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Abstract—We consider the design of optimal localized feedback
gains for one-dimensional formations in which vehicles only
use information from their immediate neighbors. The control
objective is to enhance coherence of the formation by making it
behave like a rigid lattice. For the single-integrator model with
symmetric gains, we establish convexity, implying that the globally
optimal controller can be computed efficiently. We also identify a
class of convex problems for double-integrators by restricting the
controller to symmetric position and uniform diagonal velocity
gains. To obtain the optimal non-symmetric gains for both the
single- and the double-integrator models, we solve a parameter-
ized family of optimal control problems ranging from an easily
solvable problem to the problem of interest as the underlying
parameter increases. When this parameter is kept small, we
employ perturbation analysis to decouple the matrix equations
that result from the optimality conditions, thereby rendering the
unique optimal feedback gain. This solution is used to initialize a
homotopy-based Newton’s method to find the optimal localized
gain. To investigate the performance of localized controllers, we
examine how the coherence of large-scale stochastically forced
formations scales with the number of vehicles. We establish several
explicit scaling relationships and show that the best performance
is achieved by a localized controller that is both non-symmetric
and spatially-varying.

Index Terms—Convex optimization, formation coherence, ho-
motopy, Newton’s method, optimal localized control, perturbation
analysis, structured sparse feedback gains, vehicular formations.

I. INTRODUCTION

A. Background

T HE control of vehicular platoons has attracted consider-
able attention since the mid sixties [1]–[3]. Recent tech-

nological advances in developing vehicles with communication
and computation capabilities have spurred renewed interest in
this area [4]–[12]. The simplest control objective for the one-di-
mensional (1D) formation shown in Fig. 1 is to maintain a de-
sired cruising velocity and to keep a pre-specified constant dis-
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Fig. 1. One-dimensional formation of vehicles.

tance between neighboring vehicles. This problem is emblem-
atic of a wide range of technologically relevant applications in-
cluding the control of automated highways, unmanned aerial ve-
hicles, swarms of robotic agents, and satellite constellations.

Recent work in this area has focused on fundamental per-
formance limitations of both centralized and decentralized con-
trollers for large-scale formations [5], [7], [9]–[12]. For central-
ized linear quadratic optimal control formulations based on pe-
nalizing relative position errors it was shown in [7] that stabiliz-
ability and detectability deteriorate as formation size increases.
In [9], it was shown that merge and split maneuvers can exhibit
poor convergence rates even upon inclusion of absolute position
errors in cost functionals. In [5], it was shown that sensitivity of
spacing errors to disturbances increases with the number of ve-
hicles for formations with localized symmetric controllers that
utilize relative position errors between neighboring vehicles. In
[11], the analysis of [5] was expanded to include heterogeneous
vehicles, non-zero time headway, and limited communication
range within the formation.

The motivation for the current study comes from two recent
papers, [12] and [10]. In [12], fundamental performance limita-
tions of localized symmetric feedback for spatially invariant con-
sensus and formation problems were examined. It was shown
that, in 1D, it is impossible to have coherent large formations
that behave like rigid lattice. This was done by exhibiting linear
scaling, with the number of vehicles, of the formation-size-nor-
malized norm from disturbances to an appropriately de-
fined macroscopic performance measure. In 2D this measure in-
creases logarithmically, and in 3D it remains bounded irrespec-
tive of the system size. These scalings were derived by imposing
uniform bounds on control energy at each vehicle.

For formations on a one-dimensional lattice, it was shown in
[10] that the decay rate (with the number of vehicles) of the least
damped mode of the closed-loop system can be improved by in-
troducing a small amount of ‘mistuning’ to the spatially uniform
symmetric feedback gains. A large formation was modeled as a
diffusive PDE, and an optimal small-in-norm perturbation pro-
file that destroys the spatial symmetry and renders the system
more stable was designed. Numerical computations were also
used to demonstrate that the spatially-varying feedback gains
have beneficial influence on the closed-loop norm. The
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PDE approaches have also been found useful in the deployment
of multi-agents [13], [14] and in coordination algorithms [15].

Even though traditional optimal control does not facilitate in-
corporation of structural constraints and leads to centralized ar-
chitectures, the optimal feedback gain matrix for both spatially
invariant systems [16] and systems on graphs [17] have off-diag-
onal decay. Several recent efforts have focused on identification
of classes of convex distributed control problems. For spatially
invariant controllers in which information propagates at least as
fast as in the plant, convexity was established in [18], [19]. Sim-
ilar algebraic characterization for a broader class of systems was
introduced in [20], and convexity was shown for problems with
quadratically invariant constraint sets. Since these problems are
convex in the impulse response parameters they are in general
infinite dimensional. In [21], a state-space description of sys-
tems in which information propagates at most one unit in space
for every unit in time was provided and relaxations were used
to obtain suboptimal controllers. In [22], the optimal control
problem for switched autonomous systems was studied and op-
timality conditions for decentralization of multi-agent motions
were derived. In [23], convexity of the symmetric edge weight
design for minimization of the mean-square deviation in dis-
tributed average consensus was shown.

While references [18]–[21] focus on the design of optimal
dynamic distributed controllers, we develop tools for the de-
sign of optimal static feedback gains with pre-specified struc-
ture. Even though the framework of [18]–[21] does not apply to
our setup, we identify a class of convex problems which can be
cast as a semi-definite program (SDP). Furthermore, we show
that the necessary conditions for optimality are given by cou-
pled matrix equations, which can be solved by a combination
of perturbation analysis and homotopy-based Newton’s method.
We consider the design of both symmetric and non-symmetric
feedback gains and show that departure from optimal symmetric
design can significantly improve the coherence of large-scale
formations.

B. Preview of Key Results

We consider the design of optimal localized feedback gains
for one-dimensional formations in which each vehicle only uses
relative distances from its immediate neighbors and its own ve-
locity. This nearest neighbor interaction imposes structural con-
straints on the feedback gains. We formulate the structured op-
timal control problem for both the single- and the double-inte-
grator models. For single-integrators, we show that the struc-
tured optimal control problem is convex when we restrict the
feedback gain to be a symmetric positive definite matrix. In this
case, the global minimizer can be computed efficiently, and even
analytical expressions can be derived. For double-integrators,
we also identify a class of convex problems by restricting the
controller to symmetric position and uniform diagonal velocity
gains.

