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Abstract— This paper develops a structured optimal-control
framework to design coupling gains for synchronization of
weakly nonlinear oscillator circuits connected in resistive net-
works with arbitrary topologies. The oscillators are modeled as
weakly nonlinear Liénard-type circuits, and the coupling gain
amounts to the current gain which scales the output current
of the oscillator. The structured optimal-control problem al-
lows us to seek a decentralized control strategy (equivalently,
a diagonal feedback matrix) that precludes communications
between oscillators. To this end, a sparsity-promoting optimal
control algorithm is developed to tune the optimal diagonal
feedback-gain matrix with minimal performance sacrifice. This
involves solving an 7. optimal control problem with /; reg-
ularization by applying the alternating direction method of
multipliers (ADMM). Simulation studies with application to
voltage regulation in islanded networks composed of power-
electronic inverters are provided to validate the approach.

Index Terms— Alternating direction method of multipliers,
sparsity-promoting optimal control, synchronization, weakly
nonlinear oscillators.

I. INTRODUCTION

Synchronization of coupled Liénard-type oscillators is rel-
evant to several engineering applications [1], [2]. This paper
outlines a structured control-synthesis method to regulate the
voltage amplitudes of a class of weakly nonlinear Liénard-
type oscillators coupled through connected resistive networks
with arbitrary topologies. The feedback gain takes the con-
notation of a current gain (which scales the output current of
the oscillator); and the structured optimal-control problem is
of interest since we seek a decentralized control strategy that
precludes communications between oscillators. The problem
setup is motivated by the application of controlling power-
electronic inverters in low-inertia microgrids in the absence
of conventional synchronous generators. A compelling time-
domain approach to achieve a stable power system in this
setting is to regulate the inverters to emulate the dynamics
of weakly nonlinear limit-cycle oscillators which achieves
network-wide synchrony in the absence of external forcing
or any communication [3], [4]. That said, this paper offers
several broad contributions to the topic of synchronization
of nonlinear dynamical systems coupled over complex net-
works. First, we outline the control-synthesis approach with
a broad level of generality to cover a wide array of circuit
applications; in addition to power-systems and microgrids,
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these include solid-state circuit oscillators, semiconductor
laser arrays, and microwave oscillator arrays [2], [5], [6].
Second, majority of the synchronization literature is primar-
ily focused on phase- or pulse-coupled oscillator models [6],
[7]. We depart from this line of work and focus on the
complementary problem of optimally regulating the ampli-
tude dynamics. (For the class of networks we study, phase
synchrony can be guaranteed under fairly mild assumptions.)

Circuits with voltage dynamics governed by Liénard’s
equation are common in several applications [8]-[10]. (The
ubiquitous Van der Pol oscillator is a particular example.)
We study the setting where the oscillators are connected to
a resistive network with an arbitrary topology. The oscillator
output currents are scaled by a gain which assumes the
focus of the control design. Designing coupling gains with
a view to synchronize the outputs of dynamical systems
has been studied in a variety of applications [11]-[13]. The
nonlinear dynamics complicate our problem setting, and the
solution strategy we propose draws from a variety of circuit-
and system-theoretic tools including averaging methods for
periodic nonlinear systems and structural reduction of elec-
trical networks. Furthermore, conventional optimal control
synthesis methods cannot guarantee decentralized control
strategies (translating to local current gains). To address this,
we leverage recent advances in structured control design.

Conventional optimal control design strategies typically
return full feedback gain matrices. (A full feedback gain
matrix in our setting would imply that extraneous commu-
nication links are required between the oscillators.) Since
we seek a decentralized control strategy so that voltage
regulation can be guaranteed only by tuning the local current
gains, we leverage our expertise in structured feedback gain
design for distributed systems that has demonstrated its
effectiveness in the domain of power networks [14]-[18]. In
particular, we present a sparsity-promoting optimal control
design strategy [19] to design the current gains so that the dif-
ferences between the oscillator terminal-voltage amplitudes
can be minimized. The objective of the optimization problem
is to tune the current gains to minimize the s norm of the
system. In general, the optimization problem is non-convex
and difficult to solve. We utilize the alternating direction
method of multipliers (ADMM) algorithm to perform an
iterative search for the optimal solution.

