overshoots and settling times can be
significantly increased in the presence of stringent requirements
on velocity and control saturation limits. We utilize this to
remark on some of the basic limitations and tradeoffs that need
to be addressed in the control of vehicular platoons.

In Section 4.1, we consider the problem of steering the
nth vehicle towards its desired absolute position vd t − nδ
and velocity vd . We assume the perfect knowledge of initial
conditions and pretend that this vehicle is not a part of
the platoon. Under these assumptions, we establish explicit
constraints on feedback gains – for any given set of initial
conditions – to assure the desired quality of position transients
without magnitude and rate peaking. These requirements are
used to generate the trajectory around which the nth vehicle
can be driven towards its desired position and velocity without
the excessive use of control effort.

The procedure of Section 4.1 leads to fully decentralized
strategies that can be utilized for the control of isolated
vehicles (i.e., the vehicles that are not a part of the
platoon). However, since these control strategies do not
account for the inter-vehicular spacings, they are not safe for
implementation in automated highway systems. Because of
this, in Section 4.2 we design a control law for each vehicle
in the platoon to provide asymptotic convergence towards the
desired trajectories generated in Section 4.1. The control law
for the nth vehicle un is obtained as a superposition of:

• fully decentralized nominal control ūn of Section 4.1,
• distributed control ũn of Section 4.2.

If initial conditions are exactly known then un ≡ ūn , and
each vehicle cruises towards its desired absolute position and
velocity along the trajectory generated in Section 4.1. On the
other hand, the role of distributed control ũn is to account for:

• the fact that a vehicle is a part of the platoon,
• the discrepancies in the initial conditions due to measure-

ment imperfections.

In Section 4.2, we redesign controller (3) and (4) to
provide the convergence to trajectories generated in Section 4.1.
However, we note that ũn can be obtained using any other
control tool (e.g. H2 or H∞).

4.1. Trajectory generation

In this section, we generate the trajectories around which
the vehicles can be driven towards their desired positions and
velocities without the excessive use of control effort. We rewrite
system (1) as

¨̄xn = ūn, n ∈ {1, . . . ,M}. (15)

We want to drive each vehicle towards its desired absolute
position vd t − nδ, and its desired velocity vd . For the time
being we are not concerned with the relative spacing between
the vehicles. If we introduce the error variable, rn(t) := x̄n(t)−
vd t + nδ, we can rewrite (15) as

r̈n = ūn, n ∈ {1, . . . ,M}, (16)

and choose ūn to meet the control objective. In particular, we
take ūn of the form

ūn = −p2
nrn − 2pn ṙn, n ∈ {1, . . . ,M}, (17)

where, for every n ∈ {1, . . . ,M}, pn represents a positive
design parameter. With this choice of control, the solution of
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system (16) and (17) for any n ∈ {1, . . . ,M} is given by

rn(t) = (cn + dn t)e−pn t , (18a)

ṙn(t) = (dn − cn pn − dn pn t)e−pn t , (18b)

ūn(t) = (cn p2
n − 2dn pn + dn p2

n t)e−pn t , (18c)

where

cn := rn(0) = x̄n(0)+ nδ,

dn := rn(0)pn + ṙn(0)
= (x̄n(0)+ nδ)pn + ( ˙̄xn(0)− vd). (19)

We want to determine conditions that the sequence of positive
numbers {pn} has to satisfy to guarantee

|rn(t)| ≤ rn,max, ∀t ≥ 0, (20a)

|ṙn(t)| ≤ vmax, ∀t ≥ 0, (20b)

|ūn(t)| ≤ umax, ∀t ≥ 0, (20c)

with {rn,max > 0,∀n ∈ {1, . . . ,M}}, vmax > 0, and
umax > 0 being the pre-specified numbers. For notational
convenience, we have assumed that all vehicles have the
same velocity and control saturation limits, given by vmax and
umax, respectively. Typically, the sequence {rn,max} is given
in terms of position initial conditions {rn(0)} as {rn,max :=

