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Abstract

We develop a method for the exact determination of frequency responses for a class of infinite dimensional systems. In particular, we
consider distributed systems in which a spatial independent variable belongs to a finite interval, and in which the inputs and outputs
are spatially distributed over the same interval. We show that an explicit formula for the Hilbert–Schmidt norm of the operator-valued
frequency response can be obtained whenever the underlying operators are represented by a forced two point boundary value state-space
realizations (TPBVSR). This formula involves finite dimensional computations with matrices whose dimension is at most four times larger
than the order of the underlying differential operator. Two examples are provided to illustrate the procedure.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

We study frequency responses of distributed systems in
which a spatial independent variable belongs to a finite in-
terval. Computation of frequency responses for this class of
systems is usually done numerically by resorting to finite di-
mensional approximations of the underlying operators. We
show that the spatial discretization can be circumvented and
that frequency responses can be determined explicitly when-
ever the underlying operators can be represented by forced
two point boundary value state-space realizations (TPBVSR)
which are well posed.

Our results build on the work presented in [3], where
a formula for the trace of a class of differential operators
defined by forced TPBVSR with constant coefficients was
derived. This formula was used for computation of the H2
norm for a class of infinite dimensional systems in which the
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dynamical generators are normal (or self-adjoint). Here we
study the frequency responses of distributed systems with, in
general, non-normal dynamical generators and non-constant
coefficients in a spatially independent variable. The under-
lying partial differential equations (PDEs) are assumed to
involve boundary conditions expressed in terms of a gen-
eral linear homogeneous constraint. Our main result is an
explicit formula for the Hilbert–Schmidt norm (that is, the
power spectral density) of the frequency response operator.
This formula involves only finite dimensional computations
with matrices whose dimension is at most four times larger
than the order of the underlying differential operator. In this
way an exact reduction of an infinite dimensional problem
to a finite dimensional problem is accomplished.

Our presentation is organized as follows: in Section 2,
we formulate the problem and briefly discuss the notion of
frequency response for distributed systems. In Section 3,
we describe the notion of a TPBVSR for the underlying
spatial operators and the corresponding frequency response
operator. In Section 4, we show how the Hilbert–Schmidt
norm of the frequency response can be determined in terms
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of the parameters of the original PDE. In Section 5, we
provide two examples to illustrate the procedure, and we
conclude with a summary in Section 6.

2. Preliminaries

We begin with an example. Our interest is to study the
frequency responses of systems of the type

�t�(y, t) = �yy�(y, t) + d(y, t),

�(±1, t) = 0,

�(y, 0) = 0, y ∈ [a, b], a, b ∈ R,

which is the diffusion equation with homogenous Dirichlet
boundary conditions, zero initial conditions, and a spatially
distributed input field d. Considering the state as an output,
the operator-valued transfer function of this system is given
by

(sI − �yy)
−1,

where �yy refers to the second derivative operator with ho-
mogenous Dirichlet boundary conditions. Since this opera-
tor generates an exponentially stable semigroup [5], it is a
standard fact that the corresponding transfer function is well
defined over the regionR(s)�0. Furthermore, it can also be
shown that it is of the Hilbert–Schmidt class as an operator
on L2[a, b] for each s in that same region. An operator T
is said to be in the Hilbert–Schmidt class if TT∗ has finite
trace, i.e.

‖T‖2
HS := trace(TT∗) < ∞.

We refer to the quantity ‖·‖HS as the Hilbert–Schmidt norm.
It can be thought of as a generalization of the Frobenius
norm for matrices.

For systems with infinite dimensional input and output
spaces, the transfer function and frequency response are
operator-valued. Just as for MIMO systems, one desires
to investigate some aggregate quantities of these matrices
and operators to characterize the frequency response. The
most common ones are the maximum singular value and
the square root of the sum of squares of the singular values
(i.e. the Frobenius norm). In this work, we are interested in
determining the Hilbert–Schmidt norm of the frequency re-
sponse as a function of frequency, i.e. in determining (for
the above example)

‖(j�I − �yy)
−1‖HS

as a function of �. We will provide a general formula for
such functions in terms of the parameters of the underlying
PDEs.

2.1. Problem setup

We now describe the problem in general. Consider
distributed systems (over one spatial dimension) of

the form

�tE�(y, t) = F�(y, t) + Gd(y, t), (2.1a)

�(y, t) = H�(y, t), (2.1b)

where for each t, the vector valued functions d(·, t), �(·, t)
and �(·, t) are in L2[a, b] (where the vector dimension is
suppressed in our notation). E, F, G, and H are linear dif-
ferential operators with a particular structure to be specified
shortly (in the above diffusion equation example, F = �yy

with Dirichlet boundary conditions, whereas E, G, and H
are the identity operators). Signals d, �, and �, respectively,
represent spatially distributed time varying input, state, and
output fields of system (2.1). Specifically, each of these fields
is a scalar or vector valued function of both a spatial variable
(in an interval) and time. For example, d(y, t) with (y, t) ∈
[a, b] × [0, ∞), and a, b ∈ R. The operators E, F, G, and
H are matrices of differential operators. For example, the
ijth entry of F has the form

n∑
k=0

f k
ij (y)

�k

�yk
,

where {f k
ij (y)} are smooth functions on the interval [a, b].

