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Amplification of deterministic disturbances in inertialess shear-driven channel flows
of viscoelastic fluids is examined by analysing the frequency responses from spatio-
temporal body forces to the velocity and polymer stress fluctuations. In strongly
elastic flows, we show that disturbances with large streamwise length scales may
be significantly amplified even in the absence of inertia. For fluctuations without
streamwise variations, we derive explicit analytical expressions for the dependence of
the worst-case amplification (from different forcing to different velocity and polymer
stress components) on the Weissenberg number (We), the maximum extensibility of
the polymer chains (L), the viscosity ratio and the spanwise wavenumber. For the
Oldroyd-B model, the amplification of the most energetic components of velocity and
polymer stress fields scales as We2 and We4. On the other hand, the finite extensibility
of polymer molecules limits the largest achievable amplification even in flows with
infinitely large Weissenberg numbers: in the presence of wall-normal and spanwise
forces, the amplification of the streamwise velocity and polymer stress fluctuations is
bounded by quadratic and quartic functions of L. This high amplification signals low
robustness to modelling imperfections of inertialess channel flows of viscoelastic fluids.
The underlying physical mechanism involves interactions of polymer stress fluctuations
with a base shear, and it represents a close analogue of the lift-up mechanism that
initiates a bypass transition in inertial flows of Newtonian fluids.
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1. Introduction
Newtonian fluids transition to turbulence under the influence of inertia. In stark

contrast, recent experiments have shown that flows of viscoelastic fluids may undergo
a transition to a time-dependent disordered flow state and become turbulent even
when inertial forces are considerably weaker than viscous forces (Groisman &
Steinberg 2000; Larson 2000; Groisman & Steinberg 2004; Arratia et al. 2006).
Since viscoelastic fluid flows are often encountered in commercially important settings,
understanding transition to elastic turbulence in such flows is important from both
fundamental and technological standpoints. In polymer processing, for example, elastic
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turbulence is not desirable because it compromises the quality of the final product
(Larson 1992). But in microfluidic devices elastic turbulence can help promote
transport, thereby improving the quality of mixing (Groisman & Steinberg 2001;
Ottino & Wiggins 2004).

Transition in the experiments of Groisman & Steinberg (2000, 2004) is thought to
be initiated by the occurrence of a linear instability that arises from the presence
of curved streamlines (Larson, Shaqfeh & Muller 1990; Larson 1992). However, the
question of whether and how transition can occur in channel flows of viscoelastic
fluids with straight streamlines remains wide open. Standard modal stability analysis
of the upper convected Maxwell and Oldroyd-B constitutive equations shows that
these flows are linearly stable when inertial effects are negligible; yet, they exhibit
complex dynamical responses in strongly elastic regimes (Yesilata 2002, 2009; Bonn
et al. 2011; Pan, Morozov & Arratia 2011). Thus, if an inertialess transition can
indeed be described using such basic constitutive models, it would likely involve
finite-amplitude disturbances that would trigger nonlinear effects (Meulenbroek et al.
2004; Morozov & van Saarloos 2005). However, the lack of a modal instability
does not rule out the possibility that the early stages of transition can be described
by the linearized equations. If non-modal growth is present, initially small-amplitude
disturbances could grow to a finite amplitude at intermediate times before decaying at
long times. For sufficiently large disturbance amplitudes, the flow could enter a regime
where nonlinear interactions are no longer negligible. This can induce secondary
amplification and instability of the flow structures that are selected by the linearized
dynamics and promote eventual transition to elastic turbulence.

Hoda, Jovanović & Kumar (2008, 2009) recently employed tools from linear
systems theory to study the amplification of stochastic spatio-temporal body forces
in plane Couette and Poiseuille flows of viscoelastic fluids with non-zero Reynolds
numbers. In strongly elastic flows, the results of Hoda et al. (2008, 2009) indicate
that significant amplification of streamwise-constant velocity fluctuations can occur
even when inertial forces are weak. As in Newtonian fluids, this amplification is
caused by non-normality of the underlying operators and it cannot be predicted via
standard linear stability analysis. Furthermore, recent work of Jovanović & Kumar
(2010, 2011) shows that this large amplification arises from the interactions between
the polymer stress fluctuations in the wall-normal/spanwise plane with the base shear.
Through these interactions, weak streamwise vortices induce a viscoelastic analogue
of the lift-up mechanism that is responsible for the creation of alternating regions
of high and low streamwise velocities (relative to the mean flow). Jovanović &
Kumar (2010, 2011) demonstrated significant conceptual similarities between this
purely elastic mechanism and the well-known inertial vortex tilting mechanism that
initiates a bypass transition in shear flows of Newtonian fluids.

Despite this recent progress, analytical results that quantify the influence of finite
extensibility of polymer molecules on the amplification of disturbances in channel
flows of viscoelastic fluids without inertia are still lacking. Such results may provide
physical insight into the early stages of transition and help benchmark direct numerical
simulations. Analogous results have been extremely helpful in understanding the early
stages of transition to turbulence in wall-bounded shear flows of Newtonian fluids
(Farrell & Ioannou 1993; Trefethen et al. 1993; Jovanović & Bamieh 2005; Schmid
2007).

It is worth noting that the problem of determining the amplification of white-in-time
stochastic forcing is ill-posed when inertia is completely absent. This restricts the
results of Hoda et al. (2008, 2009) to cases where the flow has finite inertia. Jovanović
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& Kumar (2011) used singular perturbation methods to identify the spatial structure
of velocity and polymer stress fluctuations that exhibit the highest amplification
in stochastically forced weakly inertial channel flows of viscoelastic fluids. As
the influence of inertial forces vanishes, it was demonstrated that the velocity
fluctuations become white-in-time, thereby exhibiting infinite variance. Furthermore,
Hoda et al. (2008, 2009) and Jovanović & Kumar (2010, 2011) employed the Oldroyd-
B constitutive model to investigate energy amplification of velocity and polymer stress
fluctuations. However, since the Oldroyd-B model allows the polymers to stretch
indefinitely, examining the role of finite extensibility of polymer molecules on the
amplification of disturbances remains an open question.

In the present work, we address these issues by examining the worst-case
amplification of deterministic disturbances in inertialess (i.e. creeping) shear-driven
channel flows of viscoelastic fluids. We consider spatially distributed and temporally
varying forcing that is purely harmonic in the horizontal directions and time, and
deterministic in the wall-normal direction. The motivation for studying creeping flows
arises from the observation that viscoelastic fluids can become turbulent even in low
inertial regimes, i.e. at small Reynolds number (Larson 1992; Groisman & Steinberg
2000). Furthermore, the present analysis uses the finitely extensible nonlinear elastic
Chilcott–Rallison (FENE-CR) model (Chilcott & Rallison 1988), which captures the
finite extensibility of the polymer molecules. It is well known that, for infinitely
extensible polymers, the FENE-CR model simplifies to the Oldroyd-B model.

With our approach, we show that velocity and polymer stress fluctuations can
exhibit significant amplification and that the most energetic flow structures have
large streamwise length scales. In the absence of streamwise variations, we derive
explicit expressions for the worst-case amplification from different components of
the forcing field to different components of velocity and polymer stress fluctuations.
For the Oldroyd-B model, the wall-normal and spanwise forces induce amplification
of the streamwise components of velocity and polymer stress fields that scales
quadratically and quartically with the Weissenberg number. On the other hand, we
demonstrate that finite extensibility of the polymer molecules saturates the largest
achievable amplification even for flows with infinitely large Weissenberg numbers. The
functions that bound the worst-case amplification of the velocity and polymer stress
fluctuations scale quadratically and quartically with the largest extensibility of the
polymer molecules. We also identify the viscoelastic analogue of the well-known
inertial lift-up mechanism as the primary driving force for high flow sensitivity;
the underlying mechanism arises from interactions of polymer stress fluctuations
with a base shear and it is facilitated by spanwise variations in flow fluctuations
(Jovanović & Kumar 2011). This non-modal amplification may provide a route by
which infinitesimal disturbances can grow to finite amplitude and perhaps trigger a
transition to elastic turbulence in channel flows of viscoelastic fluids.

To facilitate development of explicit analytical expressions for worst-case
amplification of velocity and polymer stress fluctuations, we restrict our study to
an inertialess shear-driven channel (Couette) flow of FENE-CR fluids. Even though
the current analysis can be readily applied to the FENE-P (Peterlin) model and to
a pressure-driven channel (Poiseuille) flow, the more complicated base state removes
the algebraic convenience encountered in Couette flow of FENE-CR fluids. We note
that all the physical mechanisms identified in this paper remain at play in inertialess
Poiseuille flow of both FENE-CR and FENE-P fluids.

The rest of this paper is organized as follows. In § 2, we use a simple example
to illustrate how techniques from control theory can be used to quantify amplification
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of disturbances and robustness to modelling imperfections. In § 3, we describe the
governing equations for inertialess channel flows of FENE-CR fluids, provide the
evolution model, and briefly discuss the essential features of the frequency response
analysis. In § 4, we examine the frequency responses of three-dimensional velocity
fluctuations in inertialess Couette flow of FENE-CR fluids. In § 5, we provide
analytical expressions for the worst-case amplification from the forcing to velocity
fluctuations using a streamwise-constant linearized model. We also identify the spatial
structures of the dominant forcing and velocity components and demonstrate the
importance of the viscoelastic lift-up mechanism. In § 6, we study the dynamics of
streamwise-constant polymer stress fluctuations. Finally, in § 7, we summarize the
major contributions of this work and discuss future research directions.