γn|rn(0)|}, where the sequence of numbers {γn > 1,∀n ∈

{1, . . . ,M}} determines the allowed overshoot with respect to
the desired position trajectory of the nth vehicle. Clearly, for
this choice of {rn,max}, {rn(0)} satisfies (20a). Based on (18a),
rn(t) asymptotically goes to zero, so we only need to determine
conditions under which (20a) is violated for finite non-zero
times. If (18a) achieves an extremum for some t̄n ∈ (0,∞),
the absolute value of rn at that point is given by:

|rn(t̄n)| =
|dn|

pn
e−pn t̄n ≤

|dn|

pn
≤

|ṙn(0)|
pn

+ |rn(0)|.

Therefore, if a sequence of positive numbers {pn} is chosen
such that

|ṙn(0)|
pn

+ |rn(0)| ≤ rn,max, ∀n ∈ {1, . . . ,M}, (21)

condition (20a) will be satisfied for every t ≥ 0. This implies
that, for good position transient response (that is, for small
position overshoots), design parameters pn have to assume
large enough values determined by (21).

Clearly, (20b) will be violated unless |ṙn(0)| ≤ vmax, for
every n ∈ {1, . . . ,M}. If ṙn has a maximum or a minimum at
some non-zero finite time t̄n , the absolute value of (18b) at that
point can be upper bounded by

|ṙn(t̄n)| = |dn|e−pn t̄n ≤ |dn| ≤ |rn(0)|pn + |ṙn(0)|.

Thus, if a sequence of positive design parameters {pn} are small
enough to satisfy

|rn(0)|pn + |ṙn(0)| ≤ vmax, ∀n ∈ {1, . . . ,M}, (22)

the velocity saturation will be avoided.
Finally, to rule out saturation in control we need to make

sure that condition (20c) is satisfied for both t = 0 and t̄n > 0,
where the potential extremum of ūn takes place. The absolute
values of (18c) at these two time instants are, respectively, given
by |ūn(0)| = |−rn(0)p2

n −2ṙn(0)pn| ≤ |rn(0)|p2
n +2|ṙn(0)|pn ,

and |ūn(t̄n)| = |dn|pne−pn t̄n ≤ |dn|pn ≤ |rn(0)|p2
n +|ṙn(0)|pn .

Since pn > 0, if

|rn(0)|p2
n + 2|ṙn(0)|pn ≤ umax, (23)

for every n ∈ {1, . . . ,M}, then condition (20c) is satisfied.
Inequalities (21)–(23) establish conditions for positive

design parameters pn to prevent saturation in velocity and
control, and guarantee a good position transient response. We
remark that these conditions can be somewhat conservative, but
they are good enough to illustrate the major point. Clearly, for
small excursions from the desired position trajectories control
gains have to assume large values, determined by (21). On
the other hand, for small velocity deviations and small control
efforts these gains have to be small enough to satisfy (22)
and (23). These facts illustrate some basic tradeoffs that the
designer faces in the control of vehicular platoons. In particular,
the set of control gains that satisfies (22) and (23) determines
the maximal position deviations and the rates of convergence
towards the desired trajectories. In other words, the position
overshoots and settling times can be significantly increased in
the presence of stringent requirements on velocity and control
saturation limits. For a platoon that cruises at the desired
velocity vd at t = 0, any initial condition can be represented
by

x̄n(0) = −

(
nδ +

n∑
k=1

µk

)
˙̄xn(0) = vd

 n ∈ {1, . . . ,M}. (24)