For a term of this form, n is referred to as the order of the
operator, and we additionally assume for the highest order
coefficient f n

ij (y) �= 0, for y ∈ [a, b]. The definition of the
order of a matrix differential operator with the same structure
as F is more involved. We will instead define the order of
the overall set of PDE operators (2.1) in terms of a TPBVSR.

The class of systems we consider is defined indirectly.
They are systems of the form (2.1) that can be rewritten in
the TPBVSR (3.3) to be described in the next section.

The frequency response of system (2.1) is given
by [5]

T(�) := H(j�E − F)−1G,

where � denotes temporal frequency. If we define
the operator

P(�) := T(�)T∗(�),

then from the definition above the Hilbert–Schmidt norm of
T(�) is just the trace of P(�). As we will see in the next
section, for the class of operators we consider, operators
T(�) and P(�) have so-called kernel representations. This
implies that we can express, for example, P(�) : f �→ g as

g(y) =
∫ b

a

P (�, y, �) f (�) d�, (2.2)

where P(�, ·, ·) denotes the kernel function of operator
P(�). We assume that for any �, P(�, ·, ·) is a bounded
matrix valued function on [a, b] × [a, b]. It is a standard
fact [13] that under these conditions P(�) is trace class and
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its trace (and thus the Hilbert–Schmidt norm of T(�)) can
be determined from the ‘trace-like’ integral

trace(P(�)) =
∫ b

a

tr(P (�, y, y)) dy, (2.3)

where trace(·) is the operator trace and tr(·) is the matrix
trace.

The computation of ||T(�)||HS is typically done numer-
ically after finite dimensional approximations of the under-
lying operators using some spatial discretization scheme. In
this paper, we show how the kernel functions and the inte-
gral in (2.3) can be determined explicitly using a formula
that involves only the coefficients of the original PDE (2.1).

3. Conversion to a spatial state-space realization

In this section, we describe how the original system (2.1)
can be converted to a standard form that we refer to as a
TPBVSR. This is accomplished by first transforming (2.1)
using a temporal Fourier transform. Temporal differentia-
tion then becomes multiplication by j�, and the equation be-
comes an ordinary differential equation (ODE) in the spatial
variable y with mixed boundary conditions. Standard proce-
dures for converting a high-order ODE to a first-order vec-
tor ODE (i.e. a state-space realization) are then applied. The
fact that the independent variable is a spatial one rather than
time does not alter the standard procedures. However, care
must be exercised to keep track of how the original bound-
ary conditions are transformed into the relevant ones for the
TPBVSR. We note that in this paper, we do not provide the
most general or even the most efficient procedure for such a
transformation. This would be analogous to procedures for
obtaining minimal realizations from matrix fraction descrip-
tions of linear time invariant (LTI) systems [1,4]. It is be-
yond the scope of this paper to recreate this procedure for the
class of systems we consider. Instead, we illustrate how this
can in general be carried out, and present two examples, one
of which involves a high order PDE from fluid dynamics, to
illustrate our main result, which is the exact determination
of frequency responses after such TPBVSR are obtained.

We first describe how a TPBVSR can be found for the
frequency response operator T(�), from which we can also
obtain realizations for its adjoint T∗(�) and consequently
for the composition T(�)T∗(�). First note that we can
obtain a description of the frequency response operator of
system (2.1) by simply applying the temporal Fourier trans-
form, i.e. define

�̂(y, �) :=
∫ ∞

−∞
�(y, t) e−j�t dt

and d̂ and �̂ similarly. In this representation, system (2.1)
becomes

(j�E − F) �̂(y, �) = G d̂(y, �), (3.1a)

�̂(y, �) = H �̂(y, �). (3.1b)

Note that this represents a family of independent ODEs pa-
rameterized by temporal frequency �. We can thus regard
these as individual ODEs (in the spatial variable y) in which
� enters simply as a parameter. For simplicity of notation,
we omit the �-dependence and the hat-designate on each
signal, and regard system (3.1) a matrix ODE of a certain
order determined by the order of operators E, F, G, and
H. To emphasize this point, we rewrite system (3.1) in this
new notation

(j�E − F)�(y) = G d(y), (3.2a)

�(y) = H�(y), (3.2b)

where now E, F, G, and H are matrices of differential
operators whose entries are linear combinations of terms of
the form f (y)(dk/dyk).

