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We model and analyze the influence of small amplitude transverse wall oscillations on the evolution
of velocity perturbations in channel flows. We quantify the effect of stochastic outside disturbances
on velocity perturbation energy and develop a framework for the optimal selection of transverse
oscillation parameters for turbulence suppression. A perturbation analysis is used to demonstrate that
depending on the wall oscillation frequency the energy of velocity perturbations can be increased or
decreased compared to the uncontrolled flow. Our results elucidate the capability of properly
designed oscillations to reduce receptivity of the linearized Navier-Stokes equations to stochastic
disturbances, which entails decreased levels of variance in wall-bounded shear flows.
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I. INTRODUCTION

Skin-friction drag reduction by sensorless mechanisms is
a promising technology for implementation, as it represents a
much simpler alternative to feedback flow control with wall-
mounted arrays of sensors and actuators. Examples of sen-
sorless strategies include transverse wall oscillations, control
of conductive fluids using the Lorentz force, and wall geom-
etry deformation such as riblets. Each of these strategies is
characterized by the absence of sensing capabilities. In other
words, control is implemented without measurement of the
relevant flow quantities and disturbances. Rather, the dy-
namical properties of the underlying system are changed by
either modifying geometry (riblets) or nominal velocity (wall
oscillations and Lorentz forces). Although several numerical
and experimental investigations indicate that properly de-
signed sensorless strategies can lead to a significant drag
reduction, an obstacle to fully utilize these approaches is the
absence of a theoretical framework for their design and op-
timization. This lack of analytical tools greatly impedes the
design and optimization of sensorless schemes as well as
their extension to different flow regimes.

Skin-friction drag reduction by means of transverse os-
cillations was first explored in Ref. 1. The direct numerical
simulations of a turbulent channel flow subject to either a
spanwise oscillatory wall motion or an oscillatory spanwise
body force showed that a substantial drag reduction (up to
40%) can be achieved for certain values of oscillation fre-
quency. The attenuation of velocity fluctuations (up to 30%)
was also reported. These observations served as a motivation
for further numerical and experimental investigations in
channel,>™ pipe,S_7 and boundary layerg_11 flows.

In this paper, we model and analyze the influence of
transverse wall oscillations on the evolution of velocity per-
turbations in transitional channel flows. Our results comple-
ment previously reported numerical and experimental stud-
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ies, and furnish a theoretical framework for design of more
efficient turbulence suppression strategies. Since the transi-
tion in channel flows is not appropriately described by the
eigenvalue analysis (see, for example, Refs. 12 and 13), we
perform an input-output analysis of stochastically excited
linearized Navier-Stokes (NS) equations. Our analysis quan-
tifies the effect of body force fields on velocity perturbations
and provides a paradigm for the optimal selection of trans-
verse oscillation parameters for turbulence suppression.

We show that suppression (enhancement) of turbulence
by transverse wall oscillations is due to decreased (increased)
variance amplification compared to the uncontrolled flow. In
other words, the changes in nominal velocity constrain ve-
locity perturbations to experience smaller (for suppression of
turbulence) or larger (for enhancement of turbulence) recep-
tivity to external disturbances.'* In the language of control
theory, influence of transverse wall oscillations is quantified
by the H, norm of operator that maps the stochastic outside
disturbances (such as free stream turbulence or acoustic
waves) to the velocity perturbations. We note that the H,
norm has an appealing physical interpretation; it represents
the ensemble average energy density of the statistical steady
state.'>!® The turbulence suppression takes place if the en-
semble average energy density is reduced in the presence of
control. The system norms were previously employed by
Farrell and Toannou'* and Kim'” for evaluation of active flow
control strategies. However, to the best of the author’s
knowledge this approach has not been used for assessing
effectiveness of sensorless flow control strategies.

Our approach has strong parallels with the concept of
vibrational control, where the system’s dynamical properties
can be changed by introducing zero-mean vibrations into the
system’s coefficients.'® Depending on the relationship be-
tween the natural modes of the uncontrolled system and the
forcing frequency, the vibrational control may have a poten-
tial for providing stability of the overall system and for
changing its receptivity to external disturbances. For ex-
ample, it is well known that the inverted pendulum can be
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FIG. 1. Three-dimensional channel flow.

stabilized by sensorless means using high frequency oscilla-
tions of the suspension point.18 We show that the principle of
vibrational control can be also utilized in systems described
by the NS equations, where coefficients multiplying the sys-
tem’s state can have temporal periodicity. The key observa-
tion is that there is a potential for changing stability proper-
ties and receptivity of the NS equations (in favorable or
unfavorable manner) whenever temporal (or spatial) vibra-
tions enter into the system’s coefficients.