In this case, condition (21) is always satisfied, which implies
that the largest deviation for all vehicles from their desired
absolute positions takes place at t = 0. Therefore, the chosen
initial conditions do not impose any lower bounds on the control
gains. On the other hand, conditions (22) and (23), respectively,
dictate the following upper bounds on {pn}:

pn ≤
vmax∣∣∣∣ n∑

k=1
µk

∣∣∣∣ , pn ≤

√√√√√ umax∣∣∣∣ n∑
k=1

µk

∣∣∣∣ .
In particular, the following choice of {pn}

pn = min


%nvmax∣∣∣∣ n∑
k=1

µk

∣∣∣∣ ,
√√√√√ σnumax∣∣∣∣ n∑

k=1
µk

∣∣∣∣

 , (25)

with {0 < %n ≤ 1, 0 < σn ≤ 1, ∀n ∈ {1, . . . ,M}}, clearly
satisfies the above requirements. For the example considered in
Section 3, {µk = µ,∀k ∈ {1, . . . ,M}}, and (25) simplifies to

pn = min
{
%nvmax

n|µ|
,

√
σnumax

n|µ|

}
. (26)

Thus, for the example presented in Section 3, if the control
gains scale as 1/

√
n the peaking in control will be precluded; if
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they scale as 1/n the peaking in velocity will be precluded as
well.

Fig. 6 illustrates the solution of system (16) and (17) for
initial conditions determined by (24) with M = 50 and µn =

0.5, for every n ∈ {1, . . . ,M}. The control gains are chosen
using (26) with vmax = umax = 5, {%n = 1, σn = 0.8,∀n ∈

{1, . . . ,M}}, to prevent reaching imposed velocity and control
saturation limits. The dependence of these gains on discrete
spatial variable n is also illustrated in Fig. 6.

Thus we have shown that controller (17) with the gains
satisfying (21)–(23) precludes saturation in both velocity and
control and takes into account the desired quality of position
transient response. However, this control strategy does not
account for the inter-vehicular spacings. Because of that, in
Section 4.2 we redesign controller (3) and (4) by incorporating
the constraints imposed by (20) in the synthesis.

4.2. Controller redesign

In this section, we redesign controller (3) and (4) to provide
the convergence to trajectories generated in Section 4.1. We
again consider system (1), and introduce the following error
variables

ξ̃n(t) := xn(t)− vd t + nδ − rn(t)
= ξn(t)− rn(t),

ζ̃n(t) := ẋn(t)− vd − ṙn(t)
= ζn(t)− ṙn(t),

with rn(t) being defined by (19) and (18a), and {pn}

satisfying (21)–(23). The initial conditions on these two
variables are given by:

ξ̃n(0) = xn(0)− x̄n(0),

ζ̃n(0) = ẋn(0)− ˙̄xn(0),

where {xn(0), ẋn(0)} and {x̄n(0), ˙̄xn(0)} represent the actual
and the measured initial conditions, respectively. If perfect
information about the initial positions and velocities is
available, then clearly ξ̃n(0) = ζ̃n(0) ≡ 0. However, since
initial condition uncertainties are always present we want
to design a controller to guard against them. We note that
for the example presented in Section 3 the above coordinate
transformation removes unfavorable scaling of the initial
conditions with spatial variable n.

In the new coordinates, system (1) can be represented in
terms of its state-space realization of the form ˙̃
ξ

˙̃
ζ

 =

[
0 I
0 0

] [
ξ̃

ζ̃

]
+

[
0
I

]
ũ

=: Aψ̃ + Bũ, (27)

where ũn := un − ūn, ξ̃ := col{ξ̃n}, ζ̃ := col{ζ̃n}, and
ũ := col{ũn}. In particular, this system can be stabilized by
the following feedback