Under mild conditions, that are satisfied in our examples,
it is a standard fact of linear systems realization theory [1,4]
that (3.2) can be rewritten in the first order form (i.e. a state-
space realization) by introducing ‘state variables’ {xi(y)}.
Each of these state variables is a linear combination of the
individual entries of �(y) and its derivatives up to a certain
order. For example, if d and � are scalar valued, then one
can immediately use either the controllable canonical form
or the observable canonical form realizations. In the case of
vector valued functions d and �, more elaborate realization
procedures are needed. Ultimately, we will arrive at

T :

⎧⎪⎨
⎪⎩

x′(y) = A0(y)x(y) + B0(y)d(y),

�(y) = C0(y)x(y),

0 = N1x(a) + N2x(b), y ∈ [a, b],
(3.3)

where x′(y) := dx(y)/dy, and x(y) is a vector of all the
state variables. We define the order n0 of this realization as
the dimension of vector x ∈ Cn0 . A0, B0, and C0 are now
matrices with constant or spatially varying entries (depend-
ing on whether the original PDE operators have constant
or spatially varying coefficients, respectively). Boundary
conditions on the original PDE translate into boundary
conditions of the form above, which is the most general
form for linear homogeneous boundary conditions. The
boundary value matrices N1 and N2 are constant and are
such that [N1 N2] has a full row rank, to prevent a redun-
dancy in boundary conditions. We remark that TPBVSR
(3.3) is well-posed (that is, it has a unique solution for any
input d(y)) if and only if [7] det(N1 + N2�0(b, a)) �=
0, where �0(y, �) denotes the state transition matrix
of A0(y).

Remark 3.1. There are some conditions required on the
original system (3.2) to guarantee it can be rewritten in the
TPBVSR form (3.3). In this paper, we assume that the orig-
inal system can be rewritten as such. We remark that exact
conditions on the operators E, F, G and H that guarantee
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the existence of a TPBVSR can be derived. These are similar
to the ‘properness’ conditions for matrix transfer functions.
Roughly, the order of differentiations in the operators G and
H should not exceed that in F. The derivation of these
exact conditions and developing a systematic procedure to
arrive at a minimal realization of the form (3.3) from a given
PDE (2.1) is beyond the scope of this paper. However, it is
often possible to derive such realizations by inspection and
some insight into the underlying PDEs.

3.1. State-space realizations of T∗, and TT∗

As we have illustrated, the operator T(�) : d(y, �) �→
�(y, �) has a TPBVSR given by (3.3) (where the depen-
dence on � is suppressed, a notation we adopt from now
on). From this realization, it is straightforward to find a real-
ization for its adjoint T∗, and then by combining these two
realizations, one arrives ultimately at a realization for TT∗.

Given that the operator T : d(y) �→ �(y) is described by
realization (3.3), it is a standard fact [7] that its adjoint T∗ :
f (y) �→ g(y) also has a realization which can be derived as

T∗ :

⎧⎪⎨
⎪⎩

z′(y) = −A∗
0(y)z(y) − C∗

0 (y)f (y),

g(y) = B∗
0 (y)z(y),

0 = M1z(a) + M2z(b), y ∈ [a, b],
(3.4)

where A∗
0, B∗

0 , and C∗
0 , respectively, represent the adjoints

(complex-conjugate-transpose matrices) of A0, B0, and C0.
On the other hand, the constant boundary value matrices M1
and M2 are determined by

[M1 M2]
[

N∗
1−N∗

2

]
= 0. (3.5)

We note that a variety of different M1 and M2 for
which [M1 M2] is a full row rank matrix can be
chosen to satisfy (3.5). For example, a singular value de-

composition of a full column rank matrix
[

N∗
1−N∗

2

]
:

[
N∗

1−N∗
2

]
= USV ∗ = [U1 U2]

[
S1
0

]
V ∗

= U1S1V
∗, U1, U2 ∈ C2n0×n0

can be used to select these two matrices as: [M1 M2]
= U∗

2 .

Finally, a well-posed state-space realization of TT∗ :
f (y) �→ �(y) can be obtained by combining (3.3) and (3.4)
(by equating the output of T∗ to the input of T, i.e. d(y)=
g(y)) to arrive at

TT∗ :

⎧⎪⎨
⎪⎩

q ′(y) = A(y)q(y) + B(y)f (y),

�(y) = C(y)q(y),

0 = L1q(a) + L2q(b), y ∈ [a, b],
(3.6)

where

q(y) :=
[
x(y)

z(y)

]
∈ C2n0 , L1 :=

[
N1 0
0 M1

]
,

L2 :=
[
N2 0
0 M2

]
,

A(y) :=
[
A0(y) B0(y)B∗

0 (y)

0 −A∗
0(y)

]
,

B(y) :=
[

0
−C∗

0 (y)

]
, C(y) := [C0(y) 0].

We finally remark that the well-posedness of (3.3) guar-
antees the well-posedness of the adjoint realization (3.4).
Furthermore, (3.6) is well posed by definition since it is the
cascade connection of two well-posed realizations.

4. Determination of frequency responses from
state-space realizations

In this section, we derive an explicit formula for the
Hilbert–Schmidt norm of T(�) as a function of �. To that
end we derive a formula for the kernel function of P(�) =
T(�)T∗(�), and then an expression for its integral along
the diagonal coordinates.

4.1. Determination of traces from state-space realizations

We consider a well-posed TPBVSR of the form

P :

⎧⎪⎨
⎪⎩

q ′(y) = A(y)q(y) + B(y)f (y),

�(y) = C(y)q(y),

0 = L1q(a) + L2q(b), y ∈ [a, b],
(4.1)

with q(y) ∈ Cn, f (y) ∈ Cm, �(y) ∈ Cm, and derive a
formula for the trace of operator P : f �→ �. This formula
is expressed in terms of matrices {A(y), B(y), C(y), L1,
L2}, and it requires the computation of two state transition
matrices: the state transition matrix of A(y), and the state
transition matrix of a matrix that depends on A(y), B(y),
and C(y). The size of the latter matrix is 2n × 2n.