We then remove this symmetric restriction for both the single-
and the double-integrator models and begin the design process
with a spatially uniform controller. We develop a homotopy-
based Newton’s method that traces a continuous solution path
from this controller to the optimal localized gain. Along this

TABLE I
SUMMARY OF ASYMPTOTIC SCALINGS WITH THE NUMBER OF VEHICLES �

FOR THE OPTIMAL SYMMETRIC AND NON-SYMMETRIC POSITION GAINS.
THE � -INDEPENDENT CONTROL PENALTY, � � � � , IN THE QUADRATIC

PERFORMANCE OBJECTIVE LEADS TO SIMILAR GROWTH WITH � OF

FORMATION COHERENCE AND CONTROL ENERGY (PER VEHICLE). ON THE

OTHER HAND, THE � -DEPENDENT CONTROL PENALTY THAT PROVIDES

BOUNDED CONTROL ENERGY YIELDS LESS FAVORABLE COHERENCE

homotopy path, we solve a parameterized family of the struc-
tured optimal control problems and obtain analytical solutions
when the homotopy parameter is small. We employ perturbation
analysis to decouple the matrix equations that result from opti-
mality conditions, thereby rendering the unique optimal struc-
tured gain. This solution is used to warm-start Newton’s method
in order to efficiently compute the desired optimal gains as the
homotopy parameter is gradually increased.

In the second part of the paper, we examine how the per-
formance of the optimally-controlled formation scales with the
number of vehicles. We consider both macroscopic and micro-
scopic performance measures based on whether attention is paid
to the absolute position error of each vehicle or the relative
position error between neighboring vehicles. We note that the
macroscopic performance measure quantifies the resemblance
of the formation to a rigid lattice, i.e., it determines the co-
herence of the formation. As shown in [12], even when local
positions are well-regulated, an ‘accordion-like motion’ of the
formation can arise from poor scaling of the macroscopic per-
formance measure (formation coherence) with the number of
vehicles . Our objective is thus to enhance formation coher-
ence by means of optimal localized feedback design. In situa-
tions for which the control penalty in the quadratic performance
objective is formation-size-independent we show that the op-
timal symmetric and non-symmetric controllers asymptotically
provide and scalings of formation coherence.
However, this introduces similar growth of the control energy
(per vehicle) with . We show that bounded control energy can
be obtained by judicious selection of an -dependent control
penalty, leading to and scalings of formation
coherence for the optimal symmetric and non-symmetric con-
trollers, respectively. These results are summarized in Table I
and they hold for both single- and double-integrators for forma-
tions in which each vehicle has access to its own velocity; see
Sections V and VI for additional details.

In addition to designing optimal localized controllers, we also
provide an example of a spatially uniform non-symmetric con-
troller that yields better scaling trends than the optimal spatially
varying controller obtained by restricting design to symmetric
gains. This indicates that departure from symmetry can improve
coherence of large-scale formations and that the controller struc-
ture may play a more important role than the optimal selection
of the feedback gains. On the other hand, our results also show
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that the optimal localized controller that achieves the best per-
formance is both non-symmetric and spatially-varying.

If each vehicle has access to its own velocity and to rela-
tive distances from its nearest neighbors, we show similarity
between the optimal position gains and performance scaling
trends for single- and double-integrators. The latter observa-
tion is in agreement with analytical results obtained for spa-
tially invariant formations [12]. We note that performance of
controllers that rely on relative measurements or unidirectional
position exchange can differ significantly for these two models.
For spatially-invariant formations with relative position and ve-
locity measurements, it was shown in [12] that the global perfor-
mance scales as for double-integrators and as for
single-integrators. In Section V-B, we show that spatially uni-
form look-ahead strategy provides scaling of the global
performance for the single-integrator model. On the other hand,
a look-ahead strategy that is not carefully designed can intro-
duce unfavorable propagation of disturbances through forma-
tion of double-integrators [3], [5].

The paper is organized as follows. We formulate the struc-
tured optimal control problem in Section II, and show convexity
of the symmetric gain design for the single-integrator model in
Section III. For non-symmetric gains, we develop the homo-
topy-based Newton’s method in Section IV. We examine perfor-
mance of localized controllers for the single- and the double-in-
tegrator models in Sections V and VI, respectively, where we
provide several explicit scaling relations. We conclude the paper
in Section VII with a brief summary of our contributions.

II. PROBLEM FORMULATION

A system of identical vehicles moving along a straight line
is shown in Fig. 1. All vehicles are equipped with ranging de-
vices that allow them to measure relative distances with respect
to their immediate neighbors. The objective is to design an op-
timal controller that uses only local information (i.e., relative
distances between the neighboring vehicles) to keep each ve-
hicle at its global position on a grid of regularly spaced points
moving with a constant velocity.

We consider both the single- and the double-integrator
models of the vehicles. The double-integrators are employed
in many studies of vehicular formations; for example, see
[1]–[3], [5], [7], [9], [10], [12], [24]. On the other hand, the
single-integrator (i.e., kinematic) model is simpler and perhaps
more revealing in understanding the role of network topologies
[4], [23], [25]–[28]. As we show in Section VI, the single-
and the double-integrator models exhibit similar performance
for formations in which each vehicle—in addition to relative
positions with respect to its immediate neighbors—has an
access to its own velocity. In the remainder of this section,
we formulate the localized optimal control problem for both
single- and double-integrators.

A. Single- and Double-Integrator Models

We first consider the kinematic model in which control input
directly affects the velocity,

Fig. 2. Formation of vehicles with localized (a) non-symmetric; and (b) sym-
metric gains.

where is the position of the th vehicle and is the dis-
turbance. The desired position of the th vehicle is given by

, where is the desired cruising velocity and
is the desired distance between the neighboring vehicles. Every
vehicle is assumed to have access to both and . In addition,
we confine our attention to formations with a known number of
vehicles and leave issue of adaptation, merging, and splitting for
future study.