2. The role of uncertainty: an illustrative example
In the course of addressing the issue of disturbance amplification, the present paper

provides insight into the robustness of viscoelastic flow models. In this section,
we briefly summarize how the tools from control theory facilitate quantification
of sensitivity and robustness of a system to modelling imperfections via frequency
response analysis. The approach taken in the present paper is closely related to
classical frequency response studies of systems arising in physics and engineering.
For example, in the design of operational amplifiers it is well known that caution
must be exercised with models that show a low degree of robustness because small
modelling errors could cause otherwise stable dynamics to become unstable. Similar
ideas have found use in fluid mechanics, including the analysis of the early stages of
transition in shear flows of Newtonian fluids (Schmid 2007).

To fix ideas, let us begin with a simple system of two coupled first-order differential
equations [

φ̇1

φ̇2

]
=
[
−λ1 0

R −λ2

][
φ1

φ2

]
+
[

1
0

]
d, (2.1a)

ϕ =
[
0 1

] [φ1

φ2

]
, (2.1b)

where φ1 and φ2 are the states, d is the disturbance and ϕ is the output. We assume
positivity of scalars λ1 and λ2, which guarantees modal stability of (2.1). Equivalently,
this system can be represented via its block diagram in figure 1(a). Clearly, we have
a cascade connection of two stable first-order systems with parameter R determining
the strength of coupling between the two subsystems. For λ1 6= λ2 the solution of the
unforced problem, i.e. with d ≡ 0, is determined by

φ1(t)= e−λ1tφ1(0), (2.2a)

φ2(t)= e−λ2tφ2(0)+ R

λ2 − λ1
(e−λ1t − e−λ2t)φ1(0). (2.2b)

Thus, the initial conditions in φi create monotonically decaying responses of φi, with
a rate of decay determined by λi. In contrast, the response of φ2 arising from the
initial condition in φ1 is characterized by two competing exponentials, and it vanishes
both for t = 0 and for asymptotically large times. For finite times, however, transient
growth, directly proportional to the coupling coefficient R, is exhibited, with the
largest value of transient response taking place at t = (1/(λ1 − λ2)) log (λ1/λ2). This
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FIGURE 1. (Colour online) Block diagrams of (a) system (2.1) and (b) system (2.1)
connected in feedback with norm-bounded unstructured uncertainty Γ . Here, s ∈ C denotes
the temporal Laplace transform variable, and the transfer function, from d to ϕ, is determined
by H(s)= R/((s+ λ1)(s+ λ2)).

 
d Nominal
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(can be nonlinear or time-varying)

FIGURE 2. (Colour online) Block diagram of a system connected in feedback with
norm-bounded unstructured uncertainty Γ .

transient growth does not require the presence of near resonances (i.e. λ1 ≈ λ2) or
modes with algebraic growth (i.e. λ1 = λ2); it is instead caused by the non-normality
of the dynamical generator in (2.1).

We note that transient growth represents one particular manifestation of the non-
normality of the dynamical generator in the above example (see Grossmann (2000) for
a comprehensive treatment). Additional features can be observed by analysing (2.1)
in the frequency domain. The frequency response is obtained by evaluating the
transfer function H(s) (from input d to output ϕ, ϕ(s) = H(s)d(s)) on the iω
axis, where ω ∈ R is the temporal frequency and i = √−1. The largest value of
|H(iω)| determines the so-called H∞ norm. This measure of input–output amplification
has an appealing physical interpretation: it quantifies the worst-case amplification
of finite-energy disturbances (Zhou, Doyle & Glover 1996). In the above example,
‖H ‖∞ = |R|/(λ1λ2) indicates the existence of a unit-energy disturbance that generates
output whose energy is given by |R |2 / (λ1λ2)

2.
Furthermore, the H∞ norm has an interesting robustness interpretation that is closely

related to the analysis of pseudospectra of linear operators (Trefethen & Embree
2005). Namely, ‖H ‖∞ determines the size of modelling uncertainty, d(s) = Γ (s)ϕ(s),
that can destabilize the system; see figure 2 for an illustration. This uncertainty may
arise from the inevitable imperfections in the laboratory environment or from the
approximate nature of the governing equations (caused by, for example, high-frequency
unmodelled dynamics, parametric variations, neglected nonlinearities, or crude physical
assumptions made in modelling). In particular, system (2.1) with d(s) = Γ (s)ϕ(s) can
be represented by a feedback interconnection in figure 1(b). If, apart from being norm-
bounded, there are no structural restrictions on uncertainty Γ , then the necessary
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and sufficient condition for stability of a feedback interconnection in figure 1(b) is
given by the so-called small-gain theorem, ‖Γ ‖∞ < 1/‖H ‖∞. In the above example,
this condition simplifies to ‖Γ ‖∞ < λ1λ2/|R|. In particular, it is easy to establish the
existence of a constant gain uncertainty, Γ (s) = γ = const., of magnitude larger than
λ1λ2/|R| that makes the system in figure 1(b) unstable.

The above example illustrates that, in systems with non-normal generators,
the eigenvalues may represent misleading measures of both transient growth and
input–output amplification. While they successfully predict the system’s behaviour
for asymptotically large times, they may fail to capture important aspects of short-
time behaviour, disturbance propagation and robustness. In particular, the coupling
R between subsystems in (2.1) plays a crucial role in determining transient and
input–output features of the system’s response: large values of R signal large transient
responses, poor stability margins and large amplification of disturbances. In the
absence of the coupling, i.e. for R = 0, the stability margins of subsystems in (2.1)
are determined by λ1 and λ2. In contrast, for non-zero R this margin is determined
by λ1λ2/|R|, thereby indicating that, even for subsystems with large stability margins,
small uncertainties can have a destabilizing effect on the overall system if the coupling
between the subsystems is large enough.

The main ideas from the above example extend to multivariable and infinite-
dimensional systems. For these problems, the singular values of the frequency
response operator can be used to determine input–output amplification in the presence
of disturbances. Furthermore, the analysis of spatio-temporal frequency responses for
spatially distributed systems can be used to identify prevalent spatial length scales
and spatio-temporal patterns that are most amplified by the system’s dynamics. For
example, if, instead of being constant scalars, parameters λi and R in (2.1) are given
by {λi = ai + biκ

2, R = ciκ}, then (2.1) can be interpreted as being equivalent to the
system

φ1t(x, t)= b1φ1xx(x, t)− a1φ1(x, t)+ d(x, t), (2.3a)

φ2t(x, t)= cφ1x(x, t)+ b2φ2xx(x, t)− a2φ2(x, t), (2.3b)

ϕ(x, t)= φ2(x, t), x ∈ R, (2.3c)

in the spatial frequency domain after applying the spatial Fourier transform to the
above system. Here, κ ∈ R denotes the spatial wavenumber, and (ai, bi, c) denote
positive reaction, diffusion and convection coefficients. The κ-parametrized H∞ norm,
c|κ|/((a1 + b1κ

2)(a2 + b2κ
2)), disappears for κ = 0 and as κ→∞, thereby achieving

its peak for non-zero κ , κ̄ . This value of κ identifies the spatial length scale, 2π/κ̄ ,
that has the smallest stability margin and that is most amplified by deterministic
disturbances. Thus, convective coupling in reaction–diffusion systems can provide
dynamical responses that cannot be inferred by analysing subsystems in isolation.

We finally note that this simple example captures the essential features of non-
modal amplification in wall-bounded shear flows of both Newtonian and viscoelastic
fluids. In Newtonian fluids the subsystems in figure 1(a) would correspond to
the Orr–Sommerfeld and Squire equations, and the coupling between them would
represent the vortex tilting term whose strength is directly proportional to the Reynolds
number (Jovanović & Bamieh 2005). In a study focusing on transient growth in
inertialess channel flows of viscoelastic fluids, Jovanović & Kumar (2010) showed that
polymer stretching and the Weissenberg number effectively take the roles that vortex
tilting and the Reynolds number play in inertial flows of Newtonian fluids.
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FIGURE 3. (Colour online) Geometry of a three-dimensional shear-driven channel flow.

3. Problem formulation
In this section, we present the governing equations for inertialess shear-driven

channel flow of viscoelastic fluids. We show how the linearized equations can be
cast into an evolution form that is amenable to both analytical and computational
developments. We then provide a brief description of frequency responses and
input–output norms, along with the numerical tools for computing them.

3.1. Governing equations
The non-dimensional momentum, continuity and constitutive equations for an
incompressible shear-driven channel flow of viscoelastic fluids, with geometry shown
in figure 3, are given by (Bird et al. 1987; Larson 1999)

Re V̇ =We ((1− β)∇ · T + β ∇2V −∇P− ReV ·∇V ), (3.1a)
0= ∇ ·V , (3.1b)

Ṙ =We (R ·∇V + (R ·∇V )T − V ·∇R − T ). (3.1c)

Here, the overdot denotes a partial derivative with respect to time t, V is the velocity
vector, P is the pressure, T is the polymer stress tensor, R is the conformation tensor,
∇ is the gradient and ∇2 is the Laplacian. System (3.1) governs the behaviour of
dilute polymer solutions with fluid density ρ, and it has been obtained by scaling
length with the channel half-height h, time with the fluid relaxation time λ, velocity
with the largest base flow velocity U0, polymer stresses with ηpU0/h, and pressure
with (ηs + ηp)U0/h, where ηs and ηp are the solvent and polymer viscosities. This
scaling leads to three parameters that characterize the properties of (3.1): the viscosity
ratio, β = ηs/(ηs + ηp); the Weissenberg number, We = λU0/h; and the Reynolds
number, Re = ρU0h/(ηs + ηp). While the Reynolds number quantifies the ratio of
inertial to viscous forces, the Weissenberg number determines the ratio of the fluid
relaxation time λ to the characteristic flow time h/U0.