The control design strategy outlined above is tailored
to linear system descriptions. The oscillator dynamics that
derive from circuit laws are innately nonlinear and in Carte-
sian coordinates. As such, they pose a challenge for control
synthesis. To facilitate control design, we leverage polar-
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coordinate transformations, tools from averaging theory, and
linear systems theory [1], [20]. First, by transforming the
system into the polar coordinates, we extract the amplitude
and phase dynamics of the terminal voltages. We then aver-
age the periodic dynamics and linearize the system around
the nominal operating point.

The remainder of this paper is organized as follows. In
Section II, we introduce the models for the oscillators and
the resistive electrical network, and develop a coordinate
transformation to represent the system in a standard state-
space form. In Section III, we formulate the optimization
problem to minimize the H norm of the system with a
decentralized control scheme. In Section IV, we provide
illustrative case studies to validate the approach. Concluding
remarks and directions for future work are in Section V.

II. SYSTEM OF COUPLED WEAKLY NONLINEAR
OSCILLATOR CIRCUITS

We begin this section with a description of the oscillator
dynamics, and then describe the network interactions.

A. Nonlinear Oscillator Model

The oscillator dynamics are governed by
b4 e f(v)0 +w?v = kewu(t), (1)

where v is the terminal voltage, u is the input current, x
is the current gain (interchangeably referred as the coupling
gain), € is a positive real constant, and w is the frequency
of the voltage waveform for the unforced (v = 0) system
in the so-called quasi-harmonic limit € \, 0 [20]. All sub-
sequent discussions assume operation in this quasi-harmonic
limit since the terminal-voltage dynamics in this limit are
approximately sinusoidal [20]. Function f : R — R satisfies
the conditions in Liénard’s theorem [2] for existence of a
unique and stable limit cycle, in particular,
(A1) f(v) is continuously differentiable Vo.
(A2) f(v) is an even function, i.e., f(v) = f(—v),Vv.
(A3) Function F(v) := fov f(2)dz has exactly one positive
7ero at v = vy, is negative for 0 < v < vy, is positive
and nondecreasing Vv > vp, and lim, _ o, F(v) — co.
Examples of nonlinear circuits that admit terminal-voltage
dynamics of the form (1) include the ubiquitous Van der
Pol oscillator (see Fig. 1 for more details), the dead-zone
oscillator [3], a class of operational transconductance ampli-
fiers [10], and dynamic translinear oscillator circuits [9].
To extract the amplitude and phase dynamics from (1), we
seek a dynamical system representation in polar coordinates.
To this end, define the change of variables v = r cos(®),
w jgvdt = rsin(¢), where r denotes the radius of the
oscillator limit cycle, and ¢ represents the instantaneous
phase of the resulting oscillations. It is straightforward to
show that with this change of coordinates, we recover the
following model:

7 = e(h(r cos @) + kwu(t)) cos @,

b=w-— (ih(r cos @) — sﬁwug)> sin ¢, 2)

where h(z) := [ f(z)dz. In subsequent developments, we
will find it useful to work with the following model:

7 = g(h(r cos(wt + 0)) + Kwu(t)) cos(wt + 6),
0= —; (h(rcos(wt + 0)) + kwu(t)) sin(wt + 6).  (3)

where we define 0(t) := ¢(t) — wt, with 0 representing the
phase offset with respect to the rotating reference frame of
frequency w. Since the system (3) is non-autonomous but
periodic in t, we leverage averaging methods to obtain an
autonomous system which admits similar dynamics [20]. In
particular, for small values of € we can average the periodic
vector fields in (3) to obtain the so-called slow flow equations
which are accurate up to O(¢e) [21].