Our presentation is organized as follows: in Sec. II we
determine the nominal velocity of a channel flow subject to
transverse wall oscillations, and present a dynamical descrip-
tion of flow fluctuations evolving around this velocity pro-
file. In Sec. III, we introduce a notion of the frequency re-
sponse of linear time-periodic systems and briefly describe a
computationally efficient method for determination of the en-
semble average energy density in the presence of small am-
plitude wall oscillations. In Sec. IV, we employ perturbation
analysis to identify the oscillation frequency that leads to the
largest variance suppression for streamwise constant pertur-
bations. We also provide an explicit dependence of the vari-
ance amplification on the Reynolds number R. In Sec. V,
we consider the full three-dimensional perturbations in
Poiseuille flow with R=2000, and compute the ensemble av-
erage energy density for oscillation frequency that leads to
the largest variance suppression for streamwise constant per-
turbations. In Sec. VI, we summarize our presentation and
give an outlook for future research directions.

Il. DYNAMICS OF VELOCITY FLUCTUATIONS
A. Nominal velocity

Consider a flow between two parallel infinite plates with
geometry illustrated in Fig. 1. Incompressible flow of a vis-
cous Newtonian fluid satisfies the NS and the continuity
equations given in their nondimensional forms by

u,=—V,u-VP+(1/R)Au+F,
(1)

0=V -u,
where u is the velocity vector, P is the pressure, F is the
body force, V is the gradient, A:= V2 is the Laplacian, and
operator V,, is defined as V:=u-V. The Reynolds number is
defined in terms of maximal nominal velocity U and channel
half-width 8, R:= U/ v, where v denotes the kinematic vis-
cosity.

Let the flow be subject to a transverse oscillation of the
lower-wall, and let the nominal body force be equal to zero,
F=0. Due to no-slip, the wall oscillation imposes an oscil-
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latory boundary condition on the spanwise component of
nominal velocity U:=[U V W]. If the lower wall oscillates
with frequency w,:=2m/T, the nominal velocity can be de-
termined from Eq. (1) subject to

W(=1):=2asinw,y, F=0,

V(x1)=V(x1)=W(1) =0,
(2
Poiseuille flow: ng =-2/R, U(x1)=0,

Couette flow: P,.=0, U(-1)=0, U(1)=1,

where positive parameters « and 7, respectively, denote the
nondimensional amplitude and period of wall oscillations. If
W,, and T,, are the wall oscillation amplitude and period in
physical units, then a:=W,,/U=R, /R and T:=T,,/T,, where
R, :=W,, 6/ vis the Reynolds number defined in terms of W,,
and T,:= /U is the convective time scale. The amplitude of
wall oscillations is multiplied by 2 for convenience of later
algebraic manipulations.

In the steady state, Eq. (1) simplifies to the x and
z-direction momentum equations, which are completely
decoupled

0=-P.+(l/R)U,, (3a)

W,=(L/R)W,,. (3b)

The steady-state solution to Egs. (2) and (3) is given by
u:=[U(y) 0 W(y,n]", with U(y)=1-y? in Poiseuille flow,
U(y)=(y+1)/2 in Couette flow, and

W(y,t) =2 W (y)cos w,t + W (y)sin w,t].

Functions W.(y) and W(y) represent solutions to the follow-
ing system of ordinary differential equations:

Wi(y)=-QW.(y), Wi =QW,),

)

W(1)=W(x1)=0, W(-1)=1,

where W/(y) denotes a second derivative of W,(y), that is
W!(y):=d*W,(y)/dy*, r=s or r=c. Note that Q:=w,R
=w, &/ v, with w,:=27/T,, represents the Stokes number.
It is a standard fact that the Stokes number quantifies a ratio
between'? (a) diffusive time scale T,:= 8 /v and wall oscil-
lation period T,; (b) channel half-width § and Stokes
layer thickness (v/w,)"?, Q=8&/(v/w,). Clearly, the solu-
tion to (4) depends only on y and (); this dependence can be
readily determined symbolically using MATHEMATICA (see
Appendix A).

B. Linearized Navier-Stokes equations

The dynamics of fluctuations around a nominal flow

condition (U, P) are derived by expressing the flow and the
forcing fields as the sum of nominal and fluctuating terms

{u:=U+v,P:=P+p,F:=F+d=d}. If U represents a steady-
state solution of the NS equations subject to (P,F) the lin-
earization of Eq. (1) yields
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v,==Vgv-Vu-Vp+(I/R)Av +d, (5a)
0=V-v. (5b)

These equations govern the dynamics (up to first order) of
velocity and pressure fluctuations v:=[u v w]” and p in the
presence of a body force fluctuation d:=[d, d, ds]". This
force represents an outside excitation to the linearized NS
equations (5) and, for example, it can account for distur-
bances arising due to free stream turbulence or acoustic
waves (which are arguably present in most flows). On the
other hand, nominal velocity u enters into these equations as
a coefficient that multiplies velocity fluctuation vector v.
Each field in Eq. (5) is assumed to vary both temporally and
spatially, e.g., d=d(x,y,z,1).