It is well known that the if an operator P : f �→ � is
given by a continuous kernel function, i.e. its action can be
represented by

�(y) =
∫ b

a

P (y, �)f (�) d�, (4.2)

then its trace is given by the integral

trace(P) =
∫ b

a

tr(P (yo, yo)) dyo

=
∫ b

a

tr

(
m∑

k=1

P(yo, yo)eke
T
k

)
dyo,
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Fig. 1. Boundary conditions with delta function as input.

where ek denotes the kth unit vector in Rm. Each ‘column’
of the kernel can be obtained by using the input f (y) =
�(y − yo)ek , for then the corresponding output is �(y) =
P(y, yo)ek . The effect of forcing (4.1) with f (y) = �(y −
yo)ek is given by

q ′(y) = A(y)q(y) + B(y)�(y − yo)ek

⇒
{

q ′(y) = A(y)q(y),

q(y+
o ) − q(y−

o ) = B(yo)ek,

where q(y+
o ) and q(y−

o ), respectively, represent the limits
of q(y) as yo is approached from above and below (see
Fig. 1). Hence,

q ′(y) = A(y)q(y),

q(y+
o ) − q(y−

o ) = B(yo)ek,

}

⇒ �(yo, b)q(b) − �(yo, a)q(a) = B(yo)ek , (4.3)

where �(y, �) denotes the state transition matrix of A(y).
By combining the boundary conditions from (4.2) with (4.3)
we obtain[

L1 L2
−�(yo, a) �(yo, b)

] [
q(a)

q(b)

]
=
[

0
B(yo)ek

]
,

which yields

[
q(a)

q(b)

]
=
[ − (L1 + L2�(b, a))−1L2�(b, yo)B(yo)ek

(�(b, yo) − �(b, a)(L1 + L2�(b, a))−1L2�(b, yo))B(yo)ek

]
. (4.4)

We note that the invertibility of matrix L1 + L2�(b, a) is
equivalent to the well-posedness of the TPBVSR (4.1) [7].

Using (4.4), we express vector P(yo, yo)ek as

P(yo, yo)ek = 1

2
C(yo)(q(y−

o ) + q(y+
o ))

= 1

2
C(yo)[�(yo, a) �(yo, b)]

[
q(a)

q(b)

]

= 1

2
C(yo)(I − 2�(yo, a)

× (L1 + L2�(b, a))−1

× L2�(b, yo))B(yo)ek ,

which yields

trace(P)

= tr

(
1

2

∫ b

a

C(y)B(y) dy − (L1 + L2�(b, a))−1L2

×
∫ b

a

�(b, y)B(y)C(y)�(y, a) dy

)
. (4.5)

We have arrived at (4.5) using the commutativity property
of the matrix trace.

The integral in (4.5) can be evaluated in terms of the
response of the unforced dynamical system[

X′
1(y)

X′
2(y)

]
=
[

A(y) 0
B(y)C(y) A(y)

] [
X1(y)

X2(y)

]
,

Y (y) = [0 I ]
[

X1(y)

X2(y)

]
,

[
X1(a)

X2(a)

]
=
[
I

0

]
, y ∈ [a, b] (4.6)

as

Y (b) =
∫ b

a

�(b, y)B(y)C(y)�(y, a) dy

= [0 I ]�(b, a)

[
I

0

]
, (4.7)

where �(y, �) denotes the state transition matrix of system
(4.6). Therefore, we obtain an expression for trace(P) by
combining (4.5) and (4.7)

trace(P) = tr

(
1

2

∫ b

a

C(y)B(y) dy

− (L1 + L2�(b, a))−1

× L2[0 I ]�(b, a)

[
I

0

])
. (4.8)

In particular, for systems with constant coefficients in y for-
mula (4.8) simplifies to

trace(P) = tr

(
c

2
CB − (L1 + L2ecA)−1L2[0 I ]

× exp

{
c

[
A 0

BC A

]}[
I

0

])
, (4.9)

where c := b−a. In the case that only the B or C matrices are
spatially varying with an exponential dependence, we can
also state something more explicit than (4.8). For example,
if

A(y) := A, B(y) := e−�(y−a)B, C(y) := C,
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formula (4.8) simplifies to

trace(P)

= 1 − e−�c

2�
tr(CB)

− tr

(
(L1 + L2ecA)−1L2[0 I ]

× exp

{
c

[
A − �I 0

BC A

]}[
I

0

])
, (4.10)

Note that in the limit as � → 0, (4.10) approaches (4.9).

4.2. Explicit formula for Hilbert–Schmidt norm

We now combine the results of Sections 3 and 4.1 to derive
a formula for the Hilbert–Schmidt norm of the frequency
response operator.