Let us denote 7 and 6 to be the 27/w-averaged values
of the periodic signals r and 6, respectively. In the quasi-
harmonic limit, i.e., ¢ \, 0, we apply standard averaging
arguments using € as the small parameter, to obtain the
averaged dynamics [20, Theorem 10.4] [1], [22]

[r] | ew /02“/“ [ h(TCOS(WtJF9)))C0S(wt+a)):| dt

ol or —1n(r cos(wt + 0)) sin(wt + 0

N ekw? /%M u(t) cos(wt + 0) "
2 J, —Lu(t)sin(wt + )

_ & | —f() +me? fo%ﬂ u(t) cos(wt + 0)dt @
2m —Kw? fo% @ sin(wt + 0)dt
where _
_ T o2
f(™) ::4/ flo)/1— = do. (5)
0 r

B. Resistive Electrical Network

We consider a collection of IV oscillators with dynamics
of the form (1) (or equivalently, (4)) connected in a resistive
electrical network. The oscillators are assumed to be identical
in all aspects except for the current gains. The nodes of the
resistive electrical network are collected in the set A, and
branches (edges) are collected in the set £ := {(j,¢)} C
Ax A Let N := {1,...,N} C A denote nodes that the
oscillators are connected to, and denote the set of internal
nodes as 7 := A\ N. Shunt loads—also modeled as
resistances—are connected to the internal nodes Z. Denote
the vectors that collect the nodal current injections and node
voltages in the network by ¢4 and v 4, respectively. Note
that since the network is resistive, ¢4 and v 4 are real-
valued functions of time. The electrical coupling between

Eioﬁ _—Z>o

+ +

R> L3C—C hv) v = & v
) L—o

Fig. 1: The Van der Pol oscillator circuit with a current gain
# admits the dynamics in (1). In this case, w = 1/ VILC,
e=+/L/C, and h(v) = [ f(v)dv = aw(v — Bv®/3) where
« and [ are positive real constants.
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the oscillators is described by Kirchhoff’s and Ohm’s laws,
which read in matrix-vector form as

ia=Gava, (6)
with entries of the conductance matrix G 4 given by

g; + Z(j,k)ef gk, i j=4¢,
0, otherwise,

(Galje =

with g; € R>( denoting the shunt conductance at node j,
and g, = g¢; € R>¢ the conductance of the line (7, ¢).

Let i = [i1,...,in]|T and v = [vy,...,vn]T be the
vectors of inverter current injections and terminal voltages,
respectively, and let iz and vz be the vectors collecting the
current injections and nodal voltages for the interior nodes.
Note that entries of iz are zero. With this notation in place,
we can rewrite (6) as

0-f 2kl
0 o G}\‘[I GII vr ’

For the resistive networks we consider in this work, G'z7
is always nonsingular due to irreducible diagonal domi-
nance [23]. Therefore, the second set of equations in (8) can
be uniquely solved for the interior voltages, vz. Then, we
obtain the following equations relating the oscillator current
injections and terminal voltages:

i = (Gyn — GnzG77Ghrz) v =: Go. 9)

We refer to the matrix G in (9) as the Kron-reduced
conductance matrix and this model reduction through a
Schur complement of the conductance matrix is known as
Kron reduction [23]. Notice that the entries of G define the
effective electrical conductances between the oscillators in
the network, as well as the effective local resistive loads
for each oscillator. An illustration of Kron reduction for a
network with three oscillators is shown in Fig. 2. Under some
mild assumptions on the originating network, it follows that
the Kron-reduced network is fully connected [23].

With a slight abuse of notation, we denote the effective
shunt-conductance load for the jth oscillator by g;, and the
effective conductance of the (7, ¢) line in the Kron-reduced
electrical network by g, in all subsequent discussions. Also,
we will find it useful to define g;; := g; + Zszl,k# Gik-

Kron

Fig. 2: Kron reduction illustrated for a network of three
oscillators. In this example, A = {1,...,5}, N = {1,2,3},
and Z = {4, 5}.

