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Abstract— We consider the problem of growing connected
networks of resistors where effective resistance is used as a
performance metric. This problem can be cast as a semidefinite
program by introducing an `1 regularization into the optimal
control formulation. For small networks this problem can be
solved via standard interior point method solvers (e.g., SeDuMi
or SDPT3). In this paper, we develop a primal-dual interior
point algorithm that is well-suited for large-scale problems.
The search direction is obtained using the direct method based
on Cholesky factorization and iterative method based on the
preconditioned conjugate gradient. We illustrate that both of
these significantly outperform general-purpose solvers.

Index Terms— Convex optimization, interior-point method,
`1 minimization, resistive networks, semidefinite programming.

I. INTRODUCTION

Reaching consensus via distributed information exchange
has emerged as an important paradigm in network sci-
ence [1]. This problem is encountered in a number of
applications ranging from social networks where a group
of individuals is trying to agree on a certain issue [2], [3],
to distributed computing networks where it is desired to
evenly spread workload over a number of processors [4],
[5], to cooperative control where local interactions between
the vehicles are to be used in order to reach an agreement
on heading direction or inter-vehicular spacing [6]–[9]. In
each of these applications, it is of interest to reach an
agreement by exchanging relative information between the
nodes. Conventional optimal control of distributed systems
relies on centralized implementation of control policies [10].
In large networks of dynamical systems, centralized infor-
mation processing may impose a heavy burden on individual
nodes. This motivates the development of distributed control
strategies that require limited information exchange between
the nodes in order to reach consensus or guarantee synchro-
nization [11]–[15].

In this paper, we consider an optimal control problem
in which it is desired to add certain number of edges to
a connected resistive network (with known graph Laplacian)
in order to optimally enhance performance of the closed-loop
network. In general, this problem amounts to an intractable
combinatorial search. Several references have examined con-
vex relaxations or greedy algorithms in order to optimize
algebraic connectivity of the network by adding edges from
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a given set of edges [16], [17]. To avoid combinatorial com-
plexity, we approach this problem using recently introduced
sparsity-promoting optimal control framework [18], [19]. In
our formulation, the network performance is captured by the
effective resistance [12] and `1 regularization is introduced in
order to promote controller sparsity [14], [20]. The resulting
optimal control problem is a convex optimization problem,
which can be formulated as a semidefinite program (SDP).
We derive the dual form of the optimal control problem
which provides a lower bound on the primal objective value.
We also develop a primal-dual interior point algorithm that is
significantly faster than general purpose solvers. We compute
the search direction using both a direct method (based
on Cholesky factorization) and an iterative inexact method
(based on the preconditioned conjugate gradient).

Notation: Notation is standard. We study undirected
stochastically forced consensus network with n nodes. Sym-
metric n×n matrices Lp and Lf represent Laplacian matrices
of the plant and the controller, respectively. The n × m
matrix E is the incidence matrix of the controller graph.
The transpose of the vector x is given by xT and the ith
component of the vector x is xi; Dx := diag (x) is a diagonal
matrix with diagonal entries determined by the vector x. The
diagonal of a matrix A, diag (A), is a vector. Symmetric
positive definiteness (semi-definiteness) is expressed by A �
0 (A � 0), and elementwise inequality is denoted by x ≥ 0.
Finally, 〈A,B〉 represents the standard inner product of two
matrices, i.e., 〈A,B〉 := trace

(
ATB

)
.

II. PROBLEM FORMULATION

We consider a control problem for an undirected consensus
network with n nodes

ẋ = −Lp x + u + d

z =

[
Q1/2

0

]
x +

[
0

R1/2

]
u

u = −Lf x.

(1)

Here, d and z denote disturbance input and performance
output, x is the state of the network, and u is the control
input. Symmetric n × n matrices Lp and Lf represent
Laplacians of the plant and the controller, respectively. Upon
closing the loop we obtain

ẋ = − (Lp + Lf )x + d

z =

[
Q1/2

−R1/2Lf

]
x.

(2)

Our objective is to design sparse Lf in order to minimize the
steady-state variance amplification of stochastically forced
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network (from white-in-time input d to performance output
z that quantifies deviation from consensus and control effort).