Theorem 4.1. Let the frequency response operator T(�)

be given by a well-posed TPBVSR (3.3) at each �. Its
Hilbert–Schmidt norm can be calculated from

||T(�)||2HS

= −tr

(
(L1 + L2�(b, a))−1

× L2[0 I ]�(b, a)

[
I

0

])
, (4.11)

where

L1 :=
[
N1 0
0 M1

]
, L2 :=

[
N2 0
0 M2

]
,

A(y) :=
[
A0(y) B0(y)B∗

0 (y)

0 −A∗
0(y)

]
,

B(y) :=
[

0
−C∗

0 (y)

]
, C(y) := [C0(y) 0].

The matrices M1 and M2 are determined from the following
singular value decomposition:[

N∗
1−N∗

2

]
= USV ∗ = [U1 U2]

[
S1
0

]
V ∗

= U1S1V
∗, U1, U2 ∈ C2n0×n0

by

[M1 M2] = U∗
2 .

The matrices �(y, �) and �(y, �) are the state transition
matrices of A(y) and[

A(y) 0
B(y)C(y) A(y)

]
,

respectively. For systems with constant coefficients in y for-
mula (4.11) simplifies to

||T(�)||2HS

= −tr

(
(L1 + L2ecA)−1L2[0 I ]

× exp

{
c

[
A 0

BC A

]}[
I

0

])
, (4.12)

where c := b − a.

Note that the matrices in the TPBVSR (3.3) of a frequency
response operator are functions of � as well as any other
parameters in the problem. Thus, the Hilbert–Schmidt norm
(4.11) will also be a function of � and these variables. This
dependence has been suppressed in the statement of the the-
orem for notational simplicity.

The above theorem converts the problem of evaluating
the Hilbert–Schmidt norm of an infinite dimensional object
to computations with finite matrices. For systems with non-
constant coefficients in y, at any given �, we need to solve a
matrix differential equation whose order is four times larger
than the order of the original differential operator to ob-
tain the state transition matrix �(b, a). On the other hand,
for systems with constant coefficients in y, this computation
amounts to determination of the corresponding matrix ex-
ponential. Both computations can be easily performed using
commercially available software such as MATLAB or MATH-

EMATICA.

5. Examples

We now illustrate the use of our technique using two ex-
amples: a one-dimensional diffusion equation, and a system
that describes the dynamics of velocity fluctuations in chan-
nel fluid flow. In both cases, we first derive the TPBVSR
from the original PDEs and then apply Theorem 4.1 to the
resulting realization.

5.1. A one-dimensional diffusion equation

We consider a one-dimensional diffusion equation on
L2[−1, 1] with Dirichlet boundary conditions

�t�(y, t) = �yy�(y, t) + d(y, t),

�(±1, t) = 0.

The application of the temporal Fourier transform yields

�(y, �) = [(j�I − �yy)
−1d(�)](y) =: [T(�)d(�)](y).

Considering this as an ODE in the independent vari-
able y, and � as a parameter, we can use the controller
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canonical form realization to obtain

T(�) :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
x′

1(y, �)

x′
2(y, �)

]
=
[

0 1
j� 0

] [
x1(y, �)

x2(y, �)

]

+
[

0
−1

]
d(y, �),

�(y, �) = [1 0]
[

x1(y, �)

x2(y, �)

]
,

0 =
[

1 0
0 0

] [
x1(−1, �)

x2(−1, �)

]

+
[

0 0
1 0

] [
x1(1, �)

x2(1, �)

]
,

y ∈ [−1, 1].
This is indeed a TPBVSR of the form (3.3). From this we
can obtain a TPBVSR of T(�)T∗(�) using (3.6)

A =
⎡
⎢⎣

0 1 0 0
j� 0 0 1
0 0 0 j�
0 0 −1 0

⎤
⎥⎦ , B =

⎡
⎢⎣

0
0

−1
0

⎤
⎥⎦ ,

C = [1 0 0 0],

L1 =
⎡
⎢⎣

1 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎦ , L2 =

⎡
⎢⎣

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎦ .

We now calculate ‖T(�)‖HS using formula (4.12). With the
help of MATHEMATICA we obtain

||T(�)||2HS

= 1

2�2

{
−1 +

√
2�(sinh(

√
8�) + sin(

√
8�))

cosh(
√

8�) − cos(
√

8�)

}
.

(5.1)

It is noteworthy that in this simple example, ||T(�)||2HS
can be also obtained by doing a spectral decomposition of
the operator �yy with Dirichlet boundary conditions. It is
well known (see, for example [5]) that this operator has
the following set of orthonormal eigenfunctions {	n} and
corresponding eigenvalues {
n}:

	n(y) := sin
(n�

2
(y + 1)

)
, 
n := −n2�2

4
,

n = 1, 2, . . . .

Using this eigenfunction expansion we can directly calculate

||T(�)||2HS =
∑
n∈N

1

�2 + (n�/2)4 .

Using various series formulae for trigonometric functions,
this series can be shown to be equal to (5.1).

It is not often possible to do full eigenvalue/eigen-
function expansions as can be done for this simple example.
Such expansions actually provide more information than

what is needed to compute the Hilbert–Schmidt norm. Note
that formula (4.11) does not require such expansions. Our
second example has no known explicit description for the
eigenvalues, but we will show that formula (4.11) yields
rather explicit expressions for the Hilbert–Schmidt norm.