C. System Dynamical Model in Polar Coordinates

With this notation in place, for the resistive network, the
current input for the jth oscillator, u;(t) is given by:

N

uj(t) = —i;(t) = — Zgjﬁg cos(wt + 0y).
=1

(10)

Substituting (10) in (4), and denoting 0, = 6; — 0, we
get the following polar-coordinates representation for the
dynamics of the jth oscillator:

Cﬁj E?(Fj) KjEw
ary _ _&8J\"5) =
dt o 9 9
KRiEW N
+4%— > girecos(0y),  (1la)
0=1,0+#]
oy N
do; KjEw L
d—J =— 22 gjeTesin(Bjp). (11b)
t Ry

D. State-space representation of linearized system

Our objective is to design an optimal set of coupling gains,
K1, ..., KN, that ensure the terminal voltages of the nonlinear
oscillator dynamics in (11) are regulated to a common value.
For the class of oscillator models we consider, it is known
that there exists a unique and stable limit cycle with radius
Toq Which satisfies f(?eq) = 0 [2]. With a view towards
leveraging control design techniques from linear systems
theory, we linearize the system around (Teqly,feq) (Where
1n denotes N x 1 vector of all ones); geq is the phase-
synchronized equilibrium (we comment on it next). The
Jacobian of the system around the equilibrium point can be
partitioned into blocks as follows:

| Ja | JB
J= [JW 7 ] .
The entries of Ja, Jp, Jc, and Jp are specified as:

ifj=¢
if j £ ¢

(12)

sl = { ] e 2 ey
e Kj %gjicos.(%&jg)
[JBL'E = —K;j %5 gj(Teq Sin(beq,j¢)
N . .
[Jc]., = Kjgts Dotz Jie sin(0eq,je) 15 =1
vt —# 5 gjesin(0eq,je) ifj £ ¢
N n . .
—Rj Ze:u;ﬁj Gjrco8(beq,je) ifj=1¢ ’
K5 9je 08 (Beq.je) if j £ 0

where f/(Toq) represents the derivative of f(-) evaluated at
Teq- An inspection of the above Jacobian reveals that the
phase-synchronized equilibrium i.e., Oeq; = 0Ocqe Vi, ¢, is
locally exponentially stable. First, notice that J is block di-
agonal for this equilibrium and therefore around this equilib-
rium, the evolution of amplitudes and phases are decoupled.
Furthermore, J5 and Jp are diagonally dominant symmetric
matrices (which implies that they are negative semi-definite
and therefore overall J is negative semi-definite), leveraging
LaSalle’s invariance principle it can be shown that phase
synchronized equilibrium is locally exponentially stable [24,

[JD]]‘Z -
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Theorem 4.3]. With these arguments in place, we proceed
with the linearized (and decoupled) amplitude dynamics.

For small perturbations about the equilibrium point, we
express T = InTeq + T, Where 7 := [Fq T2 --- 7n|*. By
defining states « = 7, the linearized system can be written
in the state-space model

i=Ax + u + Bd

__ (% F (o) In + ‘%“Kda) ¢+ Bd (13)
where Iy is the N x N identity; A = —5 f/(Feq)IN;
the control input, u = —? KqGz (with a slight abuse of
notation with regard to (1)); and B is the input matrix for
external disturbances d. Recall that G is the Kron-reduced
conductance matrix, and K4 = diag{ki,...,xn}. With
regard to control synthesis, Kq takes the connotation of the
feedback-gain matrix. In general, B can be chosen according
to the agplication; and in this particular case, we make the
choice B = (. With due regard to the optimal control
problem to be formulated in Section III, we define the vector
of performance outputs, z, as follows:

@1/2
RV K6 |

z =

(14)

where @ is the state penalty matrix; and R is the control
input penalty matrix.

A cursory inspection of (13)-(14) indicates two impedi-
ments in applying conventional linear feedback control de-
sign approaches: i) the closed-loop system is not in standard
fegdback control/\form, (the standard form would be =z =
(A — GK)z + Bd); ii) there is a structural constraint on
the feedback gain matrix, K, being diagonal (of the form
Kg). To reformulate the problem so that conventional linear
feedback control design approaches can be used, we first
introduce a change of variables, v = Gz. Note that G is
invertible when the network has shunt loads [25]. The state-
space model for the system in these new coordinates can be
expressed in the following form:

Y = (A - GKgq)Y + Bd

1/2 (15)
where - .
A= GAG™, B =GB

Q =G'QG', R=R
Next, we introduce an optimal control design method that
will allow us to synthesize a diagonal feedback gain matrix.