The interesting features of this problem come from struc-
tural restrictions on the matrices Lp, Lf , and Q. All of
them are restricted to having an eigenvalue at zero with the
corresponding eigenvector of all ones,

Lp 1 = 0, Lp = LTp

Lf 1 = 0, Lf = LTf

Q1 = 0, Q = QT .

(3)

Moreover, we consider state weights that are positive definite
on the orthogonal complement of the subspace spanned by
the vector of all ones,

Q̄ := Q + (1/n)11T � 0.

In what follows, we express Lf using incidence matrix E of
the controller graph

Lf :=

m∑
l= 1

fl el e
T
l = E diag (f)ET . (4)

Here, m is the number of edges in the controller graph
Lf , and diag (f) is a diagonal matrix containing vector
of edge weights f ∈ Rm of the controller graph. Vectors
el ∈ Rn determine columns of the incidence matrix E and
they signify that nodes i and j are connected: the ith and jth
entries of el are equal to 1 and −1, respectively; all other
entries are equal to 0.

In order to achieve consensus, it is required that the closed-
loop graph Laplacian, Lp + Lf , be positive definite on 1⊥.
This requirement amounts to positive definiteness of the
“strengthened” graph Laplacian

G := Lp + Lf + (1/n)11T

= Gp + Lf � 0
(5a)

where
Gp := Lp + (1/n)11T . (5b)

Structural restrictions (3) on the Laplacian matrices introduce
an additional constraint on G,

G1 = 1. (5c)

The variance amplification of the closed-loop system (2)
is determined by the H2 norm of the transfer function from
d to z,

‖H‖22 =
1

2

〈
G−1, Q+ Lf RLf

〉
=:

1

2
J(G, f). (6)

As shown in Appendix A, up to an additive constants, the
objective function J can be expressed as

J(G, f) =
〈
G−1, Qp

〉
+ diag

(
ETRE

)T
f (7)

where
Qp := Q̄ + LpRLp.

The problem of designing sparse controller graph in order
to minimize the H2 norm of the closed-loop network can be

formulated as

minimize
G, f

〈
G−1, Qp

〉
+ diag

(
ETRE

)T
f + γ ‖f‖1

subject to G − Gp − E diag (f)ET = 0

G � 0
(SP)

where the `1 norm of f ,

‖f‖1 :=

m∑
l= 1

|fl|

is introduced into the optimal control problem as a proxy
for inducing sparsity. In (SP), the positive definite matrix
G ∈ Rn×n and the vector of edge weights f ∈ Rm are
optimization variables; the problem data is given by the
positive regularization parameter γ, the plant graph Laplacian
Lp, the state and control weights Q and R, and the incidence
matrix of the controller graph E.

The sparsity-promoting optimal control problem (SP) is
a constrained optimization problem with convex objective
function, linear equality, and positive definite inequality
constraints. This implies convexity of (SP). Linear constraint
comes from structural requirements on the closed-loop graph
Laplacian. On the other hand, positive definiteness of the
strengthened graph Laplacian, G, guarantees stability of the
closed-loop network (2) on the subspace 1⊥. The sparsity-
promoting optimal control problem (SP) is a convex opti-
mization problem which can be cast as an SDP [20], [21].

In this paper, we restrict our attention to resistive net-
works [22]. This restriction implies non-negativity of the
edge weights. We will also assume that the plant graph
is connected which implies positive definiteness of the
“strengthened” graph Laplacian of the plant, Gp � 0. Under
these assumptions, the positive definite constraint in (SP)
is automatically satisfied and the sparsity-promoting optimal
control problem (SP) simplifies to

minimize
G, f

〈
G−1, Qp

〉
+ (γ 1 + diag

(
ETRE

)
)T f

subject to G − Gp − E diag (f)ET = 0

−f ≤ 0.
(P)

A. Solving the structured H2 problem (polishing step)

After the structure of the controller graph Laplacian has
been identified, we eliminate the columns from the incidence
matrix E that correspond to zero elements in the vector of the
optimal edge weights f?. This yields new incidence matrix
Ê and leads to the following optimization problem

minimize
G, f

〈
G−1, Qp

〉
+ diag

(
ÊTR Ê

)T
f

subject to G − Gp − Ê diag (f) ÊT = 0

−f ≤ 0

whose solution provides the optimal controller graph Lapla-
cian with the desired structure. This optimization problem
is obtained by setting γ = 0 in (P) and by replacing the
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incidence matrix E with Ê. The “polishing step” is used to
improve performance relative to the solution of the sparsity-
promoting optimal control problem (P).