The momentum (3.1a) and continuity (3.1b) equations describe the motion of an
incompressible viscoelastic fluid. For given T , the pressure adjusts itself so that the
velocity satisfies the continuity equation (3.1b). In our previous work (Hoda et al.
2008, 2009; Jovanović & Kumar 2010, 2011), we used the Oldroyd-B model, which
is based on a linear bead–spring dumbbell, to relate the polymeric stress tensor to the
conformation tensor. However, it is well known that the Oldroyd-B model does not
account for the finite extensibility of the polymer chains. In this work, we address this
issue by using the FENE-CR model, which utilizes a nonlinear relationship between
the polymeric stress tensor T and the conformation tensor R (Bird et al. 1987),

T = f

We
(R − I). (3.2)
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Here, I is the unit tensor, and the function f (which quantifies the influence of the
nonlinear spring) is determined by the trace of the conformation tensor, trace(R), and
the square of the maximum extensibility of polymer chains,

f = L2 − 3
L2 − trace(R)

. (3.3)

Note that R and L2 are made dimensionless with respect to kT/c, where k, T and
c denote the Boltzmann constant, the absolute temperature and the spring constant
of the Hookean dumbbell, respectively. In the limiting case L→∞, we have f → 1;
consequently, the nonlinear spring becomes linear and the FENE-CR model simplifies
to the Oldroyd-B model.

In a shear-driven channel flow, the system of equations (3.1)–(3.2) exhibits the
steady-state solution

v̄= [U(y) 0 0 ]T, (3.4a)

R̄ =

R̄11 R̄12 R̄13

R̄21 R̄22 R̄23

R̄31 R̄32 R̄33

=
1+ 2We2/f̄ 2 We/f̄ 0

We/f̄ 1 0
0 0 1

 , (3.4b)

where

U(y)= y, f̄ = 1
2

1+
√

1+ 8We2

L̄2

 , L̄2 = L2 − 3. (3.5)

We also note that the first normal stress difference in Couette flow is determined by

N̄1 = R̄11 − R̄22 = 2 (We/f̄ )
2
. (3.6)

In §§ 5 and 6 we will show that this parameter, which can take values between 0 and
L̄2, plays a key role in the dynamics of velocity and polymer stress fluctuations.

In the absence of inertia, i.e. in flows with Re = 0, the dynamics of infinitesimal
velocity v, pressure p and conformation tensor r fluctuations around the base flow
(v̄, R̄) are governed by

0=−∇p+ (1− β)∇ · τ+ β ∇2v+ d, (3.7a)
0= ∇ ·v, (3.7b)

ṙ =We (r ·∇v̄+ R̄ ·∇v+ (r ·∇v̄)T+ (R̄ ·∇v)T−v ·∇R̄ − v̄ ·∇r − τ), (3.7c)

τ= f̄

We

(
r + f̄ (R̄ − I)

L̄2
trace(r)

)
. (3.7d)

Here, (3.7d) establishes a relation between polymer stress and conformation tensor
fluctuations. Furthermore, u, v and w are the components of the velocity fluctuation
vector v = [ u v w ]T in the streamwise (x), wall-normal (y) and spanwise (z)
directions, respectively. The momentum equation (3.7a) is driven by a spatially
distributed and temporally varying body forcing, d = [ d1 d2 d3 ]T, where d1, d2

and d3 are the forcing fluctuations in the streamwise, wall-normal and spanwise
directions, respectively. In prior work using the Oldroyd-B constitutive equations
(Hoda et al. 2008, 2009; Jovanović & Kumar 2011), the three-dimensional body
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forcing varies harmonically in the horizontal directions and stochastically in the
wall-normal direction and in time. However, given the static-in-time momentum
equation (3.7a), white-in-time stochastic disturbances d induce white-in-time velocity
fluctuations v, and the problem of variance amplification (in the absence of inertia)
becomes ill-posed (Jovanović & Kumar 2011). Hence, in this work, we consider the
body forcing d to be purely harmonic in the horizontal directions and in time, and
deterministic in the wall-normal direction, and we study the worst-case amplification
of deterministic disturbances.

3.2. Model in the evolution form

We note that equations (3.7a) and (3.7b) can be simplified by expressing the velocity
fields in terms of the wall-normal velocity (v) and vorticity (η = ∂zu−∂xw) fluctuations.
This is done by first taking the divergence of (3.7a) and using (3.7b) to get an
expression for p. The equation for v is then obtained by eliminating p from (3.7a).
The equation for η can be obtained by taking the curl of (3.7a). Finally, by rearranging
the components of the conformation tensor into the vector

φ = [ φT
1 φT

2 ]
T
, (3.8)

with

φ1 = [ r22 r23 r33 ]T, φ2 = [ r13 r12 r11 ]T, (3.9)

and by applying the Fourier transform in the x and z directions, we arrive at the
following static-in-time expressions for v and η in terms of the conformation tensor
and body-forcing fluctuations:

v = Cvφ + Dvd, (3.10a)
η = Cηφ + Dηd. (3.10b)

In addition, (3.7c) can be brought to the following form:

φ̇1 = F11φ1 + F1vv + F1ηη, (3.11a)

φ̇2 = F21φ1 + F22φ2 + F2vv + F2ηη. (3.11b)

The operators in (3.10) and (3.11) are defined in appendix A. For notational
convenience, we have suppressed the dependence of {v, η,φi, d} on (κ, y, t;β,We,L),
where κ= (kx, kz) with kx and kz denoting the horizontal wavenumbers.

The boundary conditions on the wall-normal velocity and vorticity are dictated by
the no-slip and no-penetration requirements:

v(κ, y=±1, t)= ∂yv(κ, y=±1, t)= η(κ, y=±1, t)= 0. (3.12)

We note that there are no boundary conditions on the components of R.
An evolution model for (3.7) can be obtained by substituting (3.10) into (3.11),

which yields

φ̇(κ, y, t)= A(κ)φ(κ, y, t)+ B(κ) d(κ, y, t), (3.13a)
v(κ, y, t)= C(κ)φ(κ, y, t)+ D(κ) d(κ, y, t), (3.13b)

where the operators A, B, C and D are defined in appendix A.
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3.3. Spatio-temporal frequency responses
Application of the temporal Fourier transform yields the frequency response operator
for system (3.13) as

H(κ, ω;β,We,L)= C(κ) (iωI − A(κ))−1 B(κ)+ D(κ), (3.14)

where ω is the temporal frequency and I is the identity operator. For a stable system
(3.13), (3.14) can be used to characterize the steady-state response to harmonic input
signals across spatial wavenumbers κ and temporal frequency ω. Namely, if the input
d is harmonic in x, z and t, i.e.

d(x, y, z, t)= d̄(y) ei(k̄xx+k̄zz+ω̄t), (3.15)

with d̄(y) denoting some spatial distribution in the wall-normal direction, then the
output v is also harmonic in x, z and t with the same frequencies but with a modified
amplitude and phase

v(x, y, z, t)= {[H(k̄x, k̄z, ω̄)d̄](y)
}

ei(k̄xx+k̄zz+ω̄t), (3.16)

where the amplitude and phase are precisely determined by the frequency response
at the input frequencies (k̄x, k̄z, ω̄). Note that we have dropped the dependence of the
frequency response operator on We, β and L for notational convenience.

The nth singular value of the frequency response operator H is determined by

σ 2
n (H)= λn(H?H), (3.17)

where λn(·) denotes the nth eigenvalue of a given self-adjoint operator and H? is
the adjoint of H . For any (kx, kz, ω), σmax(H) = maxn σn(H) determines the largest
amplification from d to v. Furthermore, the temporal supremum of the maximal
singular value of H determines the H∞ norm of system (3.13) (Zhou et al. 1996)

G(κ;β,We,L)= sup
ω

σ 2
max(H(κ, ω;β,We,L)). (3.18)

This measure of input–output amplification has several appealing interpretations.

(a) For any (kx, kz), the H∞ norm represents the worst-case amplification of purely
harmonic (in x, z and t) deterministic (in y) disturbances. This worst-case
input–output gain is obtained by maximizing over input temporal frequencies (sup
over ω) and wall-normal shapes (maximal singular value of H).

(b) In the temporal domain, the H∞ norm represents the energy gain from forcing to
velocity fluctuations

G(κ)= sup
Ed (κ)61

Ev(κ)

Ed(κ)
, (3.19)

where Ev(κ) denotes the κ-parametrized energy of velocity fluctuations, i.e.

Ev(κ)=
∫ ∞

0

∫ 1

−1
v∗(κ, y, t)v(κ, y, t) dy dt. (3.20)

In other words, for a unit-energy forcing, G(κ) captures the largest possible energy
of velocity fluctuations across wavenumbers κ.

(c) Finally, at any (kx, kz), the inverse of the H∞ norm quantifies the size of an
additive unstructured modelling uncertainty Γ that can destabilize generator A
in (3.13). As described in § 2, a large H∞ norm indicates small stability margins
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(i.e. low robustness to modelling imperfections). For systems with poor robustness
properties, even small modelling uncertainties (captured by operator Γ ) can lead to
instability of operator A+ Γ .