III. DESIGN OF CURRENT GAINS

In this section, we introduce a sparsity-promoting optimal
control algorithm developed in [16], [19] to synthesize
optimal current gains for the oscillators with the objective
of regulating their terminal voltages to a common value.

A. Linear quadratic control design

We cast the task of synthesizing the current gains as an
optimal feedback control design problem. With reference
to (15), we select the state penalty matrix Q = Iy to
ensure that the terminal-voltage amplitudes of all circuits
coincide. Furthermore, we set the control input penalty
matrix R = ply, p € R*. The closed-loop Hz norm from
input disturbance d to performance output z is defined as

() = { tol;ace (BT P(K) B)

where the closed-loop observability Gramian P(K) satisfies
the Lyapunov equation

(A-GK)"P+P(A-GK) = —(Q+ K'RK), (17)

K stabilizing
. (16)
otherwise,

and K is the feedback-gain matrix. Conventional Hy control
design methods, such as the Linear Quadratic Regulator
(LQR) problem, provide us with an optimal centralized
controller. In our problem setting, dense feedback gain
matrices require communication links to relay information
about oscillator currents. However, we want to ensure that
the feedback matrix is diagonal so that each oscillator only
requires local current measurements. Next, we introduce the
sparsity-promoting optimal control algorithm to incorporate
the structure constraint on the feedback matrix K to get a
fully diagonal matrix Kj.

B. Sparsity-promoting optimal control
Consider the following optimization problem:

J(K) + vg(F)

subject to K- F =0,

where J(K) is defined in (16), g(F') is the sparsity-
promoting penalty function, and v is the emphasis on spar-
sity. When ~ is zero, objective function (18) only minimizes
J(K), which provides us with the optimal centralized con-
troller. As +y increases, the emphasis on the sparsity penalty
function increases, so we obtain sparser feedback-gain matri-
ces, at the expense of system performance. See Fig. 3 for an
illustration. By decoupling the objective functions J and g

g12

. + +
oA a1 92 Uy Uy g1 92
0

minimize

(18)

K:[ﬁu /irz] . Kd:[

KRz R

Y

Fig. 3: Sparsity-promoting optimal current gain design illus-
trated for a Kron-reduced network and two oscillators. As the
sparsity emphasis « increases, K becomes sparser and we
eventually recover a diagonal matrix, K4, which corresponds
to local current gains. Dotted lines indicate communication
links that correspond to dense feedback gain matrices.
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and introducing the linear constraint K — F' = 0 in (18),
the alternating direction method of multipliers (ADMM)
algorithm suggests a solution approach by exploiting the
separability of g and differentiability of J; see [16], [19]
for the details of the algorithm. The penalty function g(F’)
is determined by a weighted ¢; norm [19]:
g(F) = ZWZ] |F1.7|’ (19)
i J
where W;; = 1/(|F;;| +¢) are positive weights, see [26] for
detailed procedure of selecting W;;’s.

The algorithm consists of the following steps: First, we
form the augmented Lagrangian; then we use ADMM for
the augmented Lagrangian minimization, which includes a
K-minimization step, an F-minimization step, and a dual-
variable update step. ADMM identifies a specific sparsity
pattern and provides a good initial condition for the struc-
tured feedback design. Finally, we implement a polishing
step, which involves solving a structured Hy problem for
the fixed controller structure. Since the optimization prob-
lem (18) is non-convex in general, the sparsity-promoting
optimal control algorithm would only guarantee local optimal
solutions. Readers are referred to [16], [19] for further
information.

IV. CASE STUDIES
To verify the effectiveness of our algorithm for optimal

current-gain design, we test it on a resistive network with
the same topology as the IEEE 37-bus benchmark network
and a collection of N = 7 Van der Pol oscillators (see Fig. 6
for the network topology). The dynamics of the oscillators
can be described using (1) with f(v) = aw(1 — Bv?), where
« and [ are positive constants. (See Fig. 1 for a detailed
circuit schematic). It follows from (11) that the averaged
voltage-amplitude dynamics of the jth oscillator are:

|

| Q 9 10 11 |
I I
6 7 8

29 = 31
1l 32 33 I

Fig. 4: Schematic diagram of the electrical network. The
topology is adopted from the IEEE 37-bus network.