III. DUAL PROBLEM

In this section, we derive a Lagrange dual of the sparsity-
promoting optimal control problem (P).

Proposition 1: The dual of the sparsity-promoting optimal
control problem (P) is given by

maximize
Y

2 trace
(

(Q
1/2
p Y Q

1/2
p )1/2

)
− 〈Y,Gp〉

subject to diag
(
ET (Y − R)E

)
− γ 1 ≤ 0

Y � 0, Y 1 = 1.

(D)

where Y = Y T ∈ Rn×n is the dual variable associated with
the equality constraint in (P).

Proof: The Lagrangian of (P), L(G, f ; Y, λ), is ob-
tained by associating dual variables, Y and λ ≥ 0, with
equality and elementwise inequality constraints,

L :=
〈
G−1, Qp

〉
+
(
γ 1 + diag

(
ETRE

))T
f +〈

Y,G − Gp − E diag (f)ET
〉
− λT f.

Using commutativity of the matrix trace, we can equiva-
lently rewrite L as

L =
〈
G−1, Qp

〉
+ 〈Y,G〉 − 〈Y,Gp〉 +

(γ 1 − diag
(
ET (Y − R)E

)
− λ)T f.

The dual function is obtained by minimizing the Lagrangian
with respect to f and G. Minimization with respect to f
yields

λ = γ 1 − diag
(
ET (Y − R)E

)
≥ 0 (8)

where non-negativity follows from the fact that λ is the
Lagrange multiplier associated with the inequality constraint
in (P). On the other hand, minimization of the Lagrangian
with respect to G yields

G−1QpG
−1 = Y (9a)

or, equivalently,

G = Q1/2
p

(
Q1/2
p Y Q1/2

p

)−1/2

Q1/2
p . (9b)

Positive definiteness of G and Qp implies positive definite-
ness of Y . Furthermore, since Qp1 = 1, from (5c) and (9a)
we have

Y 1 = 1.

Using the above expressions, we can express the dual func-
tion as

2 trace
(

(Q1/2
p Y Q1/2

p )1/2
)
− 〈Y,Gp〉

and eliminate the slack variable λ from the dual problem.
This allows us to bring the dual of (P) to (D).

Any dual feasible variable Y can be used to obtain a
lower bound on the optimal value of the primal problem (P).
Furthermore, the difference between the objective function

of the primal problem (evaluated at the primal feasible
point (G, f)) and the objective function of the dual problem
(evaluated at the dual feasible point Y ) yields the duality
gap. This positive quantity can be used to estimate distance
to optimality. For the problem under study, the duality gap,
η, can be expressed as

η = λT f = 1T (λ ◦ f)

where ◦ denotes elementwise (Hadamard) vector product and
λ is given by (8).

At optimality, the duality gap η for the primal problem (P)
and the dual problem (D) is zero. Strong duality follows from
convexity of the primal problem (P) and strict feasibility of
the constraints in (P); Slater’s condition is satisfied with,
e.g., f = 1. Furthermore, if (G?, f?) are optimal points of
the primal problem (P), then Y ? = (G?)−1Qp(G

?)−1 is the
optimal point of the dual problem (D). Similarly, if Y ? is the

optimal point of (D), G? = Q
1/2
p

(
Q

1/2
p Y ?Q

1/2
p

)−1/2

Q
1/2
p

is the optimal point of (P). The optimal vector of edge
weights f? is determined by the non-zero off-diagonal el-
ements of the controller graph Laplacian, L?f = G? −Gp.

IV. A PRIMAL-DUAL INTERIOR POINT METHOD

We develop a customized algorithm based on primal-
dual interior point method (see, e.g., [23]–[26]) for growing
connected resistive networks. By exploiting structure of the
optimality conditions, we achieve significant speedup relative
to standard interior point method solvers (e.g., SeDuMi or
SDPT3).