5.2. A system from fluid dynamics

We consider the dynamics of streamwise constant pertur-
bations in channel flows using the linearized Navier–Stokes
(LNS) equations. For background on this model and the use
of system norms in transition to turbulence studies, we refer
the reader to [2,8–10,12] and the references therein.

The forced LNS equations for streamwise constant flow
perturbations are described by [10,8]

�t

[
��1
�2

]
=
[ 1

R
F11 0
F21

1
R
F22

] [
�1
�2

]

+
[

0 Gy Gz

Gx 0 0

][dx

dy

dz

]
, (5.2a)

[
u

v

w

]
=
[ 0 Hu

Hv 0
Hw 0

][
�1
�2

]
, (5.2b)

where the output fields u, v, and w are the three compo-
nents of the velocity perturbation fields. The input fields dx ,
dy , and dz represent the three components of body force
fields. The state of the system is captured by two fields, �1
and �2 (namely, vertical velocity v and vertical vorticity).
Although this is a simplified model of three-dimensional
flow perturbations, there is only one spatial dimension in
the PDEs, namely the vertical coordinate y ∈ [−1, 1]. Dy-
namics in the spanwise direction (the z coordinate) appear
through the wave-number parameter kz. Another important
parameter that appears in the equations is the Reynolds
number R. The scaling of system norms with respect to
these parameters gives important information about flow
structures that appear in transition to turbulence [10]. The
boundary conditions on the state in the above equations are:
�1(±1, t) = �y�1(±1, t) = �2(±1, t) = 0. Furthermore,
the underlying operators in (5.2) are defined by: {F11 :=
�2, F22 := �, F21 := −jkzU

′(y)}, {Gx := jkz, Gy :=
−k2

z , Gz := −jkz�y}, {Hu := −j/kz, Hv := I, Hw :=
(j/kz)�y},where U(y) denotes the nominal velocity profile,

U ′ := dU/dy, � := �yy − k2
z with homogenous Dirichlet

boundary conditions, and �2 := �yyyy − 2k2
z�yy + k4

z with
homogenous Dirichlet and Neumann boundary conditions.
For a more complete description of the underlying spaces
and domains of these operator, we refer the reader to [6,11].
It is well known that system (5.2) is exponentially stable for
any pair (kz, R) [12].

For notational convenience, we set R in (5.2) to one.
Under this assumption, application of the temporal Fourier
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Fig. 2. Plots of ||Trs (�, kz)||2HS, {r = u, v, w; s = x, y, z}. ||Tuy(�, kz)||2HS and ||Tuz(�, kz)||2HS are determined for Couette flow.

transform to (5.2a) yields

(j�� − F11)�1 = Gydy + Gzdz, (5.3a)

(j�I − F22)�2 = F21�1 + Gxdx . (5.3b)

Note that (5.3a) represents an equation for �1 with inputs dy

and dz. On the other hand, (5.3b) is an equation for �2 driven
by �1 and dx . Using definitions of operators appearing in
(5.3), we, respectively, rewrite (5.3a) and (5.3b) as

�(4)
1 − (2k2

z + j�)�′′
1 + k2

z (k
2
z + j�)�1

= [k2
z 0]

[
dy

dz

]
+ [0 jkz]

[
d ′
y

d ′
z

]
, (5.4a)

�′′
2 − (k2

z + j�)�2 = jkzU
′(y)�1 − jkzdx . (5.4b)

Eqs. (5.4a) and (5.4b) are ODEs in y parameterized
by kz and � with the boundary conditions: �1(±1) =

�′
1(±1) = �2(±1) = 0. For notational convenience, we

have suppressed the dependence of �i and ds on (kz, �),
e.g. �i (y) := �i (y, �, kz), i = 1, 2. Similarly, �(r)

i (y) :=
dr�i (y, �, kz)/dyr . It is now possible to find TPBVSR for
each of (5.4a) and (5.4b) separately. Two particular such
realizations similar to observer canonical forms are given
in Appendix A, where we also combine those realizations
with the output (5.2b) to obtain TPBVSR of the full oper-
ator T(�, kz) : [dx dy dz]T �→ [u v w]T as well as its
nine subcomponents Trs(�, kz) : ds �→ r , {r = u, v, w;
s = x, y, z}.

With the realizations in Appendix A, we compute all
nine components ||Trs(�, kz)||2HS of the overall frequency
response. We note that for each pair (�, kz), these com-
putations involve a finite matrix computation rather than a
spatial discretization of the differential operator. The dimen-
sion of the matrices involved are related to the order of the
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realizations. As shown in Appendix A, the operator Tux

(�, kz) has a second-order realization, the operators
Trs(�, kz), {r = v, w; s = y, z}, can be represented
by a fourth-order realization, whereas Tuy(�, kz) and
Tuz(�, kz) can be described by minimal realizations with
six states.