The localized controller utilizes relative position errors be-
tween nearest neighbors,

where the design parameters and denote the forward and
backward feedback gains of the th vehicle. In deviation vari-
ables, , the single-
integrator model with nearest neighbor interactions is given by

(1a)

(1b)

where the relative position errors and can
be obtained by ranging devices.

As illustrated in Fig. 2(a), fictitious lead and follow vehicles,
respectively indexed by 0 and , are added to the formation.
These two vehicles are assumed to move along their desired
trajectories, implying that , and they are not
considered to belong to the formation. Hence, the controls for
the 1st and the th vehicles are given by

In other words, the first and the last vehicles have access to their
own global position errors and , which can be obtained by
equipping them with GPS devices.

For the double-integrator model,

we consider the controller that has an access to the relative po-
sition errors between the neighboring vehicles and the absolute
velocity errors,
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where denotes the velocity feedback gain. In deviation vari-
ables, ,
the double-integrator model is given by

(2a)

(2b)

In matrix form, control laws (1b) and (2b) can be written as,

where , , and denote the position error, the velocity error,
and the control input vectors, e.g., . Further-
more, the diagonal feedback gains are determined by

and is a sparse Toeplitz matrix with 1 on the main diagonal
and 1 on the first lower sub-diagonal. For example, for ,

(3)
Thus, determines the vector of the relative position errors

between each vehicle and the one in front of it; sim-
ilarly, determines the vector of the relative position errors

between each vehicle and the one behind it.
We will also consider formations with no fictitious followers.

In this case, the th vehicle only uses relative position error
with respect to the th vehicle, i.e., implying
that for the single-integrator model
and for the double-integrator
model.

B. Structured Problem

The state-space representation of the vehicular formation is
given by

(SS)

For the single-integrator model (1), the state vector is ,
the measured output is given by the relative position errors
between the neighboring vehicles, and

(VP1)

For the double-integrator model (2), the state vector is
, the measured output is given by the relative po-

sition errors between the neighboring vehicles and the absolute
velocity errors, and

(VP2)

Here, and denote the zero and identity matrices, and
are defined in (3).

Upon closing the loop, we have

where encompasses the penalty on both the state and the con-
trol. Here, is a symmetric positive semi-definite matrix and

is a positive scalar. The objective is to design the structured
feedback gain such that the influence of the white stochastic
disturbance , with zero mean and unit variance, on the perfor-
mance output is minimized (in the sense). This control
problem can be formulated as [29], [30]

(SH2)

where denotes the structural subspace that belongs to.
As shown in [29], the necessary conditions for optimality of

(SH2) are given by the set of coupled matrix equations in , ,
and

(NC1)

(NC2)

(NC3)

Here, and are the closed-loop observability and controlla-
bility Gramians, denotes the entry-wise multiplication of two
matrices, and the matrix in (NC3) denotes the structural iden-
tity of the subspace under the entry-wise multiplication, i.e.,

, with for the single-integrator model
and for the double-integrator model. (For example,

.) In the absence of the fictitious fol-
lower, an additional constraint is imposed in (SH2) and
thus, the structural identity for the single- and the double-in-
tegrator models are given by and , respectively.
Here, is a diagonal matrix with its main diagonal given by

.
Remark 1: Throughout the paper, the structured optimal feed-

back gain is obtained by solving (SH2) with . This
choice of is motivated by our desire to enhance formation co-
herence, i.e., to keep the global position and velocity errors
and small using localized feedback. Since the methods de-
veloped in the paper can be applied to other choices of , we
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will describe them for general and set when presenting
computational results.

C. Performance of Optimal Localized Controller

To evaluate the performance of the optimal localized con-
troller , obtained by solving (SH2) with , we consider
the closed-loop system

(4)

where is the global or local performance output and is the
control input. Motivated by [12], we examine two state perfor-
mance weights for the single-integrator model

• Macroscopic (global): ;
• Microscopic (local): ,

where is an symmetric Toeplitz matrix with its first
row given by . For example, for ,

(5)

The macroscopic performance weight penalizes the
global (absolute) position errors,

and the microscopic performance weight penalizes the
local (relative) position errors,

with . These state weights induce the macro-
scopic and microscopic performance measures [12] determined
by the formation-size-normalized norm

where is the transfer function of (4) from to . The macro-
scopic performance measure quantifies the resemblance of
the formation to a rigid lattice, i.e., it determines the coherence
of the formation [12]. On the other hand, the microscopic perfor-
mance measure quantifies how well regulated the distances
between the neighboring vehicles are. We will also examine
the formation-size-normalized control energy (variance) of the
closed-loop system (4),

which is determined by the norm of the transfer function
from to .

Similarly, for the double-integrator model, we use the fol-
lowing performance weights

• Macroscopic (global), ;

• Microscopic (local), .

D. Closed-Loop Stability: The Role of Fictitious Vehicles

We next show that at least one fictitious vehicle is needed in
order to achieve closed-loop stability. This is because the ab-
sence of GPS devices in the formation prevents vehicles from
tracking their absolute desired trajectories.

For the single-integrator model, the state-feedback gain
is a structured tridiagonal matrix sat-

isfying where is the vector of
all 1’s. If neither the 1st nor the th vehicle has access to
its own global position, i.e., , then has a
zero eigenvalue with corresponding eigenvector . Hence, the
closed-loop system is not asymptotically stable regardless of
the choice of the feedback gains and . In the
presence of stochastic disturbances, the average-mode (associ-
ated with the eigenvector ) undergoes a random walk and the
steady-state variance of the deviation from the absolute desired
trajectory becomes unbounded [12], [23], [28]. In this case,
other performance measures that render this average-mode
unobservable can be considered [12].

For the double-integrator model, the action of
on is given by

where is the -vector of all 0’s. Thus, if
then has a zero eigenvalue with corresponding eigenvector

. Therefore, for both the single- and the double-inte-
grator models, we need at least one vehicle with access to its
global position in order to achieve closed-loop stability.