We find it convenient to write optimality conditions as(
Gp + EDf E

T
)−1

Qp
(
Gp + EDf E

T
)−1

= Y (10a)

γ 1 − diag
(
ET (Y − R)E

)
− λ = 0 (10b)

f ≥ 0, λ ≥ 0, λ ◦ f = 0 (10c)

where Df := diag (f). Several comments are in order

• Conditions (10a) and (10b) result from minimization of
the Lagrangian with respect to G and f , respectively.

• Condition (10a) establishes relation between the vector
of edge weights f and the dual variable Y . It is obtained
by substitution of the equality constraint in (P) to (9a).

• Condition (10b) follows from (8) and it relates dual
variables Y and λ.

• Conditions (10c) follow from non-negativity constraints
on f and λ and complementary slackness (i.e., vanish-
ing duality gap) requirement.

• If Y and f satisfy (10a) with f ≥ 0, then Y � 0 and
Y 1 = 1. This is because the plant graph is connected
(i.e., Gp � 0), Gp1 = 1, and Qp1 = 1.

A. Central path equations and search direction

Condition (10a) allows us to express Y in terms of f ,
Y = Y (f). This facilitates the use of infeasible primal-dual
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interior point method to solve central path equations

γ 1 − diag
(
ET (Y − R)E

)
− λ = 0 (11a)

λ ◦ f = σ µ1. (11b)

Equation (11b) is obtained by relaxing complementary
slackness condition in (10c), where µ and σ are positive
parameters that provide continuous deformation of the opti-
mality conditions.

For f̄ > 0 and λ̄ > 0 that are infeasible (i.e., do not
satisfy (11a) with Y (f) given by (10a)), the dual residual is
determined by

rd(f̄ , λ̄) := γ 1 − diag
(
ET (Y (f̄) − R)E

)
− λ̄.

The search direction (f̃ , λ̃) is obtained by solving the lin-
earized system of central path equations,

M f̃ − λ̃ = − rd(f̄ , λ̄) (12a)

Dλ̄ f̃ + Df̄ λ̃ = σ µ1 − λ̄ ◦ f̄ . (12b)

The system of equations (12) represents linearization
of (11) around (f̄ , λ̄). The matrix M in (12b) is determined
by the gradient of the function diag (ETY (f̄)E) at f̄ > 0,

diag (ETY (f̄ + f̃)E) = diag (M1) − M f̃ + O(‖f̃‖2)

where

M = 2 (M1 ◦M2)

M1 = ET Y (f̄)E

M2 = ET
(
Gp + EDf̄ E

T
)−1

E.

B. Algorithm

Starting with points f̄ > 0 and λ̄ > 0, the primal-dual
interior point algorithm is outlined next (for details, please
see [27]):

1) Compute the dual residual rd(f̄ , λ̄) and the duality gap
η, and evaluate the stopping criteria ‖rd‖ ≤ ε1 and
η ≤ ε2. Terminate if these are satisfied.

2) Compute affine scaling direction (f̃a, λ̃a) by solving
the linear system of equations

M f̃a − λ̃a = −rd(f̄ , λ̄)

Dλ̄ f̃a + Df̄ λ̃a = − λ̄ ◦ f̄ .

3) Select barrier parameters

αf = argmax
α

{α ∈ [0, 1]; f̄ + α f̃a ≥ 0}

αλ = argmax
α

{α ∈ [0, 1]; λ̄ + α λ̃a ≥ 0}

and set

µ =
f̄ T λ̄

m
, σ =

(
(f̄ + αf f̃a)T (λ̄ + αλ λ̃a)

f̄ T λ̄

)3

.

4) Compute search direction (f̃ , λ̃) by solving the linear

system of equations

M f̃ − λ̃ = −rd(f̄ , λ̄)

Dλ̄ f̃ + Df̄ λ̃ = σ µ1 − λ̄ ◦ f̄ − λ̃a ◦ f̃a

where Mehrotra correction λ̃a ◦ f̃a has been added to
the linearized system of central path equations (12).