ũ = K̃ ψ̃ = −
[
aI + bL cI

]
ψ̃. (28)
It is noteworthy that, if L is given by (4) and if a, b, and c
satisfy conditions of Theorem 1, then controller (4) and (28)
has the same properties as controller (3) and (4). For the same
choices of design parameters a, b, and c, these two control
strategies are only distinguished by the regions from where the
states of systems (2) and (27) have to be brought to the origin.
Namely, due to different formulations of control objectives, the
initial states of system (2) may occupy a portion of the state-
space that is significantly larger than a region to which the
initial conditions of system (27) belong. In the former case,
this region is determined by the maximal deviations from the
desired absolute trajectories at t = 0, whereas, in the latter
case, it is determined by the precision of measurement devices,
that is their ability to yield an accurate information about the
initial positions and velocities. As illustrated in Section 3,
the initial conditions may have an unfavorable scaling with
discrete spatial variable n, which may result in the very large
initial position deviations (and consequently, a large amount of
the initial control effort) for large n’s, unless the size of the
initial conditions is explicitly accounted for. We have shown
in Section 4 how to generate the initial condition dependent
trajectories around which the states of vehicular platoon can be
driven to zero without extensive use of control effort and large
position and velocity overshoots.

Using the definition of ũn , we finally give the expressions
for un :

un = ūn + ũn, n ∈ {1, . . . ,M}, (29)

where ūn and ũn are, respectively, given by (17) and (28).
We remark that un ≡ ūn if perfect information about the
initial conditions is available. The role of ũn is to account for
the discrepancies in the initial conditions due to measurement
imperfections. If some information about accuracy of sensors is
available, the conditions on parameters a, b, and c can be easily
derived to provide operation within the imposed saturation
bounds and asymptotic convergence of the platoon of vehicles
to its desired cruising formation using controller (29).

Simulation results of the platoon system with 50 vehicles
(M = 50) using controller (29) with a = 1, b = 2, and c = 5
are shown in Fig. 7. The measured initial condition is given
by (24) with µn ≡ 0.5, whereas ξ̃n(0) and ζ̃n(0) that determine
the actual positions and velocities at t = 0 are randomly
selected. The rates of convergence towards the origin are chosen
using (25) with vmax = umax = 5, {%n = 1, σn = 0.8,∀n ∈

{1, . . . ,M}}, to prevent reaching imposed velocity and control
saturation limits. These convergence rates are shown in the
far right plot in Fig. 6. Clearly, the desired control objective
is successfully accomplished with the quality of the transient
response determined by the prescribed saturation bounds.

5. Concluding remarks

We illustrate some fundamental design limitations and
tradeoffs in automated highway systems. We discuss the
peaking phenomenon, and demonstrate that fast stabilization of
large-scale platoons can suffer from large control magnitudes.
This implies that in very large platoons the designer needs to
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Fig. 6. Solution of system (16) and (17) for initial conditions determined by (24) with M = 50 and µn ≡ 0.5. The control gains (far right plot) are determined
using (26) with vmax = umax = 5, and {%n = 1, σn = 0.8,∀n ∈ {1, . . . ,M}}.

Fig. 7. Simulation results of platoon with 50 vehicles (M = 50) using controller (29) with a = 1, b = 2, and c = 5. The measured initial condition is given by (24)
with µn ≡ 0.5, whereas ξ̃n(0) and ζ̃n(0) are randomly selected.
pay attention to the initial deviations of vehicles from their
desired trajectories when selecting control gains. We establish
explicit constraints on these gains – for any given set of initial
conditions – to assure the desired quality of position transients
without magnitude and rate saturation. These requirements are
used to generate the trajectories around which the states of the
platoon system are driven towards their desired values without
the excessive use of control effort.

Ongoing research effort is directed towards the design of
distributed localized controllers for vehicular platoons using the
path-following framework [11,1,2]. Path-following represents
an alternative to reference tracking [1] and it appears to
be well suited for avoiding peaking using the strategy of
saturating actuators [35,28]. The main drawback of the control
strategy employed in this paper is that it represents an off-
line scheme that uses trajectory generation to guard against
unfavorable initial conditions. The path-following design will
also provide satisfactory performance in the presence of
external disturbances and the desired trajectories will be
generated in an on-line fashion.
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