Since the nominal velocity determines coefficients of the
linearized NS equations, system (5) inherits the constant co-
efficients in x and z, and the periodic coefficients in time.
Thus, the Fourier transform in x and z can be used to convert
the linearized NS equations into a family of partial differen-
tial equations in y with temporally periodic coefficients.
This family of equations is parameterized by the horizontal
wavenumbers k, and k, the Reynolds numbers R and
R,,, and the Stokes number (). By applying a standard
conversion to the wall-normal velocity (v)/wall-normal
vorticity (7) formulation,'”> we transform Eq. (5) with
u:=[U(y) 0 W(y,n]" to

l/’f(k)ﬂy’kza t) = A(kx7kz7t) '#(kx?y?kpt)
+ B(k, k. )d(k,,y,k.,t),

(6)
V(kx7y7kz9t) = C(kx’kz) lpb'(kx’y,kp t) )

where #:=[v 7]”, and A, B, and C are given by

- ik.0, —ik

All 0 Xzy )
A = A A , C:= p k 0 s

T ik.d, ik,

[~ ik A9, —KPAT —ik,A‘I&y]
B = ) b
ik 0 - ik,,

L Z

1
Ay = A_I{EAZ + ik JU"(y) - U()’)M}
+ik AW (y,1) = W(y,0)A],
Ay = —ik,U' (y) + ik, W' (v,0),

Ay = (1IR)A - ik, U(y) - ik.W(y,1),

W 2R, W) Qr W.(y)si Qr
= (y)cos — + W (y)sin — |,
R C y R N y 1 R
with i:=\-1 and k*:=k>+k%. System (6) is subject to the
following boundary conditions: {olk,, =£1,k,,1)
=v,(ky, 1.k, 0)=n(k,, =1,k,,0)=0, Vk,k eR, Vi=0},
which are derived from the original no-slip boundary
conditions on (u,v,w). Mathematical background necessary
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for a precise description of the above operators is given in
Appendix B.

lll. FREQUENCY RESPONSE OF LINEAR
TIME-PERIODIC SYSTEMS

We next introduce a notion of the frequency response for
stable linear time-periodic systems with period 7=27/ w,.

It is a standard fact that a frequency response of a stable
linear time-invariant system describes how a persistent har-
monic input of a certain frequency propagates through the
system in the steady-state. In other words, the steady-state
response of a stable linear time-invariant system to an input
signal of frequency w, is a periodic signal of the same fre-
quency, but with a modified amplitude and phase. The am-
plitude and phase of the output signal are precisely deter-
mined by the value of the frequency response at the input
frequency w. An in-depth discussion of the frequency re-
sponse in Poiseuille and Couette flows and its utility in un-
derstanding transition is presented in Refs. 20 and 21.

On the other hand, a steady-state response of a stable
linear time-periodic system to a harmonic input of frequency
0 in general contains an infinite number of harmonics sepa-
rated by integer multiplies of w,, that is 6+nw,. Using this
fact and the analogy with the linear time-invariant systems,
the frequency response of a linear time-periodic system can
be defined in terms of the so-called Bloch waves* (or,
equivalently, exponentially modulated periodic signalszs).
The latter terminology indicates that the signals of interest
can be represented by a product between time periodic terms
(which are decomposed into corresponding Fourier series)
and an exponential term ' that modulates the amplitude of
periodic components. Namely, the steady-state response of
Eq. (6) to a Bloch wave

©

d(key.kt) = 2 d, (ke y,k)e! "ot 0r,

n=—o0

is also a Bloch wave

o

V(kx’y’kz’t) = E Vn(kx’y’kz)ei(nw0+0)f’

n=—0

where d,(k,,y.k,) and v,(k,,y.k,) are the functions of y
parameterized by k, and k,, and 6€[0,w,) is the angular
frequency. The frequency response of Eq. (6) is an operator
Hyke,k,) that maps a Dbi-infinite input vector
col{d, (k,,y,k.)},cz to a Dbi-infinite output vector
col{v,(k.,y.k.)},c7 and it can be expressed as

Hﬂ(kxv kz) = C(kx’ kz) [5( 0) - A(k)p kz)]_ : B(k.w kz) >

where £(6) is a block-diagonal operator given by &(6)
:=diag{i(6+nw,)I},.,, and I is the identity operator. On the
other hand, A, B, and C represent block-Toeplitz operators
(that is, operators with constant blocks along subdiagonals),

e.g.,
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A= toep{...,Az,Al,,A_],A_z, .

Ay A A

=|--- A Ay A, - |,

Ay A Ay

where, for notational convenience, we suppress the depen-
dence on k, and k.. The box denotes the element on the main
diagonal of .A. This bi-infinite matrix representation is ob-
tained by expanding operators A, B, and C in Eq. (6) into
their Fourier series, e.g., A(k,k,,t)=2"_ A, (k. k)e" .
Clearly, since B and C are time-invariant operators their
block-Toeplitz representations simplify to block-diagonal
representations, i.e.,

Blk,,k,) =toepy...,0, ,0, ... } =diag{B(k,.k,)},
Clkyk,) =toep{...,0,|Clk,k,)|,0, ...} = diag{C(k,.k,)}.

The Fourier series expansion of operator A(k,,k.,t) with
W(y,1)=2a[W.(y)cos w,t+W(y)sin w,t] is given in Appen-
dix B 2.