III. DESIGN OF SYMMETRIC GAINS FOR THE

SINGLE-INTEGRATOR MODEL: A CONVEX PROBLEM

In this section, we design the optimal symmetric feedback
gains for the single-integrator model; see Fig. 2(b). This is a spe-
cial case of the localized design, obtained by restricting the for-
ward and the backward gains between the neighboring vehicles
to be equal to each other, i.e., for .
Under this assumption, we show that (SH2) is a convex opti-
mization problem for the single-integrator model. This implies
that the global minimum can be computed efficiently. Further-
more, in the absence of the fictitious follower, we provide ana-
lytical expressions for the optimal feedback gains.

Let us denote and and let

(6)
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For the single-integrator model, the structured gain becomes
a symmetric tridiagonal matrix

. . .
. . .

. . .
(7)

Consequently, is Hurwitz if and only if is positive
definite, in which case the Lyapunov equation in (SH2) simpli-
fies to

The application of [31, Lemma 1] transforms the problem (SH2)
of optimal symmetric design for the single-integrator model to

(SG)

where is a linear structural constraint given by (7).
(Specifically, is a symmetric tridiagonal
matrix with the linear constraint (6).) By introducing an auxil-
iary variable , we can formulate
(SG) as an SDP in and

which can be solved using available SDP solvers. Here, we have
used the Schur complement [32, Appendix A.5.5] in conjunc-
tion with to express as an LMI.

Next, we exploit the structure of to express in (SG) with
in terms of the feedback gains between the

neighboring vehicles. Since the inverse of the symmetric tridi-
agonal matrix can be determined analytically [33, Theorem
2.3], the th entry of is given by

(8)

yielding the following expression for

The above expression for is well-defined for that
guarantee positive definiteness of in (7); this is because the
closed-loop -matrix is determined by . The global
minimizer of can be computed using the gradient method; see
Appendix A.

For the formations without the fictitious follower, we next de-
rive explicit analytical expression for the global symmetric min-
imizer of (SG) with . In this case

Fig. 3. Optimal symmetric gains for formations with follower ��� and without
follower ��� for � � ��, � � � , and � � �. ��� are obtained by evalu-
ating formula (9) and ��� are computed using the gradient method described in
Appendix A.

and the th entry of in (8) simplifies to
for . Consequently, the unique minimum of

is attained for

(9)
We also note that

(10)

where the third equality follows from (9). This result is used
to examine the performance of large-scale formations in
Section V-C.

Fig. 3 shows the optimal symmetric gains for a formation with
vehicles, , and . Since the fictitious leader

and the follower always move along their desired trajectories,
the vehicles that are close to them have larger gains than the
other vehicles. When no fictitious follower is present, the gains
decrease monotonically from the first to the last vehicle; see
in Fig. 3. In other words, the farther away the vehicle is from
the fictitious leader the less weight it places on the information
coming from its neighbors. This is because uncorrelated distur-
bances that act on the vehicles corrupt the information about the
absolute desired trajectory as it propagates from the fictitious
leader down the formation (via relative information exchange
between the vehicles). When both the fictitious leader and the
follower are present, the gains decrease as one moves from the
boundary to the center of the formation; see in Fig. 3. This
can be attributed to the fact that the information about the abso-
lute desired trajectories becomes noisier as it propagates from
the fictitious vehicles to the center of the formation.
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IV. HOMOTOPY-BASED NEWTON’S METHOD

In this section, we remove the symmetric feedback gain
restriction and utilize a homotopy-based Newton’s method
to solve (SH2). In [29], Newton’s method for general struc-
tured problems is developed. For (SH2) with the specific
problem data (VP1) and (VP2), it is possible to employ a
homotopy-based approach to solve a parameterized family of
problems, which ranges between an easily solvable problem
and the problem of interest.

In particular, we consider

(11)

where is the initial weight to be selected, is the de-
sired weight, and is the homotopy parameter. Note
that for , and for . The ho-
motopy-based Newton’s method consists of three steps: (i) For

, we find the initial weight with respect to which a
spatially uniform gain is inversely optimal. This is equiv-
alent to solving problem (SH2) analytically with the perfor-
mance weight . (ii) For , we employ pertur-
bation analysis to determine the first few terms in the expan-
sion . (iii) For larger values of , we use
Newton’s method for structured design [29] to solve (SH2).
We gradually increase and use the structured optimal gain ob-
tained for the previous value of to initialize the next round of
iterations. This process is repeated until the desired value
is reached.

In the remainder of this section, we focus on the single-in-
tegrator model. In Section VI, we solve problem (SH2) for the
double-integrator model.

A. Spatially Uniform Symmetric Gain: Inverse Optimality for

One of the simplest localized strategies is to use spatially uni-
form gain, where and are diagonal matrices with
and for all and some positive and . In particular, for

it is easy to show closed-loop stability and to find

the performance weight with respect to which the spatially
uniform symmetric gain

is inversely optimal. The problem of inverse optimality amounts
to finding the performance weight for which an a priori
specified is the corresponding optimal state-feedback gain
[34], [35]. From linear quadratic regulator theory, the optimal
state-feedback gain is given by where is
the positive definite solution of

For the kinematic model (VP1), and , with
, we have and . There-

fore, the state penalty guarantees inverse op-
timality of the spatially uniform symmetric gain . The above
procedure of finding can be applied to any structured gain

that yields a symmetric positive definite , e.g., the optimal
symmetric gain of Section III.

B. Perturbation Analysis for

We next utilize perturbation analysis to solve (SH2) with
given by (11) for . For small , by representing ,

, and as

substituting in (NC1)–(NC3), and collecting same-order terms
in , we obtain the set of equations (PA), shown at the bottom
of the page, with . Note that these equations
are conveniently coupled in one direction, in the sense that for
any , equations depend only on the solutions of

equations for . In particular, it is easy to verify
that the first and the third equations of are satisfied with

and with identified in
Section IV-A. Thus, the matrix can be obtained by solving
the second equation of , and the matrices , , and
can be obtained by solving the first, the third, and the second

...
... (PA)
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Fig. 4. Formation with fictitious follower, � � ��, � � �, � � � , and � � � . (a) Normalized optimal forward gain ������� ������ changes from an almost
sinusoidal shape (cf. analytical expression in (12)) at � � �� to an almost piecewise linear shape at � � �. (b) Optimal forward ��� and backward ��� gains
at � � �.

equations of , respectively. The higher order terms , ,
and can be determined in a similar fashion. The matrix
found by this procedure is the unique optimal solution of the
control problem (SH2) for . This is because the equations
(PA), under the assumption of convergence for small , give a
unique matrix .