5) Determine maximum steps to the boundary

αf = argmax
α

{α ∈ [0, 1]; f̄ + α f̃ ≥ 0}

αλ = argmax
α

{α ∈ [0, 1]; λ̄ + α λ̃ ≥ 0}

and update f̄ and λ̄,

f̄ = f̄ + min {1, 0.99αf} f̃
λ̄ = λ̄ + min {1, 0.99αλ} λ̃.

Return to 1).
The challenging aspect of the primal-dual interior point

algorithm is the computation of the search directions (f̃a, λ̃a)
and (f̃ , λ̃). In order to obtain these, we need to solve linear
systems of equations. For example, the affine search direction
can be computed by expressing λ̃a in terms of f̃a,

λ̃a = −D−1
f̄
Dλ̄ f̃a − λ̄ (13a)

which yields the following equation for f̃a,

A f̃a = b (13b)

where
A := M + D−1

f̄
Dλ̄

b := −
(
λ̄ + rd(f̄ , λ̄)

)
.

(13c)

The same matrix A also appears in the equations for the
search direction f̃ . Positive definiteness of D−1

f̄
Dλ̄ and M

(elementwise product of two positive definite matrices is
positive definite) implies positive definiteness of A. Thus,
for moderately sized problems, Cholesky factorization of
A followed by back solve operations can be used to to
determine search directions. These respectively take O(m3)
and O(m2) operations.

C. Search direction via the PCG algorithm

Since the direct method based on Cholesky factorization
is not well-suited for large problems, we next provide an
efficient inexact method for computing search directions
(f̃a, λ̃a) and (f̃ , λ̃). Our approach utilizes the preconditioned
conjugate gradient (PCG) algorithm, an indirect iterative
method for solving a linear system of equations [28]. In
theory, conjugate gradient converges in m iterations. Conju-
gate gradient algorithm consists of inner and outer iterations.
Each inner iteration requires a few inner products and one
matrix-vector multiplication. If the matrix A is dense, then
the matrix-vector multiplication costs O(m2). So, the total
cost is O(m3) which is the same as the direct method based
on Cholesky factorization. However, an advantage can be
gained if the matrix-vector multiplication is cheaper than
O(m2). Moreover, in many problems, an acceptable solution
can be reached in less than m outer iterations. On the other
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hand, conjugate gradient method can perform poorly in the
presence of round-off errors. In many problems, introduction
of suitably selected preconditioners ensures fast convergence
or even convergence of the conjugate gradient method. In our
implementation, we use the diagonal preconditioner P :=
I ◦A.

V. COMPUTATIONAL EXPERIMENTS

In this section, we provide several examples to illustrate
utility of our customized algorithms. Moreover, we compare
the performance of exact and inexact primal-dual interior
point algorithms with CVX [29]. The exact algorithm uses
Cholesky factorization to compute the search direction, and
the inexact algorithm uses preconditioned conjugate gradient
(PCG) method. We have implemented all algorithms in
MATLAB, and all tests were executed on a two quad-core
2.8 GHz machine with Intel Xeon X5560 ”Nehalem EP”-
class processors.

In all examples we set Lp = EpE
T
p , where Ep is the

incidence matrix of the plant graph. The incidence matrix
of the controller graph is selected to satisfy the following
requirements: (i) in the absence of the sparsity-promoting
term, the closed-loop network is given by a complete graph;
and (ii) there are no joint edges between the plant and
the controller graphs. In all plots that illustrate the graph
structure, we use black dots to denote nodes, blue color to
identify edges in the plant graph, and red color to identify
edges in the controller graph. Finally, we set R = I
and choose the state weight that penalizes the mean-square
deviation from the network average, Q = I − (1/n)11T .

Figure 1 shows the results obtained by applying our
customized algorithm to the problem of growing a resistive
path graph with 10 nodes. For γ = 0, we obtain a centralized
controller that requires information exchange between all
nodes. With increase in γ, the number of added edges
gradually decreases. For

γ > γmax := ‖ET G−1
p QG−1

p E‖∞

all edge weights in the controller graph are equal to zero.
As shown in Fig. 1d, for γ = 0.96γmax the single edge is
added and this edge generates the longest cycle. This is in
agreement with [30] where it was shown that the longest
cycle is most beneficial for improving the H2 performance
of tree networks.