Plane Couette flow is specified by the laminar flow profile
U(y) := y. F21 simplifies to F21 = −jkz in this case,
and all operators in (5.2) have constant coefficients in y.
Thus the matrix A0 in (A.1) becomes y-independent, and the
functions ||Trs(�, kz)||2HS can be determined by (cf. (4.12)
in Theorem 4.1)

||Trs(�, kz)||2HS

= −tr

(
(L1 + L2e2A)−1L2[0 I ]

× exp

{
2

[
A 0

BsCr A

]}[
I

0

])
. (5.5)

Fig. 2 illustrates the (�, kz)-parameterized plots of
||Trs(�, kz)||2HS, for every {r =u, v, w; s =x, y, z}. These
computations are performed in MATLAB for any given
pair (�, kz) using the formula above. The nominal-flow-
dependent quantities ||Tuy(�, kz)||2HS and ||Tuz(�, kz)||2HS
are determined for Couette flow.

The spatial frequency responses evaluated at � = 0 re-
veal interesting information about maximally amplified flow
structures in channel flows [10]. It turns out that we can ob-
tain explicit analytical forms for these frequency responses.
The expressions for ||Trs(0, kz)||2HS are determined using
formula (4.12), and they are given in Appendix B. The un-
derlying matrix exponentials are evaluated symbolically in
MATHEMATICA.

6. Concluding remarks

We develop a procedure for the explicit determination of
the frequency responses for a class of distributed systems.
This procedure avoids the need for spatial discretization and
provides an exact reduction of an infinite dimensional prob-
lem to a problem in which only matrices of finite dimen-
sions are involved. The order of these matrices is at most
four times larger than the order of the differential operator
at hand.

We also illustrate application of this technique by pro-
viding two examples: a one-dimensional diffusion equation,
and a system obtained by linearization of the Navier–Stokes
equations in channel flows around a given nominal velocity
profile.

Appendix A. TPBVSR of the streamwise constant lin-
earized Navier–Stokes equations

Here, we describe the TPBVSR that are used for the fre-
quency response determination of the streamwise constant

LNS equations at R = 1. In particular, we choose the ob-
servable canonical form realizations of (5.4a) and (5.4b)

(5.4a) :

⎧⎪⎪⎨
⎪⎪⎩


′(y) = A1
(y) + B1

[
dx(y)

dy(y)

dz(y)

]
,

�1(y) = C1
(y),

0 = S1
(−1) + S2
(1), y ∈ [−1, 1],

(5.4b) :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�′(y) = A2�(y) + B2

[
dx(y)

dy(y)

dz(y)

]

+B3(y)�1(y),

�2(y) = C2�(y),

0 = T1�(−1) + T2�(1), y ∈ [−1, 1],
where

A1 :=
⎡
⎢⎣

0 1 0 0
2k2

z + j� 0 1 0
0 0 0 1

−k2
z (k

2
z + j�) 0 0 0

⎤
⎥⎦ ,

A2 :=
[

0 1
k2
z + j� 0

]
,

B1 :=
⎡
⎢⎣

0 0 0
0 0 0
0 0 jkz

0 k2
z 0

⎤
⎥⎦ , B2 :=

[
0 0 0

−jkz 0 0

]
,

B3(y) :=
[

0
jkzU

′(y)

]
,

C1 := [1 0 0 0], C2 := [1 0],

S1 :=
[

I2×2 02×2
02×2 02×2

]
, S2 :=

[
02×2 02×2
I2×2 02×2

]
,

T1 :=
[

1 0
0 0

]
, T2 :=

[
0 0
1 0

]
.

We now combine these two realization with (5.2b) to obtain a
TPBVSR of operator T(�, kz):[dx dy dz]T �→ [u v w]T:

(5.4, 5.2b):⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′(y) = A0(y)x(y) + B0

[
dx(y)

dy(y)

dz(y)

]
,

[
u(y)

v(y)

w(y)

]
= C0x(y),

0 = N1x(−1) + N2x(1), y ∈ [−1, 1],

(A.1)

where xT(y) := [
T(y) �T(y)], and

A0(y) :=
[

A1 0
B3(y)C1 A2

]

=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
2k2

z + j� 0 1 0 0 0
0 0 0 1 0 0

−k2
z (k

2
z + j�) 0 0 0 0 0
0 0 0 0 0 1

jkzU
′(y) 0 0 0 k2

z + j� 0

⎤
⎥⎥⎥⎥⎥⎦ ,
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B0 :=
[

B1
B2

]
=

⎡
⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 jkz

0 k2
z 0

0 0 0
−jkz 0 0

⎤
⎥⎥⎥⎥⎥⎦

=: [Bx0 By0 Bz0], N1 :=
[
S1 0
0 T1

]
,

C0 :=

⎡
⎢⎢⎣

0 0 0 0 − j

kz

0

1 0 0 0 0 0

0
j

kz

0 0 0 0

⎤
⎥⎥⎦

=:
[

Cu0
Cv0
Cw0

]
, N2 :=

[
S2 0
0 T2

]
.

Thus, we have rendered TPBVSR of system (5.4) and (5.2b)
into (A.1), which is a suitable form for the application of
the procedure developed in Section 4.

The realizations of Trs(�, kz) : ds �→ r can be now
easily determined for every {r = u, v, w; s = x, y, z}. For
example, TPBVSR of Tuy(�, kz) : dy �→ u is given by

Tuy :

⎧⎪⎨
⎪⎩

x′(y) = A0(y)x(y) + By0dy(y),

u(y) = Cu0x(y),

0 = N1x(−1) + N2x(1), y ∈ [−1, 1].