We next provide analytical expressions for
obtained by solving the equations in (PA) with ,

, and . When a fictitious follower is present,
we have (derivations are omitted for brevity)

(12)

where and denote the th diagonal entries of

and . From (12) it follows that for
. When a fictitious follower is not present, we have

To compute the optimal structured feedback gain for larger
values of , we use obtained from perturbation analysis to
initialize Newton’s method, as described in Section IV-C.

C. Newton’s Method for Larger Values of

In this section, we employ Newton’s method developed
in [29] to solve the necessary conditions for optimality
(NC1)–(NC3) as is gradually increased to 1. Newton’s
method is an iterative descent algorithm for finding local
minima in optimization problems [32]. Specifically, given an
initial stabilizing structured gain , a decreasing sequence
of the objective function is generated by updating
according to . Here, is the Newton direc-
tion that satisfies the structural constraint and is the step-size.

The details of computing and choosing the step-size can
be found in [29].

For small , we initialize Newton’s method using ob-
tained from the perturbation expansion up to the first order in
, . We then increase slightly and use the

optimal structured gain resulting from Newton’s method at the
previous to initialize the next round of iterations. We continue
increasing gradually until desired value is reached,
that is, until the optimal structured gain for the desired
is obtained.

Since the homotopy-based Newton’s method solves a family
of optimization problems parameterized by , the optimal feed-
back gain is a function of . To see the incremental
change relative to the spatially uniform gain , we consider
the difference between the optimal forward gain and the
uniform gain ,

Fig. 4(a) shows the normalized profile for a for-
mation with fictitious follower, , , , and

. The values of are determined by 20 logarithmically
spaced points between and 1. As increases, the normal-
ized profile changes from an almost sinusoidal shape (cf. ana-
lytical expression in (12)) at to an almost piecewise
linear shape at . Note that the homotopy-based Newton’s
method converges to the same feedback gains at when
it is initialized by the optimal symmetric controller obtained in
Section III.

Since the underlying path-graph exhibits symmetry between
the edge pairs associated with and , the optimal for-
ward and backward gains satisfy a central symmetry property,

for all ; see Fig. 4(b) for . We note that the
first vehicle has a larger forward gain than other vehicles; this
is because it neighbors the fictitious leader. The forward gains
decrease as one moves away from the fictitious leader; this is
because information about the absolute desired trajectory of the
fictitious leader becomes less accurate as it propagates down the
formation. Similar interpretation can be given to the optimal



LIN et al.: OPTIMAL CONTROL OF VEHICULAR FORMATIONS WITH NEAREST NEIGHBOR INTERACTIONS 2211

Fig. 5. Formation without fictitious follower, � � ��, � � �, � � � , and � � � . Normalized optimal (a) forward and (b) backward gains. (c) Optimal
forward ��� and backward ��� gains at � � �.

backward gains, which monotonically increase as one moves
towards the fictitious follower.

Since the 1st vehicle has a negative backward gain (see Fig.
4(b)), if the distance between the 1st and the 2nd vehicles is
greater than the desired value , then the 1st vehicle distances
itself even further from the 2nd vehicle. On the other hand, if
the distance is less than , then the 1st vehicle pulls itself even
closer to the 2nd vehicle. This negative backward gain of the 1st
vehicle can be interpreted as follows: Since the 1st vehicle has
access to its global position, it aims to correct the absolute posi-
tions of other vehicles in order to enhance formation coherence.
If the 2nd vehicle is too close to the 1st vehicle, then the 1st ve-
hicle moves towards the 2nd vehicle to push it back; this in turn
pushes other vehicles back. If the 2nd vehicles is too far from the
1st vehicle, then the 1st vehicle moves away from the 2nd ve-
hicle to pull it forward; this in turn pulls other vehicles forward.
Similar interpretation can be given to the negative forward gain
of the th vehicle that neighbors the fictitious follower. Also
note that the forward gain of the th vehicle becomes positive
when the fictitious follower is removed from the formation; see
Fig. 5(c). This perhaps suggests that negative feedback gains of
the 1st and the th vehicles are a consequence of the fact that
both of them have access to their own global positions.

As shown in Fig. 5(a) and (b), the normalized optimal gains
for the formation without the fictitious follower also change con-
tinuously as increases to 1. In this case, however, the optimal
forward and backward gains do not satisfy the central symmetry;
see Fig. 5(c). Since the optimal controller puts more emphasis
on the vehicles ahead when the fictitious follower is not present,

the forward gains have larger magnitudes than the backward
gains. As in the formations with the fictitious follower, the op-
timal forward gains decrease monotonically as one moves away
from the fictitious leader. On the other hand, the optimal back-
ward gains at first increase as one moves away from the 1st ve-
hicle and then decrease as one approaches the th vehicle in
order to satisfy the constraint .

V. PERFORMANCE VERSUS SIZE FOR THE

SINGLE-INTEGRATOR MODEL

In this section, we study the performance of the optimal sym-
metric and non-symmetric gains obtained in Sections III and
IV-C. This is done by examining the dependence on the forma-
tion size of performance measures , , and introduced
in Section II-C. Our results highlight the role of non-symmetry
and spatial variations on the scaling trends in large-scale forma-
tions. They also illustrate performance improvement achieved
by the optimal controllers relative to spatially uniform sym-
metric and non-symmetric feedback gains.

For the spatially uniform symmetric gain with
, we show analytically that is an affine function of .