We also note that the frequency response of system (3.13) can be further
decomposed into 3× 3 block-operator formu

v

w

=
Hu1 Hu2 Hu3

Hv1 Hv2 Hv3

Hw1 Hw2 Hw3


d1

d2

d3

 . (3.21)

This form is suitable for identifying forcing components that introduce the largest
amplification of velocity fluctuations. In (3.21), H sj maps dj to s, and

Gsj(κ;β,We,L)= sup
ω

σ 2
max(H sj(κ, ω;β,We,L)), s= {u, v,w}, j= {1, 2, 3}.

(3.22)

The finite-dimensional approximations of the underlying operators are obtained
using the MATLAB Differentiation Matrix Suite (Weideman & Reddy 2000),
which utilizes pseudospectral methods to approximate differential operators. After
discretization in the wall-normal direction, each component in (3.21) becomes an
N × N matrix, where N denotes the number of Chebyshev collocation points in y. All
computations are performed in MATLAB and grid-point convergence is confirmed by
running additional computations with a larger number of grid points in y.

After discretization in y, the H∞ norm of the frequency response matrix can, in
principle, be computed by determining σmax(H(ω)) for many values of ω and by
choosing the resulting maximum value. However, there are two obvious problems
associated with such a method: difficulty in determining the range and spacing of the
temporal frequencies; and the large number of computations. To avoid these issues,
Boyd, Balakrishnan & Kabamba (1989) devised a bisection method that can efficiently
compute the H∞ norm. Furthermore, Bruinsma & Steinbuch (1990) introduced a fast
algorithm that utilizes an efficient method of choosing the temporal frequency for
computing the H∞ norm. This fast algorithm is utilized in our computations and it is
based on the relation between the singular values of the frequency response matrix and
the eigenvalues of a related Hamiltonian matrix.

All of our results are confirmed by additional frequency response computations
that utilize the integral formulation of (3.13). This is accomplished by rewriting
the evolution (3.13) into an equivalent two-point boundary value problem and then
reformulating it into a system of integral equations. The procedure for achieving
this along with easy-to-use MATLAB source codes is provided in Lieu & Jovanović
(2011). This new paradigm for computing frequency responses utilizes the CHEBFUN
computing environment (Trefethen et al. 2011) and it exhibits superior numerical
accuracy compared to conventional numerical schemes.

4. Frequency responses of three-dimensional velocity fluctuations
In this section, we study the dynamics of three-dimensional velocity fluctuations

in an inertialess shear-driven channel flow. In particular, we examine the worst-
case amplification of deterministic disturbances and identify the corresponding
wavenumbers that contain the most energy. Our analysis shows that velocity
fluctuations with large streamwise and O(1) spanwise length scales display the highest
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FIGURE 4. (Colour online) Worst-case amplification from d to v in Couette flow, showing
G(κ;β,We,L), with β = 0.5, We= {10, 50, 100} and L= {10, 50, 100}.

sensitivity to disturbances (and consequently the lowest robustness to modelling
imperfections). We further utilize the component-wise frequency responses (Jovanović
& Bamieh 2005) to identify forcing components that have the strongest influence on
the velocity fluctuations. In strongly elastic flows, we demonstrate that the wall-normal
and spanwise forces have the highest impact, and that the streamwise velocity is most
amplified by the system’s dynamics.

In the remainder of this section, we set the viscosity ratio to β = 0.5 and study the
effect of the Weissenberg number, We, and the maximum dumbbell extensibility, L,
on the kinetic energy density. Figure 4 shows the worst-case amplification of velocity
fluctuations triggered by all three body forces in flows with We = {10, 50, 100} and
L = {10, 50, 100}. For L = 10, the spatial frequency responses display low-pass filter
features commonly seen in flows governed by viscous dissipation, with the peak
amplification taking place at low wavenumbers. Furthermore, this spatial distribution
remains almost unchanged as We increases from 10 to 100 (cf. figure 4a,d,g).
However, as L increases to 50, the velocity fluctuations become more amplified
with Weissenberg number and a dominant peak starts to appear in an isolated
region around kx ≈ O(10−2) and kz ≈ O(1); see figure 4(e,h). As L increases to
100, amplification with We increases even further. This indicates that, in flows with
large enough L and We, streamwise-elongated and spanwise-periodic flow fluctuations
are the most amplified by deterministic body forces. Thus, in strongly elastic channel
flows without inertia, streamwise-constant and nearly streamwise-constant fluctuations
with a preferential spanwise length scale are most sensitive to external disturbances.
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FIGURE 5. (Colour online) Component-wise worst-case amplification from dj to s in Couette
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We next study the component-wise frequency responses that quantify amplification
from different forcing to different velocity components. This analysis facilitates
identification of forcing components that are most effective in amplifying velocity
fluctuations. In Couette flow with We = 50 and L = 50, figure 5 shows the worst-case
amplification of the nine frequency response components in (3.21). We see that the
streamwise and spanwise velocity fluctuations are the most amplified. Furthermore,
the maximum amplification of the streamwise velocity fluctuations triggered by d2

and d3 occurs around kx ≈ O(10−2) and kz ≈ O(1), respectively. This illustrates
that streamwise velocity fluctuations are responsible for the most amplified region
(kx ≈ 10−2, kz ≈ 2) in figure 4(e). In contrast, the square region around kx ≈ 0
and kz ≈ 0 in figure 4(e) arises from the responses of streamwise and spanwise
velocity fluctuations to d1 and d3, respectively. We note that the wall-normal velocity
experiences negligible amplification compared to that of the other two velocity
components and hence does not contribute to the large energy amplification in
inertialess flows.

The above results clearly illustrate the dominance of streamwise-constant and nearly
streamwise-constant velocity fluctuations in strongly elastic Couette flow without
inertia. The streamwise velocity is most amplified by disturbances, and this large
response is caused by the wall-normal and spanwise body forces. Even though this
section provides useful insight into the dynamics of inertialess channel flows of
viscoelastic fluids, the scaling of energy amplification with We and L cannot be
deduced from our computations. For streamwise-constant velocity fluctuations, this
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issue is addressed in § 5 by developing explicit analytical expressions that quantify the
dependence of the worst-case amplification on We, L, β and kz.

5. Dynamics of streamwise-constant velocity fluctuations
Motivated by the observation that in strongly elastic flows the most amplified

velocity fluctuations have large streamwise length scales, we next examine the
linearized model for fluctuations without streamwise variations, i.e. at kx = 0. We use
this model to establish an explicit scaling of the components of the frequency response
operator with We and L, and to explain the observations made in § 4. Since the largest
amplification takes place at low temporal frequencies, we use analytical developments
to show that, in flows without temporal variations, the worst-case amplification from
d2 and d3 to u scales linearly with the first normal stress difference N̄1 of the nominal
flow. Consequently, this worst-case amplification scales quadratically with We as
L→∞ and quadratically with L as We→∞. Therefore, even in flows with infinitely
large polymer relaxation times, the finite extensibility of polymer molecules limits
the largest achievable amplification. Furthermore, the worst-case amplification from all
other forcing to all other velocity components is both We- and L-independent. We also
present the spatial structures of the forcing and velocity fluctuation components that
contribute to the above-mentioned unfavourable scaling with N̄1, and demonstrate that
the key physical mechanism involves interactions of polymer stress fluctuations in the
(y, z) plane with base shear.

5.1. Dependence of worst-case amplification on We and L

For fluctuations without streamwise variations, i.e. at kx = 0, equations (3.11) and
(3.10) simplify to

φ̇1 =−F11φ1 + F1vv, (5.1a)

φ̇2 =−F22φ2 + F21φ1 + F2vv + F2ηη, (5.1b)

v = 1− β
β

Cv1φ1 +
1
β
Dv2d2 + 1

β
Dv3d3, (5.1c)

η = 1− β
β

Cη1φ1 +
1− β
β

Cη2φ2 +
1
β
Dη1d1, (5.1d)u

v

w

=
 0 Cuη

I 0
Cwv 0

[v
η

]
, (5.1e)

where φ1 = [ r22 r23 r33 ]T, φ2 = [ r13 r12 r11 ]T, v is the wall-normal velocity and
η is the wall-normal vorticity. On the other hand, the operators in (5.1) are given by

F11 =

f̄ 0 0
0 f̄ 0
0 0 f̄

 , F22 =

f̄ 0 0
0 f̄ We f̄ /L̄2

0 −2We f̄ + 2We2/L̄2

 , (5.2)

F1v =We

 2∂y

(i/kz)(∂yy + k2
z )

−2∂y

 , F21 =We

 0 1 0
1− f̄ /L̄2 0 −f̄ /L̄2

−2We/L̄2 0 −2We/L̄2

 , (5.3)
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F2v = We2

f̄

(i/kz) ∂yy

∂y

0

 , F2η =

 We
−We(i/kz)∂y

−2(We2/f̄ )(i/kz)∂y

 , (5.4)

Cv1 = ( f̄ /We)∆−2[ k2
z∂y ikz(∂yy + k2

z ) −k2
z∂y ], (5.5)

Cη1 = ( f̄ /L̄2)∆−1[ −ikz∂y 0 −ikz∂y ], (5.6)

Cη2 = ( f̄ /We)∆−1[ k2
z −ikz∂y −(We/L̄2)ikz∂y ], (5.7)

Dv2 = k2
z∆
−2, Dv3 = ikz∆

−2∂y, Dη1 =−ikz∆
−1, ∆= ∂yy − k2

z , (5.8)

Cuη =−i/kz, Cwv = (i/kz)∂y, ∆2 = ∂yyyy − 2k2
z∂yy + k4

z . (5.9)

An evolution representation of the streamwise-constant model (5.1) can be obtained
by eliminating the components of the conformation tensor from the equations. This
is achieved by substituting the temporal Fourier transforms of (5.1a) and (5.1b)
into (5.1c) and (5.1d) and taking the inverse temporal Fourier transform of the
resulting equations. We will show that this representation leads to convenient analytical
expressions for the frequency response operator.