For each value of (k.,k,,6), Hyk,k,) is a bi-infinite
matrix whose elements are one-dimensional operators in the
wall-normal direction. This infinite dimensional object con-
tains a large amount of information about the dynamical
properties of system (6). In Refs. 20 and 21, the frequency
responses of the NS equations in channel flows linearized
around U(y) were analyzed as the functions of R, k,, and k..
The temporal and wall-normal dynamics were aggregated by
computing the H, and H.. system norms.** At any k, and k,
these input-output gains, respectively, quantify the variance
(energy) amplification of stochastic outside disturbances and
the worst case amplification of deterministic outside
disturbances.”’ Since we are interested in comparing the
variance amplification for channel flows with and without
spanwise wall oscillations we next define the H, norm for
linear time-periodic system (6).

* The H, norm is defined by
L [* ;
E(kyk.) := o f trace[H:;(kx,kZ)H(,(kx,kz)]da. (7)
m™Jo

At any wavenumber pair, E(k,k.) determines the
asymptotic level of variance maintained in a stable linear
dynamical system subject to a stochastic outside forcing.
In physics and fluid mechanics literature the H, norm is
also referred to as the ensemble average energy density
of the statistical steady state (see, for example, Refs. 15
and 16).

We note that integration over 6 in Eq. (7) can be avoided
in the computation of the ensemble average energy density.
Namely, the variance amplification of system (6) can be ex-
pressed in terms of a solution to the following harmonic
Lyapunov equation:25

Phys. Fluids 20, 014101 (2008)

Flhey k) Vlkyok) + Wk k) F (kyok)
= — Blk, k) B (k.k,),

Flkyk,) = Ak, k,) — £(0).

At any wavenumber pair (k,,k.), the solution to this equation
is a self-adjoint block-Toeplitz operator V(k,,k.),”

ok *
V::toep{...,Vz,Vl,,Vl,Vz, L

and the variance amplification is determined by
E(k,.k,) = trace[ Vo(k,.k,)C" (k,.k.) (k. k).

At any pair of the spatial wavenumbers, the entries into
the harmonic Lyapunov equation are bi-infinite operator-
valued (in the wall-normal direction) matrices. Thus, a dis-
cretization of the linearized NS equations in y in combina-
tion with a truncation of bi-infinite matrices would require
solving a large-scale Lyapunov equation; for an accurate
computation of the ensemble average energy density the en-
tries into this equation are typically matrices with a large
number of rows and columns. Since we need to determine
how variance amplification changes with amplitude and fre-
quency of the wall oscillations, as well as with the spatial
wavenumbers and the Reynolds number, we are faced with a
computationally intensive undertaking. In view of this, we
consider a problem of the small wall oscillation amplitudes
in this paper. For this special case, a perturbation analysis
yields a computationally efficient method for determining the
ensemble average energy density.26 It turns out that the vari-
ance amplification can be obtained by solving a certain num-
ber of Lyapunov and Sylvester equations whose order is de-
termined by the size of discretization in y; the number of
these equations is for one greater than the highest order of
perturbation parameter in the power series expansion of the
ensemble average energy density.

Remark 1: The analysis of dynamical systems with inputs
has a long history in circuit theory, controls, communica-
tions, and signal processing. In this analysis, it is convenient
to express dynamical systems as input-output “blocks” that
can be connected in a variety of cascade, series, and feed-
back arrangements. The utility of this approach is twofold.
First, it greatly facilitates analysis and design of complex
systems made up of sub-blocks that are easier to character-
ize. Second, it allows for modeling of dynamical inputs which
are unmeasurable or uncertain. These include stochastic or
deterministic uncertain signals such as noise or uncertain
forcing that are inevitably present in most physical systems.
An overview of how input-output analysis can be employed
to uncover the mechanisms triggering early stages of transi-
tion in wall-bounded shear flows can be found in Refs. 15,
16, 20, 21, and 27.

Remark 2: The linearized NS equations in channels,
pipes, and boundary-layers are characterized by non-normal
dynamical generators [operator A in Eq. (6)]. An operator is
normal if it has orthogonal eigenfunctions (or, equivalently,
if it commutes with its adjoint).28 It is a fact that inputs into
even stable non-normal dynamical systems can be amplified
by arbitrarily large factors.29 Since the linearized NS equa-
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tions in wall-bounded shear flows have non-normal genera-
tors, the spectral analysis is not capable of capturing impor-
tant facets of the linearized dynamics. It turns out that in
subcritical regimes the linearized NS equations experience
large transient growth before eventual decay. Furthermore,
these equations are exceedingly sensitive to outside distur-
bances or modeling uncertainties. One can arrive at these
observations by performing the transient growth,]2‘30’3] the
pseudospectra,z&zg or the input-outputlj’]6’20’2]’27 analyses.
The transient growth analysis reveals initial conditions that
have the largest growth potential on a given time interval,
the pseudospectra analysis elucidates sensitivity of the lin-
earized NS equations to modeling errors, and the input-
output analysis quantifies receptivity of the linearized dy-
namics to external disturbances (such as free-stream
turbulence and acoustic waves). All of these methods exem-
plify the importance of streamwise vortices and streaks in
both transitional and turbulent wall-bounded shear flows.