This implies that the formation coherence scales linearly with
irrespective of the value of . We also analytically estab-

lish that the spatially uniform non-symmetric gain with
(look-ahead strategy) provides a square-root

asymptotic dependence of on . Thus, symmetry breaking
between the forward and backward gains may improve coher-
ence of large-scale formations. Note that the forward-backward
asymmetry also provides more favorable scaling trends of the
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TABLE II
ASYMPTOTIC DEPENDENCE OF � , � , AND � ON THE FORMATION SIZE

� FOR UNIFORM SYMMETRIC, UNIFORM NON-SYMMETRIC (LOOK-AHEAD

STRATEGY), AND OPTIMAL SYMMETRIC AND NON-SYMMETRIC GAINS OF

SECTIONS III AND IV-C WITH � � � AND � � �. THE SCALINGS DISPLAYED

IN RED ARE DETERMINED Analytically; OTHER SCALINGS ARE ESTIMATED

BASED ON NUMERICAL COMPUTATIONS

least damped mode of the closed-loop system [10]. We then
investigate how spatially varying optimal feedback gains, in-
troduced in Sections III and IV-C, influence coherence of the
formation. We show that the optimal symmetric gain provides
a square-root dependence of on and that the optimal
non-symmetric gain provides a fourth-root dependence of
on .

Even though we are primarily interested in asymptotic
scaling of the global performance measure , we also ex-
amine the local performance measure and the control energy

. From Section II-C we recall that the global and local
performance measures quantify the formation-size-normalized

norm of the transfer function from to of the closed-loop
system,

and that is the formation-size-normalized norm of the
transfer function from to . These can be determined from

(13)

where denotes the closed-loop controllability Gramian,

(14)

The asymptotic scaling properties of , , and , for
the above mentioned spatially uniform controllers and the spa-
tially varying optimal controllers, obtained by solving (SH2)
with and , are summarized in Table II. For both spa-
tially uniform symmetric and look-ahead strategies, we analyti-
cally determine the dependence of these performance measures
on the formation size in Sections V-A and V-B. Furthermore,
for the formation without the fictitious follower subject to the
optimal symmetric gains, we provide analytical results in Sec-
tion V-C. For the optimal symmetric and non-symmetric gains
in the presence of fictitious followers, the scaling trends are ob-
tained with the aid of numerical computations in Section V-C.

Several comments about the results in Table II are given next.
First, in contrast to the spatially uniform controllers, the optimal

symmetric and non-symmetric gains, resulting from an -in-
dependent control penalty in (SH2), do not provide uniform
bounds on the control energy per vehicle, . This implies
the trade-off between the formation coherence and control
energy in the design of the optimal controllers. It is thus
of interest to examine formation coherence for optimal con-
trollers with bounded control energy per vehicle (see Remark
2). Second, the controller structure (e.g., symmetric or non-sym-
metric gains) plays an important role in the formation coher-
ence. In particular, departure from symmetry in localized feed-
back gains can significantly improve coherence of large-scale
formations (see Remark 3).

A. Spatially Uniform Symmetric Gain

For the spatially uniform symmetric controller with
, we next show that is an affine function of

and that, in the limit of an infinite number of vehicles, both
and become formation-size-independent. These results

hold irrespective of the presence of the fictitious follower.
For the single-integrator model with the fictitious follower we

have (see (5) for the definition of ), and
solves the Lyapunov equation (14) [31, Lemma

1]. Since the th diagonal entry of is determined by (cf.
(8))

from (13) we conclude that the global performance measure
is an affine function of , and that both and are forma-
tion-size-independent,

For the formation without the fictitious follower, the following
expressions

imply that, for the spatially uniform symmetric controller, the
asymptotic scaling trends do not depend on the presence of the
fictitious follower (derivations omitted for brevity).

B. Spatially Uniform Non-Symmetric Gain (Look-Ahead
Strategy)

We next examine the asymptotic scaling of the performance
measures for the spatially uniform non-symmetric gain with

. We establish the square-root scaling of
with and the formation-size-independent scaling of .

Furthermore, in the limit of an infinite number of vehicles, we
show that becomes -independent.
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Fig. 6. (a) Square-root scaling of � ��� using optimal symmetric gain of Section III, ������
�
� 	 ���
�� (curve); and (b) Fourth-root scaling of � ��� using

optimal non-symmetric gain of Section IV-C, ������
�
� � ����

 (curve). The optimal controllers are obtained by solving (SH2) with � � � and � � � for

the formation with the fictitious follower.

For the single-integrator model with (see
(3) for the definition of ), the solution of the Lyapunov (14)
is given by

(15)

As shown in Appendix B, the inverse Laplace transform of
can be used to determine the analytical expression for

, yielding the following formulae:

with denoting the Gamma function. These are used in Ap-
pendix B to show that, in the limit of an infinite number of vehi-
cles, a look-ahead strategy for the single-integrator model pro-
vides the square-root dependence of on and the forma-
tion-size-independent and .

C. Optimal Symmetric and Non-Symmetric Controllers

We next examine the asymptotic scaling of the performance
measures for the optimal symmetric and non-symmetric gains
of Sections III and IV-C. For the formation without the ficti-
tious follower, we analytically establish that the optimal sym-
metric gains asymptotically provide , , and

scalings of , , and , respectively. We then
use numerical computations to (i) confirm these scaling trends
for the optimal symmetric gains in the presence of the fictitious
follower; and to (ii) show a fourth-root dependence of and

on and an dependence of for the optimal
non-symmetric gains. All these scalings are obtained by solving
(SH2) with the formation-size-independent control penalty
and . We also demonstrate that uniform control vari-
ance (per vehicle) can be obtained by judicious selection of an

-dependent . For the optimal symmetric and non-symmetric

gains, this constraint on control energy (variance) increases the
asymptotic dependence of on to linear and square-root,
respectively.

For the formation without the fictitious follower, the op-
timal symmetric gains are given by (9). As shown in (10),

, thereby yielding

(16)

In the limit of an infinite number of vehicles,

which, for an -independent , leads to an asymptotic square-
root dependence of and on ,

(17)

Similar calculation can be used to obtain asymptotic
scaling of .