For streamwise-constant fluctuations, the frequency response operator H in (3.21)
simplifies to u

v

w

=
Hu1 Hu2 Hu3

0 Hv2 Hv3

0 Hw2 Hw3


d1

d2

d3

 , (5.10)

where the operators H sj are given by

Hv2(kz, ω;β,We,L)= iω + f̄

iωβ + f̄
Dv2, Hw2(kz, ω;β,We,L)= iω + f̄

iωβ + f̄
Cwv Dv2,

(5.11a)

Hv3(kz, ω;β,We,L)= iω + f̄

iωβ + f̄
Dv3, Hw3(kz, ω;β,We,L)= iω + f̄

iωβ + f̄
C̄wv Dv3,

(5.11b)

Hu1(kz, ω;β,We,L)= iω + f̄

iωβ + f̄
E−1

uu Cuη Dη1, (5.11c)

Hu2(kz, ω;β,We,L)= E−1
uu Euv Dv2, Hu3(kz, ω;β)= E−1

uu Euv Dv3, (5.11d)

with

Euu = I − 2We2(β − 1)

L̄2

2iωf̄ − ω2

(iωβ + f̄ )(ζ0 − ω2 + iωζ1)
∆−1∂yy, (5.12a)

Euv = We f̄ (β − 1)

(iωβ + f̄ )
2 +

2We3(β − 1)

L̄2

3iωf̄ − ω2

(iωβ + f̄ )
2
(ζ0 − ω2 + iωζ1)

∆−1∂yy, (5.12b)

ζ0 = f̄ 2 + 4We2 f̄

L̄2
, ζ1 = 2f̄ + 2We2

L̄2
. (5.12c)
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FIGURE 6. Functions characterizing worst-case amplification from d2 and d3 to v and w at
kx = 0; gsj(kz) with {s= v,w; j= 2, 3}.

In (5.11a) and (5.11b), we have successfully separated the temporal and spatial
parts of the frequency response operators from d2 and d3 to v and w. The absence
of inertia induces a simple temporal dependence of H sj with {s = v,w; j = 2, 3} and
facilitates analytical determination of the temporal frequency ω at which the largest
worst-case amplification takes place. These four frequency response operators exhibit
high-pass temporal characteristics, with the peak amplification taking place at infinite
frequency, ω =∞. The addition of a small amount of inertia would introduce roll-off
at high temporal frequencies, thereby shifting the peak amplification to finite temporal
frequency (Jovanović & Kumar 2011).

These observations allow us to obtain explicit expressions for the worst-case
amplification from d2 and d3 to v and w. For example, the worst-case amplification
from d2 to v is given by

Gv2(kz;β)= sup
ω

σ 2
max(Hv2(kz, ω;We, β,L))

= (1/β2)σ 2
max(Dv2)

= (1/β2)gv2(kz), (5.13)

where the function gv2, which is independent of We, β and L, captures the
spanwise frequency response (from d2 to v). A similar procedure yields the following
expressions for the worst-case amplification from d2 and d3 to v and w:[

Gv2(kz;β) Gv3(kz;β)
Gw2(kz;β) Gw3(kz;β)

]
=
[

gv2(kz)/β
2 gv3(kz)/β

2

gw2(kz)/β
2 gw3(kz)/β

2

]
, (5.14)

where the functions g represent the β-, We- and L-independent spanwise frequency
responses. We note that, in Couette flow without inertia, the worst-case amplification
of the four components in (5.14) is equivalent for Oldroyd-B and FENE-CR fluids.

The functions gsj(kz) with {s= v,w; j= 2, 3} are shown in figure 6. We see that gv2

and gv3 exhibit similar trends with peaks at kz ≈ O(1); we also note that gw2 = gv3. In
contrast, gw3 has a low-pass shape with maximum occurring at kz = 0. The peak value
of this function is about four times larger than the peak values of gv2 and gv3.

We next examine responses of streamwise velocity to different forcing components.
We first analyse the temporal characteristics of the frequency response operators Huj

with j = {1, 2, 3}. Since the largest amplification of u arising from d takes place
at kz ≈ O(1), in figure 7 we show the temporal frequency dependence of σmax(Huj)

for kz = 1.5, β = 0.5 and L = 10. Figure 7(a) shows high-pass temporal features
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of σmax(Hu1) with its maximum value taking place at ω = ∞; furthermore, this
peak value is independent of the Weissenberg number and the maximum extensibility
of the polymer molecules L. In contrast, σmax(Hu2) and σmax(Hu3) have low-pass
characteristics and attain their largest values (which depend on both We and L) at low
temporal frequencies.

Figure 8 shows the kz dependence of the functions Guj that quantify the worst-
case amplification from different forcing components to the streamwise velocity for
L = {10, 100} and for multiple values of the Weissenberg number. Compared to the
wall-normal and spanwise velocity fluctuations, streamwise velocity is more amplified
by disturbances (cf. figures 6 and 8). As evident from figure 8(a,d), Gu1 has high
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values for low spanwise wavenumbers and is independent of both We and L. On the
other hand, Gu2 and Gu3 achieve their peaks at kz ≈ O(1). For a fixed value of L these
two functions increase with the Weissenberg number, and the largest amplification
takes place in the limit of infinitely large We. In contrast to the Oldroyd-B fluids, finite
extensibility of the nonlinear springs in the FENE-CR model induces finite values of
Gu2 and Gu3 even at arbitrarily large Weissenberg numbers. Furthermore, for a fixed
value of We, the worst-case amplification increases with L and the largest amplification
is obtained in the Oldroyd-B limit (as L→∞). Analytical explanation for these
observations is provided below.

We next present explicit expressions for the worst-case amplification from different
forcing components to the streamwise velocity. We summarize our major findings here
and relegate derivations to appendix B. We first consider the worst-case response of
the streamwise velocity in the presence of the streamwise body forcing. For all values
of We and L, our computations indicate that the worst-case amplification from d1 to u
takes place at ω =∞. Consequently, in the limit of infinitely large ω we have

Gu1(kz;β)= lim
ω→∞

σ 2
max(Hu1(kz, ω;β,We,L))

= (1/β2)σ 2
max(Cuη Dη1)= (1/β2)gu1(kz), (5.15)

where gu1 is the spanwise frequency response from d1 to u. Note that Gu1 is
independent of both We and L, which is in agreement with the observations made
in figure 8(a,d).

Derivation of the analytical expressions for Gu2 and Gu3 is more challenging because
the worst-case amplification of u arising from d2 and d3 depends on both We and L.
However, since our computations demonstrate that the worst-case amplification from
d2 and d3 to u takes place at low temporal frequencies, the essential features can
be captured by analysing the corresponding frequency responses at ω = 0. Thus, the
worst-case amplification of u caused by d2 and d3 can be reliably approximated by

Guj(kz;β,We,L)≈ σ 2
max(Huj(kz, 0;β,We,L))

= (We/f̄ )
2
(1− β)2 guj(kz)

= 1
2 N̄1 (1− β)2 guj(kz), j= {2, 3}, (5.16)

where the functions guj with j= {2, 3} quantify the spanwise frequency responses from
d2 and d3 to u (see figure 9). Equation (5.16) shows that the worst-case amplification
of the streamwise velocity fluctuations scales linearly with the first normal stress
difference N̄1 of the nominal Couette flow. Hence, even in the absence of inertia,
velocity fluctuations can experience large amplification in flows with large first normal
stress difference.

Furthermore, table 1 shows explicit expressions for Gu2 and Gu3 in the limit of
infinitely large We (or infinitely large L). In these two cases, the first normal stress
difference of the base Couette flow is given by

lim
L→∞

N̄1 = 2We2, lim
We→∞

N̄1 = L̄2. (5.17)

For Oldroyd-B fluids, polymer molecules are modelled by infinitely extensible linear
springs and both Gu2 and Gu3 scale quadratically with the Weissenberg number. On
the other hand, as We→∞, Gu2 and Gu3 scale quadratically with the maximum
extensibility of the polymer molecules L. We conclude that – even for infinitely
large polymer relaxation times – energy amplification of velocity fluctuations in
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L−→∞ We−→∞
Gu2(kz;β, ·, ·) We2 (1− β)2 gu2(kz) 0.5 L̄2 (1− β)2 gu2(kz)

Gu3(kz;β, ·, ·) We2 (1− β)2 gu3(kz) 0.5 L̄2 (1− β)2 gu3(kz)

TABLE 1. Worst-case amplification of streamwise velocity fluctuations arising from the
wall-normal and spanwise forces in the limit of infinitely large maximum extensibility of
polymer chains L or infinitely large Weissenberg number We.

inertialess Couette flow of viscoelastic fluids is bounded by the maximum extensibility
of nonlinear dumbbells.

5.2. Dominant flow structures
In this section, we present the spatial structures of the wall-normal and spanwise body
forces that induce the largest amplification in streamwise velocity. We also discuss
the (y, z) dependence of the resulting streamwise velocity fluctuations. These structures
are purely harmonic in the spanwise direction, with period determined by the value
of kz at which the functions gu2 and gu3 attain their maxima (kz ≈ 2.5 and kz ≈ 1.5,
respectively). Furthermore, since the worst-case amplification occurs at ω = 0, these
structures are constant in time and their wall-normal profiles are determined by the
principal singular functions of the frequency response operators that map d2 and d3

to u.
Fluctuations in d2 and d3 that lead to the largest amplification of u are shown

in figure 10(a,b). The wall-normal forcing is symmetric with respect to the channel
centreline, with the peak value located at the centre of the channel; in contrast, the
spanwise forcing is antisymmetric with respect to the channel centreline.