Remark 3: While the transient growth analysis focuses
on the search for initial perturbations that gain most energy
on a certain time interval, the input-output analysis is con-
cerned with identifying the flow structures that are strongly
amplified by persistent outside disturbances. Namely, in the
input-output analysis the initial conditions are zero and one
considers responses of the linearized dynamics to uncertain
body forces. When the body forces are absent the response of
stable flows eventually vanishes. However, in the presence of
stochastic body forces the linearized NS equations are ca-
pable of maintaining high levels of the steady-state variance.
The 'H, norm exactly determines the asymptotic level of vari-
ance sustained in the stable linear dynamical system subject
to a stochastic outside forcing.24 Even though both transient
growth and input-output analyses use a kinetic energy den-
sity of the perturbed flow field to quantify the size of velocity
perturbations, there exists no general relationship between
them.

Since the operators appearing in the expression for the
ensemble average energy density depend on the wavenum-
bers k, and k,, the Reynolds numbers R, and R, and the
Stokes number (), the variance amplification is also a func-
tion of these parameters. In Sec. IV, we provide an explicit
scaling of the variance amplification with the Reynolds num-
bers for the streamwise constant system (6) with R, <R, and
analyze how it changes with k. and Q). In Sec. V, we consider
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the full three-dimensional perturbations in Poiseuille flow
with R=2000, and compute the variance amplification for a
value of the Stokes number that leads to the largest variance
suppression for streamwise constant perturbations. All nu-
merical computations are performed using a Matlab Differ-
entiation Matrix Suite.*”

IV. VARIANCE AMPLIFICATION AT k,=0

In this section, we study system (6) in the important
special case of streamwise constant three-dimensional pertur-
bations. The motivation for a thorough analysis of this model
stems from the fact that the streamwise constant perturba-
tions in Poiseuille and Couette flows contribute most to the
ensemble average energy density of the statistical steady
state.'>2**" Our objective is to quantify the influence of
small-amplitude transverse wall oscillations on the amplifi-
cation of stochastic outside disturbances. We employ a per-
turbation analysis to provide an explicit dependence of the
variance amplification on the Reynolds numbers. We also
study the ensemble average energy density as a function of k,
and (), and identify the values of the Stokes number that lead
to the variance attenuation. We show that suppression (en-
hancement) of turbulence by transverse wall oscillations is
due to decreased (increased) levels of variance compared to
the uncontrolled flow. In other words, the wall oscillation
induced changes in nominal velocity constrain velocity per-
turbations to experience smaller (for suppression of turbu-
lence) or larger (for enhancement of turbulence) receptivity
to stochastic outside disturbances.'

By setting k,=0 in Eq. (6) we obtain

ll’t(y»kz’t) =A(kpt) lMy,kz7t) + B(kz)d(y’kvt),

®)
V(y’kmt) = C(kz) lp(y’kwt) 5

where, for
2R Q1 Qr
W(y,t) = 7W W.(y)cos = + W(y)sin rak
we have (see Appendix B 2)
R, . .
A(kzs t) = AO(kz) + EW[A—] (kz)e_l(Q/R)l + A 1 (kz)el(Q/R)t] s

with A, (k) :=A (k) ¥ iA,(k.), and

lLo(kz) 0
AO(kZ) = 1 4
Cp()(kz) ESO(kZ)
— L:l(kz) 0 L:l(kz) = Lc(kz) + iLs(kz)’
A+1(k1) . |: 0 S:l(kz) :|, S:l(kz) = Sc(kl) + iSS(kZ)'
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FIG. 2. (Color online) Plots of functions f, g¢, f>, and g, in Theorem 1. The f functions are the same for all parallel channel flows U(y). The terms responsible

for the O(R?) variance amplification are shown in (b, e) Couette flow and (c, f) Poiseuille flow. The largest suppression of variance occurs at )~4.54, in

Couette flow, and at Q= 17.61, in Poiseuille flow.

The underlying operators in Ay(k.) and A,(k.), for r=c or
r=s, are determined by
LO = A—IAZ’

Cc

pO = lsz,(Y),

SO = A’ Sr == lkzwr(y)’

L= ik AT W) - W, ()AL,

where A:= ﬁ),y—kf, with homogenous Dirichlet boundary
conditions, and A2:= ayyyy—2kf(9yy+k§, with homogenous
Dirichlet and Neumann boundary conditions. It is a standard
fact that, for any (k,,R), Ay(k,) represents a stable operator.'?
We also note that B(kz)B*(kZ)zl and C*(kz) C(k,)=1I, which is
important for the variance amplification computations (see
Ref. 21 for details).

We next state the result that quantifies variance amplifi-
cation of streamwise constant perturbations in parallel chan-
nel flows subject to small amplitude transverse wall oscilla-
tions.