0.8 €0.8 K
£0.6
w 0.6 =
0.4/ 0.2
0.2 [ 0 01 02 03
0 01, 02 03 tfs]

Fig. 5: Evolution of averaged amplitudes and phases with
time for the nonlinear system in (11).

(J = Jo) [ Je card (K) /card (K.)
10-2
120 100
08l eesssseseeens 0tee.
0.6 : 60
X S
0.4 40
0 Z (X1 20 ...............
0" 0
10~* 1073 1072 1074 1073 1072
Y Y

Fig. 6: Performance versus sparsity comparison of sparse K
and the optimal centralized controller K..

d 1 ;
77j = —cow <—7’j + 57'3) — ngngj?j

dt 2 87 2
. B (20)
32 Z g;eTecos(00).
0=1,0#]

Linearizing (20) around the stable equilibrium point of the
decoupled oscillator, Toq = 2/+/B [20], and acknowledging
that the phase-synchronized equilibrium is locally expo-
nentially stable, we recover the state-space model of the
form (13) with A = —cawly.

For the simulations that follow, we pick a = 0.90, 5 = 4,
w = 27w60rad/s, ¢ = 0.19; conductances of the lines in the
IEEE-37-bus network are sourced from [27].

Fig. 5 shows the averaged voltage magnitude and phase
trajectories of all seven oscillators when we apply unit cur-
rent gains (without control design) to the original nonlinear
coupled system (11). It is evident that the terminal-voltage
magnitudes do not synchronize as time evolves but the phases
synchronize innately.

A. Optimal current-gain design

The sparsity-promoting optimal control problem in (18)
is solved with 30 logarithmically-spaced points for v €
[10~%,1072]. In Fig. 6, we can see that as emphasis on spar-
sity increases, the number of nonzero elements in the feed-
back matrix—returned by the cardinality function card(.)—
reduces. For v = 1072, the sparsity-promoting optimal
control algorithm returns a diagonal feedback controller,
K4 with diagonal entries: k1 = 0.0033, ko = 0.0047,
k3 = 0.0026, k4 = 0.0025, k5 = 0.0047, kg = 0.0038,
k7 = 0.0029. With this fully decentralized controller, we
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1.2 1.2
1 1
1~(0.8 1=0.8
0.6 0.6
04 0.1 02 04 0.1 0.2
t[s] t[s]

(a) Linearized system (b) Nonlinear system

Fig. 7: Oscillator terminal-voltage magnitudes with designed
current gains applied at time ¢ = 0.1s.

drop 80% of the nonzero elements in the feedback matrix
compared to the optimal centralized controller (denoted by
K. with corresponding cost J.), at the expense of only
0.01% performance loss.

B. Time-domain Simulations for Original Nonlinear and
Linearized Models

To demonstrate the efficacy of our control design method,
we simulate both the linear model (15) and the original
nonlinear model (20) for Van der pol oscillators, with the
optimal x’s that are obtained from the sparsity-promoting
optimal control algorithm. Fig. 7 shows the trajectories of
the averaged terminal-voltage magnitudes for each inverter
with optimal gains applied at time ¢ = 0.1s, with unit
current gains as initial values. From the figure, it is clear
that calibrating the current gains leads to synchronization of
terminal voltage amplitudes. Furthermore, since the original
nonlinear system also achieves amplitude synchronization, it
validates our linearized design perspective.

V. CONCLUDING REMARKS

In this paper, we introduced a systematic way of designing
current gains for weakly nonlinear circuits governed by
Liénard’s equation in a resistive electrical network. The
output current of each oscillator is scaled by a current gain;
and the objective is to synthesize an optimal set of current
gains to ensure voltage regulation in the network. We apply a
sparsity-promoting optimal control method to design the cur-
rent gains. The optimization problem targets simultaneously
achieving a desirable system performance and preserving
the sparsity pattern, which is the diagonal structure of the
feedback matrix. An iterative ADMM algorithm is used to
solve the ¢; regularized version of the standard Ho optimal
control problem. Ongoing research is focused on extending
the approach to cover networks with inductive and capacitive
elements.
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