Figure 10(c,d) illustrates the spatial structures of streamwise velocity induced by the
body forcing fluctuations shown in figure 10(a,b). Both body forces yield a symmetric
response in u with vortices occupying the entire channel width. We note that the
dominant flow structures shown in figure 10 do not exhibit significant deviation with
β, We and L. Furthermore, we observe striking similarity between these flow structures
and flow structures resulting from the analysis of stochastically forced Couette flow
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FIGURE 10. (Colour online) (a,b) Body forcing fluctuations in d2 and d3 leading to the
largest amplification of u. (c,d) Streamwise velocity fluctuations obtained by forcing the
inertialess Couette flow with the body force fluctuations shown in (a,b), respectively.

of Oldroyd-B fluids (Jovanović & Kumar 2011). Although these spatial structures may
not match the full complexity of flow patterns produced in experiments and direct
numerical simulations, our analysis identifies dynamical features that are likely to play
an important role in shear-driven channel flows of viscoelastic fluids.

5.3. Physical mechanisms
We next discuss the physical mechanisms responsible for the strong influence of wall-
normal and spanwise forces on streamwise velocity fluctuations in inertialess channel
flows. As shown in appendix B, in the absence of streamwise forcing and streamwise
variations in flow fluctuations, u(y, z, t) evolves according to

1u̇=− f̄

β

{
1u+ (1− β)[∂y(U

′r22)+ ∂z(U
′r23)] + 1− β

L̄2
∂yṙ11

}

=− f̄

β

1u+
√

N̄1

2
(1− β)(∂y(U

′τ22)+ ∂z(U
′τ23))

+ 1− β
L̄2

(
2We2

f̄
∂yyu+ 2We∂y(U

′r12)−
(

f̄ + 2We2

L̄2

)
∂yr11

) . (5.18)

Therefore, even in the absence of inertia, the source term in the evolution equation
for streamwise velocity is provided by the interactions between polymer stress
fluctuations (in the wall-normal/spanwise plane) with the base shear U′. Furthermore,
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the finite extensibility of the polymer chains introduces additional source terms that
are not present in the Oldroyd-B model. Physically, these additional terms originate
from: (i) the interaction between the streamwise shear component of the conformation
tensor r12 with the base shear; and (ii) the wall-normal gradient of the streamwise
component of the conformation tensor r11. Relative to the terms that are already
present in the Oldroyd-B model, the influence of these additional terms (which arise
from temporal changes in r11) is much weaker.

We have demonstrated in § 5.1 that the essential features of the worst-case
amplification from d2 and d3 to u can be captured by analysing the corresponding
frequency responses at ω = 0. At zero temporal frequency, (5.18) simplifies to a
static-in-time relation between the streamwise velocity and the fluctuating components
of the polymer stress tensor:

1u=−
√

N̄1/2 (1− β)(∂y(U
′τ22)+ ∂z(U

′τ23)). (5.19)

Furthermore, τ22 and τ23 are proportional to the spatial gradients of the (y, z) plane
streamfunction ψ (i.e. v = ∂zψ , w=−∂yψ),

τ22 = 2∂yzψ, τ23 =−(∂yy − ∂zz)ψ, (5.20)

and ψ is induced by the action of the wall-normal and spanwise forces

ψ =∆−2[ −∂z ∂y ]
[

d2

d3

]
. (5.21)

Finally, by substituting (5.20) into (5.19) we obtain the expression

1u=−
√

N̄1/2 (1− β)∂z1ψ

=
√

N̄1/2 (1− β)∂zωx, (5.22)

which relates fluctuations in the streamwise velocity u and the streamwise vorticity
ωx in inertialess Couette flow of FENE-CR fluids without streamwise and temporal
variations (i.e. at kx = 0 and ω = 0).

This demonstrates that O(1) fluctuations in streamwise vorticity induce O(
√

N̄1)
fluctuations in streamwise velocity through a viscoelastic equivalent of the well-
known lift-up mechanism. In contrast to Newtonian fluids, where vortex tilting
induces large amplification, the lift-up mechanism in viscoelastic fluids originates from
interactions between polymer stress fluctuations in the (y, z) plane with background
shear (Jovanović & Kumar 2011). In the absence of inertia, a static-in-time momentum
equation relates the wall-normal and spanwise velocity fluctuations (and consequently
the streamwise vorticity) to the polymer stress fluctuations τ22, τ23 and τ33. Interactions
of these polymer stress fluctuations with background shear induce the energy transfer
from the mean flow to fluctuations and redistribute momentum in the (y, z) plane
through a movement of the low-speed fluid (away from the wall) and the high-speed
fluid (towards the wall). This momentum exchange is responsible for the generation
of alternating regions of high and low streamwise velocity (relative to the mean flow),
and it is facilitated by large normal stress difference N̄1, low viscosity ratio β, strong
base shear U′, and strong spatial variations in streamwise vorticity fluctuations. As
in streamwise-constant inertial flows of Newtonian fluids, this amplification disappears
either in the absence of spanwise variations in flow fluctuations or in the absence of
the background shear.
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6. Dynamics of streamwise-constant polymer stress fluctuations
Although we have so far confined our attention to the dynamics of velocity

fluctuations, it is worth noting that polymer stress fluctuations can also experience
significant amplification even in the absence of inertia. Since our computations (not
shown here) demonstrate that the largest responses in polymer stress fluctuations are
induced by streamwise-constant deterministic forcing, we next examine the responses
from body forcing to polymer stress fluctuations without streamwise variations. We use
analytical developments to show that the wall-normal and spanwise forces induce the
largest amplification of the polymer stress fluctuations. The worst-case amplification
obtained in the presence of these two forcing components takes place at ω = 0 and it
is proportional to N̄1 for τ13 and τ12, and to N̄2

1/ (1+ N̄1/L̄2)
2

for τ11. Furthermore, the
worst-case amplification from all forcing components to τ22, τ23 and τ33 is independent
of β, We and L. We also illustrate that the worst-case amplification from d2 and d3 to
τ11 scales

(i) quartically with We as L→∞, and
(ii) quartically with L as We→∞.

Following a sequence of straightforward algebraic manipulations, the frequency
response operator G that maps body forcing fluctuations d1, d2 and d3 to polymer
stress fluctuations can be expressed as

τ22

τ23

τ33

τ13

τ12

τ11


=



0 G12 G13

0 G22 G23

0 G32 G33

G41 G42 G43

G51 G52 G53

G61 G62 G63


d1

d2

d3

 , (6.1)

where the streamwise-constant frequency response operators G`j are given in
appendix C.

We note that all components of the frequency response operator in (6.1) exhibit roll-
off at high temporal frequencies, thereby indicating that the largest singular value of
each component of G peaks at finite temporal frequency. In particular, the worst-case
amplification from d2 and d3 to τ22, τ23 and τ33 takes place at ω = 0 and is determined
by the following β-, We- and L-independent functionsG12(kz) G13(kz)

G22(kz) G23(kz)

G32(kz) G33(kz)

=
g12(kz) g13(kz)

g22(kz) g23(kz)

g32(kz) g33(kz)

 . (6.2)

Figure 11 shows the functions g`j with {` = 1, 2, 3; j = 2, 3} that quantify the
spanwise wavenumber dependence of the respective frequency response operators. We
note that g32 = g12 and g33 = g13. From figure 11(a), we see that g12 and g13 decay
to zero at both low and high wavenumbers with the maximum values occurring at
kz ≈ 2.3 and kz ≈ 1.5, respectively. Similarly, function g22 decays to zero at both
low and high values of kz and it achieves two peaks at kz ≈ 1.4 and kz ≈ 4.0. On
the other hand, g23 displays low-pass behaviour and the maximum value of this
frequency response is approximately three times larger than the maximum values of
other responses in figure 11.
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FIGURE 11. (Colour online) Spanwise frequency responses from dj to the polymer stress
fluctuations τ22 (g1j), τ23 (g2j) and τ33 (g3j) with j = {2, 3}. The function g12 = g32 and the
function g13 = g33: (a) g12, g32 (©) and g13, g33 (solid); and (b) g22 (©) and g23 (solid).

We next analyse the temporal frequency responses of the operators G`j with
{` = 4, 5, 6; j = 1, 2, 3} that map different forcing components to fluctuations in τ13,
τ12 and τ11. Figure 12 shows the ω dependence of σmax(G`j) for kz = 1.5, β = 0.5 and
L = 10. Figure 12(a–c) shows that σmax(G4j) with j = {1, 2, 3} achieve their respective
peaks at ω = 0. Furthermore, while the peak value of σmax(G41) does not depend on
the Weissenberg number, the peak values of σmax(G42) and σmax(G43) increase with We.

The frequency responses G`j with {` = 5, 6; j = 2, 3} that quantify amplification
from d2 and d3 to τ12 and τ11 exhibit similar low-pass characteristics. On the other
hand, figure 12(d,g) show that σmax(G51) and σmax(G61) achieve their peak values at
non-zero temporal frequencies and that these values increase as We increases. We
see that the forcing components in the wall-normal and spanwise directions induce
larger amplification of polymer stress fluctuations compared to the streamwise forcing.
Furthermore, the streamwise component of the polymer stress tensor τ11 experiences
the largest amplification.