Theorem 1: For any parallel channel flow U(y) subject
to small amplitude transverse wall oscillations

W(y=-1,1) =2(R,/R)sin(Q)/R)t, R, <R,

the variance amplification of streamwise constant perturba-
tions is given by

E(kz) = f()(kz) + E R‘%V" 2n(kzvﬂ) R

n=1
o)

+| golk.) + X R2'g0, (k.. Q) |R®.

n=1

Theorem 1 establishes an explicit scaling of the en-
semble average energy density with the Reynolds numbers R
and R, for any streamwise constant parallel channel flow
subject to small amplitude transverse wall oscillations. It can
be shown that functions f and g in Theorem 1 represent
traces of the solutions to certain operator Lyapunov equa-
tions, and the f functions do not depend on U(y). Thus, fo(k.)
and f,(k.,Q)) are the same for all parallel channel flows
U(y). On the other hand, gy(k.) and g,,(k.,€}) depend on the
underlying parallel base flow through their dependence on
the nominal shear U’(y). Since a contribution of g, and g,,
to the ensemble average energy density scales as R>, these
two functions play a dominant role in the amplification of
stochastic outside disturbances for the large-Reynolds-
number channel flows.

In the absence of wall oscillations (that is, at R,,=0), we
recover a formula for the ensemble average energy density of
the streamwise constant NS equations linearized around
U(y).” Functions f, and g, are thoroughly analyzed in
Refs. 20, 21, and 27; for completeness, they are also shown
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in Fig. 2. The peaks in the plots of g, determine the most
energetic structures in the velocity field excited by a broad-
band, stochastic input field d. These peaks take place at k,
~1.40, in Couette flow, and at k,~1.78, in Poiseuille flow.
As the plots of g, reveal, the Stokes number () determines
whether transverse oscillations amplify or attenuate the most
energetic components of the uncontrolled flow. We observe

that the largest variance attenuation occurs at (=~4.54, in

Couette flow, and at Q~17.61, in Poiseuille flow. Since the
influence of f, on the ensemble average energy density at
large Reynolds numbers is negligible compared to the influ-

ence of g, (R versus R® scaling), () represents the Stokes
number that provides the largest variance suppression (up to
a second order in parameter R,). Note that the largest nega-
tive contributions of g, to the ensemble average energy den-
sity are located in the region of spanwise wavenumbers
where function g, peaks; this indicates that the spanwise wall
oscillations introduce interactions with the most energetic
modes (streamwise vortices and streaks) of the uncontrolled
flow which lead to a parametric resonance.

Figures 3(a) and 3(b), respectively, show the variance
amplifications of the uncontrolled Poiseuille and Couette
flows with R=2000 (solid curves with triangles), as well
as the variance amplifications of the flows subject to the
wall oscillations with {R,=20, (=17.61} (Poiseuille) and
{R,,=10, 1=4.54} (Couette). The variance amplification of
the controlled flow is obtained using Theorem 1 by approxi-
mating the infinite summations in the expression for E(k.) by
the summations with: one term (solid curves with circles),
two terms (dashed curves), three terms (dot-dashed curves),
four terms (dotted curves), and five terms (solid curves), re-
spectively. Clearly, for selected values of the wall oscillation
amplitudes and frequencies, the second order corrections to
the ensemble average energy density give optimistic esti-
mates of the variance suppression that can be achieved with
the spanwise wall oscillations. The good news is that the
curves corresponding to the sixth, eight, and tenth order cor-
rections lie almost on the top of each other in Figs. 3(a) and
3(b). These results closely match the results obtained using
large-scale computations. On the other hand, truncations
with the fourth order corrections yield somewhat conserva-
tive estimates, but these estimates are much closer to the true

values of the ensemble average energy density than the esti-
mates obtained using the second order corrections.

We note that for large wall oscillation amplitudes the
perturbation analysis may experience the slow rate of con-
vergence or the lack of convergence. Despite these limita-
tions the perturbation analysis is capable of identifying im-
portant trends in amplification of ambient disturbances. In
particular, our method provides a paradigm for the optimal
selection of transverse oscillation frequencies for turbulence
suppression. When the frequency is selected, the large-scale
computations can be used to determine the variance amplifi-
cation for oscillation amplitudes at which perturbation analy-
sis fails to converge. This is illustrated in Figs. 4(a) and 4(b),
where the ensemble average energy densities of uncontrolled
Poiseuille and Couette flows with R=2000 (solid curves),
and controlled Poiseuille and Couette flows with {R=2000,
R,,=20} (solid curves with circles) and {R=2000, R, =50}
(solid curves with triangles) are shown. In both cases the
Stokes number is selected using perturbation analysis (up to
a second order) which yields 1=17.61, in Poiseuille flow,
and ()=4.54, in Couette flow. Thus, properly designed trans-
verse wall oscillations with amplitudes equal to 2% and
5% of the maximal nominal velocity (R,,/R=0.01 and
R,,/R=0.025, respectively), reduce the largest variance of
the uncontrolled flows by approximately 14% and 35% in
Poiseuille flow (31% and 59% in Couette flow), respectively.
This demonstrates the ability of transverse wall oscillations
to significantly attenuate the most energetic structures in
transitional channel flows.