We next use numerical computations to study the scaling
trends for the optimal symmetric and non-symmetric gains in
the presence of fictitious followers. The optimal symmetric
gain (cf. in Fig. 3) provides a square-root scaling of
with ; see Fig. 6(a). On the other hand, the optimal non-sym-
metric gain (cf. Fig. 4(b)) leads to a fourth-root scaling of

with ; see Fig. 6(b). The local performance measure
decreases monotonically with for both controllers, with
scaling as for the optimal symmetric gain and as

for the optimal non-symmetric gain; see Fig. 7. For
both the optimal symmetric and non-symmetric controllers, our
computations indicate equivalence between the control energy
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Fig. 7. (a) � ��� using the optimal symmetric gain of Section III, �������
�
� 	 ����
� (curve); and (b) � ��� using the optimal non-symmetric gain of

Section IV-C, ��
����
�
� 	����
� (curve). The optimal controllers are obtained by solving (SH2) with � � � and � � � for the formation with the fictitious

follower.

and the global performance measure when . (For the op-
timal symmetric gain without the fictitious follower and ,
we have analytically shown that ; see formula (16).)
Therefore, the asymptotic scaling of the formation-size-normal-
ized control energy is for the optimal symmetric gain
and for the optimal non-symmetric gain. Finally, for
the formations without the fictitious follower, our computations
indicate that the optimal non-symmetric gains also asymptoti-
cally provide , , and scalings of ,

, and , respectively.
Remark 2: In contrast to the spatially uniform controllers,

the optimal structured controllers of Sections III and IV-C, re-
sulting from an -independent control penalty in (SH2), do
not provide uniform bounds on the formation-size-normalized
control energy. These controllers are obtained using frame-
work in which control effort represents a ‘soft constraint’. It
is thus of interest to examine formation coherence for optimal
controllers with bounded control energy per vehicle. For forma-
tions without the fictitious follower, from (17) we see that the
optimal symmetric controller with asymptoti-
cally yields and . Similarly,
for formations with followers, the optimal gains that result in

for large can be obtained by changing control
penalty from to for the optimal sym-
metric gain and to for the optimal non-sym-
metric gain.1 These -dependent control penalties provide an
affine scaling of with for the optimal symmetric gain and
a square-root scaling of with for the optimal non-sym-
metric gain; see Fig. 8. The asymptotic scalings for formations
without followers subject to the optimal symmetric gains are ob-
tained analytically (cf. (17)); all other scalings are obtained with
the aid of computations.

Remark 3: Fig. 8 illustrates the global performance measure
obtained with four aforementioned structured controllers

that asymptotically yield for formations with ficti-
tious follower. Note that the simple look-ahead strategy outper-
forms the optimal symmetric gain; vs. scaling.
Thus, departure from symmetry in localized feedback gains can
significantly improve coherence of large-scale formations. In

1Both spatially uniform symmetric and look-ahead strategies with � � �
yield � � � in the limit of an infinite number of vehicles.

Fig. 8. � using four structured gains with � � � for formations with ficti-
tious follower: spatially uniform symmetric ���,����	��� (blue curve), spa-
tially uniform non-symmetric ���, �

�
����

�
	� (green curve), optimal sym-

metric ���, ����
��	���

� (black curve), and optimal non-symmetric ���,
������

�
� � ������ (red curve).

particular, we have provided an example of a spatially uniform
non-symmetric controller that yields better scaling trends than
the optimal spatially varying controller obtained by restricting
design to symmetric gains. Given the extra degrees of freedom
in the optimal symmetric gain this is perhaps a surprising ob-
servation, indicating that the network topology may play a more
important role than the optimal selection of the feedback gains
in performance of large-scale interconnected systems. On the
other hand, our results show that the optimal localized controller
that achieves the best performance is both non-symmetric and
spatially-varying.

VI. DOUBLE-INTEGRATOR MODEL

In this section, we solve (SH2) for the double-integrator
model using the homotopy-based Newton’s method. We then
discuss the influence of the optimal structured gain on the
asymptotic scaling of the performance measures introduced
in Section II-C. For a formation in which each vehicle—in
addition to relative positions with respect to its immediate
neighbors—has access to its own velocity, our results highlight
similarity between optimal forward and backward position
gains for the single- and the double-integrator models. We
further show that the performance measures exhibit similar
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Fig. 9. Double-integrator model with fictitious follower, � � ��, � � � and � � �. (a) The optimal forward ��� and backward gains ���; (b) the optimal
velocity gains ���.

scaling properties to those found in single-integrators. We also
establish convexity of (SH2) for the double-integrator model
by restricting the controller to symmetric position and uniform
diagonal velocity gains.

The perturbation analysis and the homotopy-based Newton’s
method closely follow the procedure described in Sections IV-B
and IV-C, respectively. In particular, yields

. As shown in [35], for positive and
with , this spatially uniform structured feedback gain
is stabilizing and inversely optimal with respect to

In what follows, we choose and and em-
ploy the homotopy-based Newton’s method to solve (SH2) for
the double-integrator model. For a formation with fictitious fol-
lower, , , and the optimal forward and
backward position gains are shown in Fig. 9(a) and the op-
timal velocity gains are shown in Fig. 9(b). We note remark-
able similarity between the optimal position gains for the single-
and the double-integrator models; cf. Fig. 9(a) and Fig. 4(b).
For a formation without fictitious follower, the close resem-
blance between the optimal position gains for both models is
also observed.

As in the single-integrator model, our computations indicate
that the optimal localized controller, obtained by solving (SH2)
with and , provides a fourth-root dependence
of the macroscopic performance measure on ; see Fig.
10(a). Furthermore, the microscopic performance measure and
control energy asymptotically scale as and ,
respectively; see Fig. 10(b) and (c).

For comparison, we next provide the scaling trends of the
performance measures for both the spatially uniform symmetric
and look-ahead controllers. As in the single-integrator model,
the spatially uniform symmetric gain provides
linear scaling of with and the formation-size-independent

and ,

On the other hand, for the double-integrator model the perfor-
mance of the look-ahead strategy heavily
depends on the choices of and . In particular, for
and , using similar techniques as in Section V-B, we
obtain

which asymptotically leads to the formation-size-independent
scaling of and the square-root scaling of with , i.e.,

. This is in sharp contrast to

which leads to an exponential dependence of
on . Therefore, the design of the look-ahead strategy is much
more subtle for double-integrators than for single-integrators.