Following a series of algebraic manipulations, it can be shown that the worst-case
amplification from d2 and d3 to τ13, τ12 and τ11 takes place at ω = 0 and is given by

G4j(kz;β,We,L)= (N̄1/2)g4j(kz;β), (6.3a)

G5j(kz;β,We,L)= (N̄1/2) (2+ β)2 g5j(kz), (6.3b)

G6j(kz;β,We,L)= N̄2
1

(1+ N̄1/L̄2)
2 (1+ 2β)2 g6j(kz), j= {2, 3}. (6.3c)

The functions g`j with {` = 4, 5, 6; j = 2, 3} represent the We- and L-independent
spanwise frequency responses from the wall-normal and spanwise forces to τ13, τ12

and τ11. Equation (6.3) shows that the worst-case amplification of τ13 and τ12 is
proportional to N̄1. On the other hand, the worst-case amplification of τ11 scales as
N̄2

1/ (1+ N̄1/L̄2)
2
.

Figure 13 shows the kz dependence of the functions g`j for {` = 4, 5, 6; j = 2, 3}.
We note that g52 = g62 and g53 = g63. Function g43 has low-pass shape and it peaks
at kz = 0. We also notice band-pass features of g52, g53 and g42, with the peak values
occurring at kz ≈ 2.4, kz ≈ 1.6 and kz ≈ 1.4, respectively.
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FIGURE 12. (Colour online) Maximum singular values of the streamwise-constant frequency
responses operator from dj to τ13 (G4j), τ12 (G5j) and τ11 (G6j) as a function of ω for j= {2, 3},
kz = 1.5, β = 0.5, L= 10 and We= [10, 100].

Table 2 summarizes the worst-case amplification of τ13, τ12 and τ11 arising from the
wall-normal and spanwise forces in the limit of infinitely large L (or infinitely large
We). For Oldroyd-B fluids (i.e. as L→∞), both G4j and G5j scale quadratically with
the Weissenberg number, and G6j scales quartically with We. On the other hand, as
We→∞, both G4j and G5j scale quadratically with L and G6j scales quartically with
L. This demonstrates profound influence of d2 and d3 on τ11 in strongly elastic shear
flows of viscoelastic fluids. Thus, even in the absence of inertia, viscoelastic shear
flows with large polymer relaxation times and large extensibility of polymer molecules
exhibit high sensitivity to disturbances and low robustness to modelling imperfections.

7. Concluding remarks
In this study, we have examined non-modal amplification of disturbances in

inertialess Couette flow of viscoelastic fluids using the FENE-CR model. The
amplification is quantified by the maximal singular values of the frequency response
operators that map sources of excitations (body forces) to the quantities of interest
(velocity and polymer stress fluctuations). Spatio-temporal body forcing fluctuations
are assumed to be purely harmonic in the horizontal directions and in time, and
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j= {2, 3} L−→∞ We−→∞
G4j(kz;β, ·, ·) We2g4j(kz;β) 0.5 L̄2g4j(kz;β)
G5j(kz;β, ·, ·) We2 (2+ β)2 g5j(kz) 0.5 L̄2 (2+ β)2 g5j(kz)

G6j(kz;β, ·, ·) 4We4 (1+ 2β)2 g6j(kz) 0.25 L̄4 (1+ 2β)2 g6j(kz)

TABLE 2. Worst-case amplification of τ13, τ12 and τ11 arising from d2 and d3 in the limit of
infinitely large maximum extensibility or infinitely large Weissenberg number.

deterministic in the wall-normal direction. Our three-dimensional component-wise
frequency response analysis of the FENE-CR model sets the current paper apart from
prior works that study the transient growth of velocity and polymer stress fluctuations
in inertialess flows (Jovanović & Kumar 2010) and non-modal amplification of
stochastic disturbances in elasticity-dominated flows with non-zero inertia (Hoda
et al. 2008, 2009; Jovanović & Kumar 2011) using the Oldroyd-B model. We have
shown that streamwise-elongated flow structures are most amplified by disturbances.
Furthermore, the component-wise frequency responses reveal that the wall-normal and
spanwise forces have the strongest impact on the flow fluctuations, and that the
influence of these forces is largest on streamwise components of velocity and polymer
stress fluctuations.

For streamwise-constant fluctuations, we have established analytically that the
largest amplification of the streamwise velocity and streamwise component of the
polymer stress tensor is proportional to the first normal stress difference of the
nominal flow N̄1 and to N̄2

1/ (1+ N̄1/L̄2)
2
, respectively. This largest amplification

is caused by wall-normal and spanwise forcing fluctuations and it takes place at
low temporal frequencies and O(1) spanwise wavenumbers. Using our analytical
developments, we have also shown that this worst-case amplification of u and τ11

respectively scales as: (i) O(We2) and O(We4) in the Oldroyd-B limit (i.e. as L→∞),
and (ii) O(L2) and O(L4) in the limit of infinitely large Weissenberg number. We
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thus conclude that, in the presence of large polymer relaxation times and large
extensibility of the polymer molecules, the velocity and polymer stress fluctuations can
experience significant amplification even when inertial effects are completely absent.
The underlying physical mechanism involves interactions of polymer stress fluctuations
with a background shear, which induces a viscoelastic analogue of the vortex tilting
mechanism that is responsible for large amplification in inertial flows of Newtonian
fluids.

It is worth noting that, in the limit of infinitely large We, the worst-case
amplification of both velocity and polymer stress fluctuations is bounded by the
maximum extensibility of the polymer molecules. This is in contrast to Oldroyd-B
fluids, where infinite extensibility allows the amplification of disturbances to grow
unboundedly with We (Jovanović & Kumar 2011). Our new observations demonstrate
that high sensitivity to disturbances and low robustness to modelling imperfections
are reduced by finite extensibility of nonlinear dumbbells. Thus, both large polymer
relaxation times and large extensibility of the polymer molecules are needed to achieve
large amplification of velocity and polymer stress fluctuations in inertialess channel
flows of viscoelastic fluids.

The present work extends recent efforts (Hoda et al. 2008, 2009; Jovanović &
Kumar 2010, 2011) that examine possible mechanisms for triggering transition to
elastic turbulence in channel flows of viscoelastic fluids. In addition to providing
insight into worst-case amplification of velocity and polymer stress fluctuations in
inertialess flows, we also demonstrate the importance of uncertainty quantification in
flows of viscoelastic fluids. Our analysis shows high sensitivity of inertialess flows
of viscoelastic fluids to external disturbances. Unfavourable scaling of the worst-
case amplification of flow fluctuations with We and L indicates that small-in-norm
modelling imperfections can destabilize nominally stable flows. Hence, the stability
margins of inertialess channel flows of viscoelastic fluids decrease significantly
with an increase in the Weissenberg number and the maximum extensibility of
the polymer chains. This uncertainty may arise from inevitable imperfections in the
laboratory environment or from the approximate nature of the constitutive equations.
Our observations regarding model robustness also have important implications for
numerical simulations, where numerical and/or round-off errors may cause the
simulated dynamics to differ from the actual dynamics.

The present findings suggest a plausible mechanism for transition to elastic
turbulence in channel flows of viscoelastic fluids. Large amplification of disturbances
induces formation of streamwise streaks whose growth can put the flow into a regime
where nonlinear interactions are no longer negligible. These nonlinear interactions
can then induce secondary amplification (Schoppa & Hussain 2002) or secondary
instability (Waleffe 1997) of streamwise streaks, their breakdown, and transition
to a time-dependent disordered flow and elastic turbulence. To understand possible
routes for the transition to elastic turbulence, it is essential to track later stages of
disturbance development by considering nonlinearities in the constitutive equations
and their interplay with streak development and high flow sensitivity. Our ongoing
efforts are directed towards examining sensitivity of the streaks to three-dimensional
disturbances. We also intend to study the presence of a self-sustaining mechanism
(proposed for Newtonian fluids by Waleffe (1997)) and to numerically track later
stages of disturbance development in strongly elastic channel flows of viscoelastic
fluids.
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Appendix A. The underlying operators in three-dimensional shear-driven
channel flow of FENE-CR fluids

In this appendix, we define the underlying operators appearing in (3.10)–(3.13) for a
shear-driven channel flow. Operators {C,D} in (3.10) are given by

Cv = (1− β)
β
[Cv1 Cv2 ], Dv = 1

β
[Dv1 Dv2 Dv3 ], (A 1)

Cη = (1− β)
β
[Cη1 Cη2 ], Dη = 1

β
[Dη1 Dη2 Dη3 ], (A 2)

where

Cv1 =∆−2[Cv1,1 Cv1,2 Cv1,3 ], Cv2 =∆−2[Cv2,1 Cv2,2 Cv2,3 ], (A 3)

Cη1 =∆−1[Cη1,1 Cη1,2 Cη1,3 ], Cη2 =∆−1[Cη2,1 Cη2,2 Cη2,3 ], (A 4)

Cv1,1 =
(

k2 f̄

We
− 2We k2

x

L̄2

)
∂y + ikx f̄

L̄2
(∂yy + k2), Cv1,2 = ikz f̄

We
(∂yy + k2), (A 5)

Cv1,3 =−
(

k2
z f̄

We
+ 2We k2

x

L̄2

)
∂y + ikx f̄

L̄2
(∂yy + k2), Cv2,1 =−2kzkx f̄

We
∂y, (A 6)

Cv2,2 = ikx f̄

We
(∂yy + k2), Cv2,3 =−

(
k2

x f̄

We
+ 2We k2

x

L̄2

)
∂y + ikx f̄

L̄2
(∂yy + k2), (A 7)