Flow structures that produce the most variance in
Poiseuille flow with {R=2000, k,=0, k,=1.78} are shown in
Fig. 5. The development of the streamwise velocity pertur-
bations in the channel’s cross section (y-z plane) is given.
These perturbations are streamwise independent and, as
such, they do not vary in the x-direction. The parabolic shape
of the uncontrolled nominal flow leads to the development of
streamwise velocity in antisymmetric pairs of peaks about
the channel’s centerline.”® Our results demonstrate that the
properly designed transverse oscillations of the lower wall
significantly weaken the intensity of streamwise streaks in
the lower part of the channel. On the other hand, the domi-
nant flow structures in the upper part of the channel remain
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FIG. 4. (a) The ensemble average energy densities of uncontrolled Poiseuille flow with R=2000 (solid curve), and controlled Poiseuille flows with {R=2000,
R, =20, Q=17.61} (solid curve with circles) and {R=2000,R,,=50,Q=17.61} (solid curve with triangles). (b) The ensemble average energy densities of
uncontrolled Couette flow with R=2000 (solid curve), and controlled Couette flows with {R=2000,R,,=20,Q=4.54} (solid curve with circles) and {R=2000,
R,,=50, (=454} (solid curve with triangles). Both plots are obtained by solving the large-scale truncation of the harmonic Lyapunov equation. The lower wall
oscillations with amplitudes equal to 2% and 5% of the maximal nominal velocity reduce the largest variance of the uncontrolled flows by approximately 14%
and 35% in Poiseuille flow (31% and 59% in Couette flow), respectively.

almost unaltered. This can be easily changed by introducing
transverse oscillations of the upper wall.

The results of this section show that the transverse wall
oscillations of appropriate frequency have a potential for re-
ducing the ensemble average energy density of streamwise
constant perturbation which consequently leads to a smaller
turbulence production. 1415

transverse wall oscillations of frequency (/R influence en-
semble average energy density of streamwise varying pertur-
bations.

For three-dimensional perturbations we express the en-
semble average energy density as

E(kx’kz) = EO(kx’kz) + 2 R%vnEZn(kX?kz)’
n=1

V. VARIANCE AMPLIFICATION IN POISEUILLE FLOW

WITH R=2000 and illustrate the dependence of E, and E, on (k,k.) in

Poiseuille flow with {R=2000,Q=17.61} in Fig. 6. These

plots are obtained with 150X 100 grid points in the wave-

number space; they are chosen in the logarithmic scale for k,

In this section, we consider the full three-dimensional
perturbations in Poiseuille flow with R=2000, and compute

the ensemble average energy density for the Stokes number
that leads to the largest variance suppression at k,=0. As

shown in Sec. IV, this value is determined by ()= 17.61. The
purpose of this exercise is to find out how small amplitude

with {knin=10",k,n.=3.02}, and in the linear scale for k,
with {k_pin=10"", k., =5}. As the plot in Fig. 6(b) demon-
strates, the small amplitude transverse oscillations reduce the
variance of uncontrolled flow for wavenumbers where it

u(z,y): u(z,y):
1 1
> 0 0 > 0 0
M.'..MM.... ),
= 2 0 2 -1 2 0 2 -1 2 0 2
z z z
(a) (b) (c)

FIG. 5. (Color online) Flow structures that produce most variance in Poiseuille flow with {R=2000, k,=0, k.=1.78}. Plots of streamwise velocity perturbations
in: (a) uncontrolled flow; (b) controlled flow with R,,=20 and 2=17.61; (c) controlled flow with R,,=50 and =17.61, are shown. All velocities are scaled
such that their maximal values are equal to 1.
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Eo(kw, kz):

z

(2)

achieves the largest values. This is because the regions rep-
resenting large positive values of E in Fig. 6(a) almost over-
lap with the regions representing large negative values of E,
in Fig. 6(b). Moreover, in these regions, the higher order
corrections generate alternating positive and negative contri-
butions to the ensemble average energy density (not shown).
Also, we observe that the weakly oblique perturbations cre-
ate the largest positive second order (in R,,) contribution to
the variance amplification. This suggests that the streamwise
constant perturbations may no longer represent the most am-
plified flow structures at the large values of R,. Rather, the
plots of Fig. 6 open the possibility of having more complex
weakly oblique dominant flow structures in channel flows
subject to transverse oscillations of large amplitudes. To in-
vestigate this, we have computed the variance amplification
in Poiseuille flow with {R=2000, R,=50, Q=17.61} using
the large-scale truncation of the harmonic Lyapunov equa-
tion. The plot in Fig. 7 establishes that the streamwise con-
stant structures are still most energetic. This may be attrib-
uted to the fact that the weakly oblique peaks have much
smaller contributions to the higher order energy density cor-
rections (E4,Eg, ...) than the streamwise constant peaks. Ad-

10"

k

z

FIG. 7. (Color online) The ensemble average energy density in Poiseuille
flow with {R=2000, R,,=50, 2=17.61} computed using the large-scale trun-
cation of the harmonic Lyapunov equation. A significant suppression of
variance compared to the uncontrolled flow [cf. Fig. 6(a)] is observed.
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FIG. 6. (Color online) Plots of
Ey(k,,k.) and E(k,,k.) in the expres-
sion for the ensemble average energy
density in Poiseuille flow with R
=2000 and Q=17.61.

z

(b)

ditionally, these weakly oblique peaks occur in the (k,,k.)
regions where the ensemble average energy density of the
uncontrolled system achieves much smaller values compared
to its largest values at k,=0.