As previously mentioned, Tux(�, kz) and Trs(�, kz), for
every {r = v, w; s = y, z}, are, respectively, the second and
the fourth-order operators. We note that their minimal real-
izations can be obtained by combining the respective real-
izations of (5.4b) and (5.4a) with the corresponding rows of
(5.2b). For example, a minimal realization of Tux(�, kz) is
given by

Tux :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�′(y) =
[

0 1
k2
z + j� 0

]
�(y) +

[
0

−jkz

]
dx(y),

u(y) =
[
− j

kz

0

]
�(y),

0 = T1�(−1) + T2�(1), y ∈ [−1, 1].

Alternatively, ||Tux(�, kz)||2HS can be determined from The-
orem 4.1 using the following non-minimal realization of
Tux(�, kz)

Tux :

⎧⎪⎨
⎪⎩

x′(y) = A0(y)x(y) + Bx0dx(y),

u(y) = Cu0x(y),

0 = N1x(−1) + N2x(1), y ∈ [−1, 1].

Note that the underlying matrices in (5.5) can be determined
from the above matrices using Theorem 4.1.

Appendix B. Formulae for Hilbert–Schmidt norms at
� = 0

We next derive analytical expressions for functions
||Trs(0, kz)||2HS (the HS subscript is dropped from
the notation below). The mean-flow-dependent quanti-
ties ||Tuy(0, kz)||2 and ||Tuz(0, kz)||2 are obtained for
Couette flow. These expressions are determined symboli-
cally in MATHEMATICA using (4.12), and they are given by

||Tux(0, kz)||2 = kz(coth(2kz) + 2kz csch2(2kz)) − 1

2k4
z

,

||Tuy(0, kz)||2 = huy(kz)

322560k8
z (cosh(4kz) − 8k2

z − 1)2 ,

||Tuz(0, kz)||2 = huz(kz)

5160960k8
z (cosh(4kz) − 8k2

z − 1)2 ,

||Tvy(0, kz)||2 = hvy(kz)

1440k4
z (cosh(4kz) − 8k2

z − 1)2 ,

||Tvz(0, kz)||2 = hvz(kz)

1440k4
z (cosh(4kz) − 8k2

z − 1)2 ,

||Twy(0, kz)||2 = ||Tvz(0, kz)||2,

||Twz(0, kz)||2 = hwz(kz)

1440k4
z (cosh(4kz) − 8k2

z − 1)2 ,

where

huy(kz)

:= −297675 + 16k2
z (−187425 + 4k2

z

× (−168525 + 8k2
z (−8337 + 2474k2

z + 80k4
z )))

+ 12(33075 + 249900k2
z + 42000k4

z

+ 28672k6
z + 768k8

z ) cosh(4kz) − 99225 cosh(8kz)

+ 7
8kz csch2(kz) sech2(kz)(3072k5

z (45 + 16k4
z )

+ (14175 + 64k2
z (2295 + 660k2

z − 1176k4
z

+ 1216k6
z )) sinh(4kz)

+ 12(−945 + 8k2
z (−765 + 440k2

z + 72k4
z ))

× sinh(8kz) + 2835 sinh(12kz)),

huz(kz)

:= + csch2(kz) sech2(kz)(34650 + 16k2
z (31185 + 4k2

z

× (2835 + 16k2
z (630 + 2577k2

z − 592k4
z )))

− (51975 + 64k2
z (10395 + 8k2

z (735 − 70k2
z

+ 1776k4
z + 160k6

z ))) cosh(4kz)

+ 20790 cosh(8kz) − 3465 cosh(12kz)

+ 2kz(8kz(10395 + 12180k2
z − 2240k4

z − 576k6
z )

× cosh(8kz) + 224(315 cosh(2kz) sinh(2kz)
5

+ k2
z (2(855 + 8k2

z (45 + 197k2
z − 136k4

z )) sinh(4kz)

+ (−855 + 180k2
z − 136k4

z ) sinh(8kz))))),
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hvy(kz)

:= −1485 + 8k2
z (−1845 + 128k2

z (−45

+ 2k2
z (−8 + k2

z ))) − 495 cosh(8kz)

+ 4(495 + 3690k2
z + 720k4

z + 256k6
z ) cosh(4kz)

+ 30kz(−15 − 216k2
z + 128k4

z

+ 15 cosh(4kz)) sinh(4kz),

hvz(kz)

:= −135 − 8k2
z (225 − 128k4

z + 256k6
z )

+ 4(45 + 450k2
z + 720k4

z − 256k6
z ) cosh(4kz)

− 45 cosh(8kz) + 90kz(−1 − 40k2
z

+ cosh(4kz)) sinh(4kz),

hwz(kz)

:= −135 + 8k2
z (−225 + 16k2

z (−5

+ 4k2
z )(3 + 4k2

z )) − 45 cosh(8kz)

+ 4(45 + 450k2
z + 1200k4

z + 256k6
z ) cosh(4kz)

− 30kz(3 + 120k2
z + 128k4

z − 3 cosh(4kz)) sinh(4kz).
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