Table I shows the performance comparison between the
exact and inexact interior point methods and CVX. We
employ our customized algorithms to solve the (P) for
Toeplitz graphs with different number of nodes. Absolute
value of the residual, rd, and the duality gap, η, can be used
as stopping criteria. For customized algorithms, we set the
tolerance for both ‖rd‖ and η to 10−6. We set γ = γmax/2.
The performance (in terms of speed and the number of
iterations) is compared.

Our results illustrate that both of our customized inte-
rior point algorithms significantly outperform CVX. While

(a) γ = 0 (b) γ = 0.09 γmax

(c) γ = 0.18 γmax (d) γ = 0.96 γmax

Fig. 1: Path graph

TABLE I: Comparison between algorithms on a Toeplitz
tridiagonal network with unit edge weights.

Algorithm n = 100 n = 200 n = 300
m = 4851 m = 19701 m = 44551

Exact 69.143 sec/10 iter 3.750 e3/11 5.881 e4/13

Inexact 60.009 sec/7iter 1.569 e3/8 2.008 e4/9

CVX 1561.687 sec − −

the performance of the algorithm that uses Cholesky fac-
torization is robust, our inexact interior point algorithm
implementation can be further improved by more efficient
implementation and a better choice of preconditioner.

VI. CONCLUDING REMARKS

We have examined the problem of growing connected
networks of resistors. Our approach formulates a distributed
control problem aimed at balancing performance of stochasti-
cally forced network with the number of edges that are added
to the plant network. We derive a dual of this convex opti-
mization problem and provide an efficient implementation of
an inexact primal-dual interior point method. Our algorithm
is significantly faster than general purpose solvers. Currently,
we are working on a more efficient implementation of an iter-
ative method based on the preconditioned conjugate gradient.
We are also developing customized first-order algorithms for
the design of consensus and synchronization networks.

APPENDIX

A. Network performance

The H2 norm of the closed-loop system is given by

‖H‖22 = trace (P )

where the symmetric matrix P is the solution of the follow-
ing Lyapunov equation

(Lp + Lf ) P + P (Lp + Lf ) = Q + Lf RLf .
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Here, Lf = E diag (f)ET . Using the formula for the
solution P and walking through some algebraic steps, H2

norm can be written as (6). Here, we describe the transition
from (6) to (7). As shown in (6), the H2 norm is given by

2 ‖H‖22 =
〈
G−1, Q

〉
+
〈
G−1, Lf RLf

〉
.

The second part
〈
G−1, Lf RLf

〉
can be written as〈

(Gp + Lf )−1, Lf RLf
〉

=〈
(Gp + Lf )−1, (Gp + Lf −Gp)RLf

〉
=

〈R,Lf 〉 − (Gp + Lf )−1GpR (Lf +Gp − Gp) =

〈R,Lf − Gp〉 +
〈
(Gp + Lf )−1, GpRGp

〉
.

We can write
〈
(Gp + Lf )−1, GpRGp

〉
as〈

(Gp + Lf )−1, GpR (Lp + (1/n)11T )
〉

=〈
G−1, GpRLp

〉
+
〈
G−1GpR, (1/n)11T

〉
=〈

G−1, LpRLp
〉

+ (1/n)1TR1.

Thus, J = 2 ‖H‖22 is given by

J =
〈
G−1, (Q + LpRLp)

〉
+ 〈R,Lf 〉 − 〈R,Gp〉 +

(1/n)1TR1.

Considering structural restrictions given in (3), we can write〈
G−1, (Q+ LpRLp)

〉
as〈

G−1, (Q + (1/n)11T + LpRLp − (1/n)11T )
〉

=〈
G−1, (Q + (1/n)11T + LpRLp)

〉
− 1

therefore,

J =
〈
G−1, (Q + LpRLp + (1/n)11T )

〉
+ 〈R,Lf 〉 −

〈R,Gp〉 + (1/n)1TR1 − 1.

Replacing Qp and ignoring constant terms, J is given by

J(G, f) =
〈
G−1, Qp

〉
+ diag

(
ETRE

)T
f.
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