The results of this section provide an additional insight
about the influence of oscillation amplitude on variance am-
plification, and help us identify the most amplified regions in
the wavenumber space for larger values of oscillation ampli-
tudes.

VI. CONCLUDING REMARKS

This paper develops a framework for modeling and op-
timization of sensorless flow control strategies in wall-
bounded shear flows. The new paradigm represents a spatio-
temporal analog of the well-known principle of vibrational
control, where the system’s dynamical properties are altered
by introducing zero-mean vibrations into the system’s
coefficients.'® Depending on the relationship between the
natural modes of the uncontrolled system and the forcing
frequency, the vibrational control may have a potential for
providing stability of the overall system and for changing its
input-output norms. For example, it is well known that the
inverted pendulum can be stabilized by sensorless means us-
ing high frequency oscillations of the suspension point.18 We
show that the principle of vibrational control can be also
utilized in systems governing the dynamics of flow fluctua-
tions in channel flows, where coefficients multiplying the
system’s state have temporal periodicity. The key observa-
tion is that there is a potential for changing dynamical prop-
erties of the linearized NS equations (in favorable or unfa-
vorable manner) whenever temporal (or spatial) vibrations
enter into the system’s coefficients.

We model and analyze the influence of small amplitude
transverse wall oscillations on variance amplification in
channel flows. We develop models that govern the dynamics
of flow fluctuations; the transverse oscillation parameters en-
ter as coefficients, and the body force fields enter as stochas-
tic outside disturbances into these models. We conduct a re-
ceptivity analysis for the derived models, which yields
optimal oscillation frequency (as a function of the Reynolds
number) for turbulence suppression. For Poiseuille and Cou-
ette flows we show that transverse wall oscillations with am-
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plitudes equal to 5% of the maximal nominal velocity reduce
the largest ensemble average energy density of the uncon-
trolled flows by approximately 35% and 59%, respectively.
Our results show ability of properly designed transverse wall
oscillations to reduce receptivity of the linearized NS equa-
tions to stochastic outside disturbances, which leads to de-
creased levels of variance in the wall-bounded shear flows.

One important aspect in evaluation of any flow control
strategy is the assessment of the overall energy balance to
determine whether there is any net benefit; this topic is out-
side the scope of the current work.
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APPENDIX A: FUNCTIONS W,(y) AND W,(y)

From Sec. IT A, we recall that W,(y) and W,(y) represent
solutions to

W;,(y) == QWc(y)’ Wg()’) = ‘Q’Ws(y),

W, (1) =W, (£1)=0, W,(-1)=1.

This system of equations can be rewritten in terms of the
following ordinary differential equation with constant coef-
ficients,

q'(y)=Gqly), p(y)=Hq(y),

b=Ng(=1)+Ny(1), ye[-1,1],

where p:=[W, W.J', b:=[100 0], g:=[W, W, W W],
and

0O 0 10
0O 0 01

G:= 0 -0 00/ H =[x, 055],
Q 0 00

N = [szz Ozxz}’ N, = |:02><2 022 ]
0252 02x2 Ly Ozxs.

The solution to the above system is given by

p(y) = HeU (N, +N,e*) b,
and its dependence on () and y can be readily determined
symbolically using MATHEMATICA.

APPENDIX B: THE UNDERLYING OPERATORS

We next briefly present mathematical considerations
necessary for a precise description of the operators in Eq. (6).

1. Adjoint operators

The adjoints of A, B, and C are, respectively, determined
from (4, A¢h)=(A" iy, )., (0, Bd).=(B"¢.d), (v,Ce)
=(C"v, ), (see Ref. 21 for details), where (-, -) denotes the
standard L*[—1,1] inner product, that is

Phys. Fluids 20, 014101 (2008)

(v,v):= fllv*vdy.

On the other hand, the inner product {-,-), determines the
kinetic energy density of harmonic (in x and z)
perturbations30

E=(.), = ($.09),

o ! [—A o]
TRl 1]

Using the above expressions, it is readily shown that BB*
=], C"C=1I, and

where
A}y = 2ATA? 4 ik [U(y) = AU (9)] + ik [ Wy, 1)
— AW (y,0)],

Ay = 2A + ik U(y) +ik,W(y.0),

Ay =— ik AU (y) + i AW (1,1).

2. Fourier representation of A(k,, k,, )

From W(y,1)=2a[W.(y)cos w,t+W,(y)sin w,t] with
{a=R,/R, w,=Q/R}, and the definition of operator A(r), it is
clear that

A(t)=Ag+2a(A, cos w,f+ A sin w ) = A,

+ %(A_le_i(!z/R)’+A1€i(mR)r)a

A=A, TiA,.

Here, A, denotes the system generator in Poiseuille or Cou-
ette flow, and

| ,_[i@‘l(vv,’(y)—w,(ym) 0 }
. ik W(5) ~ kW) ]

for r=c or r=s. Furthermore, from Appendix B 1 it follows
that

e [ikxw,(y) SATWG) iAW) ]
r 0 ikW,(y) |’

which can be use;d to determine AL:AfiiAj. The defini-
tions of Ay and A, are directly obtained from the definitions
of A(7) and A™(¢) by setting W(y,7)=0.
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