Remark 4: For the double-integrator model with
and fixed we next show convexity of (SH2)

with respect to . The Lyapunov equation in
(SH2), for the block diagonal state weight with components

and , can be rewritten in terms of the components of

,

(18a)

(18b)

(18c)

Linearity of the trace operator in conjunction with
and (18c) yields

where the last equation is obtained by multiplying (18a) from
the left with and using .
For , similar argument as in Section III can be used to
conclude convexity of with respect to .

VII. CONCLUSION

We consider the optimal control of one-dimensional forma-
tions with nearest neighbor interactions between the vehicles.
We formulate a structured optimal control problem in which
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Fig. 10. Double-integrator model with the optimal non-symmetric gain obtained by solving (SH2) with � � � and � � � for formations with the fictitious
follower: (a) � ���, ������

�
� 	 ��
��� (curve) (b) � ���, �������

�
� 	 ���
�� (curve); (c) � ���, ��
�



�
� 	 ������ (curve).

local information exchange of relative positions between imme-
diate neighbors imposes structural constraints on the feedback
gains. We study the design problem for both the single- and
the double-integrator models and employ a homotopy-based
Newton’s method to compute the optimal structured gains. We
also show that design of symmetric gains for the single-in-
tegrator model is a convex optimization problem, which we
solve analytically for formations with no fictitious followers.
For double-integrators, we identify a class of convex problems
by restricting the controller to symmetric position and uniform
diagonal velocity gains. Furthermore, we investigate the perfor-
mance of the optimal controllers by examining the asymptotic
scalings of formation coherence and control energy with the
number of vehicles.

For formations in which all vehicles have access to their own
velocities, the optimal structured position gains for single- and
double-integrators are similar to each other. Since these two
models exhibit the same asymptotic scalings of global, local,
and control performance measures, we conclude that the single-
integrator model, which lends itself more easily to analysis and
design, captures the essential features of the optimal localized
design. We note that the tools developed in this paper can also
be used to design optimal structured controllers for double-in-
tegrators with relative position and velocity measurements; this
is a topic of our ongoing research.

As in [10], we employ perturbation analysis to determine the
departure from a stabilizing spatially uniform profile that yields
nominal diffusion dynamics on a one-dimensional lattice; in
contrast to [10], we find the ‘mistuning’ profile by optimizing

a performance index rather than by performing spectral anal-
ysis. We also show how a homotopy-based Newton’s method
can be employed to obtain non-infinitesimal variation in feed-
back gains that minimizes the desired objective function. Fur-
thermore, we establish several explicit scaling relationships and
identify a spatially uniform non-symmetric controller that per-
forms better than the optimal symmetric spatially varying con-
troller ( vs. scaling of coherence with con-
trol energy per vehicle). This suggests that departure from sym-
metry can improve coherence of large-scale formations and that
the controller structure may play a more important role than the
optimal feedback gain design. On the other hand, our results
demonstrate that the best performance is achieved with the op-
timal localized controller that is both non-symmetric and spa-
tially-varying.

Currently, we are considering the structured feedback design
for formations on general graphs [6], [8], [23], [36], [37] with
the objective of identifying topologies that lead to favorable
system-theoretic properties [28], [38], [39]. Even though this
paper focuses on the optimal local feedback design for one-di-
mensional formations with path-graph topology, the developed
methods can be applied to multi-agent problems with more gen-
eral network topologies.

APPENDIX

A. Gradient Method for (SG)

We next describe the gradient method for solving (SG). Let
us denote . Starting with an initial guess
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that guarantees positive definiteness of , vector is updated
, until the norm of gradient is small

enough, . Here, is the step-size determined
by the backtracking line search [32, Section 9.2]: let and
repeat with until a sufficient decrease in
the objective function is achieved,

where . Note that is defined as infinity if
in (7) determined by is not positive definite. For ,

the entries of the gradient are given by

B. Performance of Look-Ahead Strategy

We next derive the analytical expressions for the perfor-
mance measures , , and obtained with the look-ahead
strategy for the single-integrator model. The solution of the
Lyapunov equation (14) with is determined
by (15). Since the th entry of the first column of the lower
triangular Toeplitz matrix is ,
the corresponding entry of the matrix exponential in (15) is
determined by the inverse Laplace transform of ,

Thus, the th element on the main diagonal of the matrix in
(15) is given by

(19)

thereby yielding

(20)
A similar procedure can be used to show that the th
entry of is determined

(21)

Now, from (21) and the fact that we obtain

Similarly,

Using Stirling’s approximation for large ,
we have

where we used the fact that . Con-

sequently, . From (19) and (20), it follows

that and thus,

. We conclude that asymptotically scales as a
square-root function of and that is formation-size-inde-
pendent as increases to infinity.
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structured feedback gains for interconnected systems,” in Proc. 48th
IEEE Conf. Decision Control, 2009, pp. 978–983.

[30] F. Lin, M. Fardad, and M. R. Jovanović, “Augmented Lagrangian ap-
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Mihailo R. Jovanović (S’00–M’05) received the
Dipl. Ing. and M.S. degrees from the University of
Belgrade, Serbia, in 1995 and 1998, respectively, and
the Ph.D. degree from the University of California,
Santa Barbara, in 2004.

Before joining the University of Minnesota, Min-
neapolis, he was a Visiting Researcher with the De-
partment of Mechanics, the Royal Institute of Tech-
nology, Stockholm, Sweden, from September to De-
cember 2004. Currently, he is an Associate Professor
of Electrical and Computer Engineering, University

of Minnesota, where he serves as the Director of Graduate Studies in the in-
terdisciplinary Ph.D. program in Control Science and Dynamical Systems. His
expertise is in modeling, dynamics, and control of large-scale and distributed
systems and his current research focuses on sparsity-promoting optimal control,
dynamics and control of fluid flows, and fundamental limitations in the control
of vehicular formations. He has held visiting positions with Stanford University
and the Institute for Mathematics and Its Applications.
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