Cη1,1 = (2We/L̄2)kxkz − (ikz f̄ /L̄2)∂y, Cη1,2 = (ikx f̄ /We)∂y, (A 8)

Cη1,3 =
(

2We

L̄2
− f̄

We

)
kxkz − ikz f̄

L̄2
∂y, Cη2,1 = f̄

We
(k2

z − k2
x), (A 9)

Cv2,2 =− ikz f̄

We
∂y, Cv2,3 =

(
2We

L̄2
+ f̄

We

)
kxkz − ikz f̄

L̄2
∂y, (A 10)

Dv1 = ikx∆
−2∂y, Dv2 = k2∆−2, Dv3 = ikz∆

−2∂y, (A 11)

Dη1 =−ikz∆
−1, Dη2 = 0, Dη3 = ikx∆

−1. (A 12)

Here, k2 = k2
x + k2

z , i = √−1, ∆ = ∂yy − k2 with homogenous Dirichlet boundary
conditions, and ∆2 = ∂yyyy − 2k2∂yy + k4 with both homogenous Dirichlet and Neumann
boundary conditions.
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The F operators appearing in (3.11) are determined by

F11 =

−D 0 0
0 −D 0
0 0 −D

 , F22 =

−D 0 0
0 −D −We f̄ /L̄2

0 2We −(D+ 2We2/L̄2)

 , (A 13)

F21 =

 0 We 0
We(1− f̄ /L̄2) 0 −We f̄ /L̄2

−2We2/L̄2 0 −2We2/L̄2

 , D= ( f̄ +WeikxU), (A 14)

F1v = We

k2

 2k2(∂y + ikxR̄12)

ikz(∂yy + k2)− kxkzR̄12∂y

−2k2
z∂y

 , F2v = We

k2

F
1
2v

F2
2v

F3
2v

 , (A 15)

F1η = We

k2

 0
ikx∂y − k2

x R̄12

−2kxkz

 , F2η = We

k2

k2
z + ikxR̄12∂y − k2

x R̄11

kxkzR̄12 − ikz∂y

2(kxkzR̄11 − ikzR̄12∂y)

 , (A 16)

F1
2v = ikzR̄12∂yy − kxkz(1+ R̄11)∂y, (A 17)

F2
2v = ikxk

2R̄11 + k2
z R̄12∂y + ikx∂yy, F3

2v = 2(ikxR̄12∂yy − k2
x R̄11∂y). (A 18)

The operators appearing in the evolution equations (3.13a) are given by

A=
[
F11 + F1vCv1 + F1ηCη1 F1vCv2 + F1ηCη2

F21 + F2vCv1 + F2ηCη1 F22 + F2vCv2 + F2ηCη2

]
, (A 19)

C =

CuvCv1 + CuηCη1 CuvCv2 + CuηCη2

Cv1 Cv2

CwvCv1 + CwηCη1 CwvCv2 + CwηCη2

 , (A 20)

B=
[
F1vDv + F1ηDη

F2vDv + F2ηDη

]
, D=

CuvDv + CuηDη

Dv

CwvDv + CwηDη

 , (A 21)

Cuv = (ikx/k
2)∂y, Cuη =−ikz/k

2, Cwv = (ikz/k
2)∂y, Cwη = ikx/k

2. (A 22)

Appendix B. Explicit scaling of worst-case amplification of streamwise-
constant velocity fluctuations

In this section, we discuss how to obtain explicit expressions for the worst-case
amplification from the wall-normal and spanwise forces to the streamwise velocity
fluctuations in the limit of infinitely large We or infinitely large L. We note that
derivation of the analytical expressions for Gu2 and Gu3 is more challenging because
the worst-case amplification of u arising from d2 and d3 depends on both We and L.
However, since our computations presented in § 5.1 demonstrate that the worst-case
amplification from d2 and d3 to u takes place at low temporal frequencies, the essential
features can be captured by analysing the corresponding frequency responses at ω = 0;
see figure 7(b,c). For flows without temporal variations, we can obtain the following
static-in-time expressions that relate the conformation tensor fluctuations with the
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streamwise velocity u and (y, z) plane streamfunction ψ (i.e. v = ikzψ , w=−∂yψ)

r22 = 2We

f̄
ikz∂yψ, r33 =−2We

f̄
ikz∂yψ, r23 =−We

f̄
(∂yy + k2

z )ψ, (B 1a)

r13 = (We/f̄ )(U′r23 − (We/f̄ )∂yyψ + ikzu), (B 1b)

r12 = (We/f̄ )(U′r22 − ( f̄ /L̄2)r11 + (We/f̄ )ikz ∂yψ + ∂yu), (B 1c)

r11 = (2We2/ζ0)((3We/f̄ )ikz∂yψ + 2∂yu). (B 1d)

The above expression (B 1) is obtained by taking the temporal Fourier transforms
of (5.1a)–(5.1b) and replacing the wall-normal velocity and vorticity with

v = ikzψ, η = ikzu. (B 2)

In the absence of streamwise forcing and streamwise variations, the static-in-time
momentum equation (in the streamwise direction) provides a relation between the
streamwise velocity and the streamwise components of the conformation tensor

1u=−1− β
β

(
f̄

We
∂yr12 + f̄

We
ikzr13 + f̄

L̄2
∂yr11

)
. (B 3)

Substituting (B 1b) and (B 1c) into (B 3) yields a relation between streamwise velocity
and the conformation tensor fluctuations in the wall-normal/spanwise plane,

1u=−(1− β)(∂y(U
′ r22)+ ikz(U

′r23)). (B 4)

Furthermore, we can obtain an expression relating u and ψ by substituting (B 1a)
into (B 4), which yields

1u=−(We/f̄ )(1− β)ikz1ψ. (B 5)

It can be shown that ψ is induced by the action of the wall-normal and spanwise
forcing:

ψ =∆−2[ −ikz ∂y ]
[

d2

d3

]
, (B 6)

Finally, the frequency response from d2 and d3 to u at ω = 0 is obtained by
substituting (B 6) into (B 5), which yields

Huj(kz, 0;β,We,L)=−(We/f̄ )(1− β)Dvj, j= {2, 3}, (B 7)

where

Dv2 = k2
z∆
−2, Dv3 = ikz∆

−2∂y. (B 8)

The worst-case amplification of u caused by d2 and d3 can be reliably approximated by

Guj(kz;β,We,L)≈ σ 2
max(Huj(kz, 0;β,We,L))

= (We/f̄ )
2
(1− β)2 σ 2

max(Dvj)

= (N̄1/2) (1− β)2 guj(kz), j= {2, 3}, (B 9)

where the functions guj with j = {2, 3} quantify the spanwise frequency responses
from d2 and d3 to u. In the Oldroyd-B limit (i.e. as L→∞), the first normal stress
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difference N̄1→ 2We2 and the function Guj is given by

lim
L→∞

Guj(kz;β,We,L)=We2 (1− β)2 guj(kz). (B 10)

On the other hand, in the limit of infinitely large We, the first normal stress difference
N̄1→ L̄2 and the function Guj is given by

lim
We→∞

Guj(kz;β,We,L)= (L̄4/2) (1− β)2 guj(kz). (B 11)

Appendix C. The frequency response operators from body forces to polymer
stresses in streamwise-constant Couette flow of FENE-CR fluids

The streamwise-constant frequency response operators in (6.2) that map different
forcing components to the polymer stress fluctuations are given by

G1j(kz, ω;β,We,L)= 2 f̄

iωβ + f̄
∂yDvj, G3j(kz, ω;β,We,L)=− 2 f̄

iωβ + f̄
∂yDvj,

(C 1)

G2j(kz, ω;β,We,L)= (f̄ /(iωβ + f̄ ))(i/kz)(∂yy + k2
z )Dvj, (C 2)

G41(kz, ω;β,We,L)= (ikz f̄ /(iωβ + f̄ ))E−1
uu CuηDη1, (C 3)

G4j(kz, ω;β,We,L)= We f̄

(iωβ + f̄ )(iω + f̄ )
(i/kz)(∂yy + k2

z )Dvj

+ We

(iωβ + f̄ )
(i/kz)∂yyDvj + ikz f̄

(iω + f̄ )
E−1

uu EuvDvj, (C 4)

G51(kz, ω;β,We,L)= 2We2

L̄2

2iωf̄ − ω2

(iωβ + f̄ )(ζ0 − ω2 + iωζ1)
∂yE−1

uu CuηDη1

+ f̄

iωβ + f̄
∂yE−1

uu CuηDη1, (C 5)

G5j(kz, ω;β,We,L)= 2We2

L̄2

2iωf̄ − ω2

(iω + f̄ )(ζ0 − ω2 + iωζ1)
∂yE−1

uu EuvDvj

+ 2We3

L̄2

3iωf̄ − ω2

(iω + f̄ )(iωβ + f̄ )(ζ0 − ω2 + iωζ1)
∂yDvj

+ We(iω + 3f̄ )

(iω + f̄ )(iωβ + f̄ )
∂yDvj + f̄

iω + f̄
∂yE−1

uu EuvDvj, (C 6)

G61(kz, ω;β,We,L)=
(

f̄

We
+ 2We

L̄2

)
2We2(iω + 2f̄ )

f̄ (ζ0 − ω2 + iωζ1)

iω + f̄

iωβ + f̄
∂yE−1

uu CuηDη1,

(C 7)

G6j(kz, ω;β,We,L)=
(

f̄

We
+ 2We

L̄2

)(
2We2(iω + 2f̄ )

f̄ (ζ0 − ω2 + iωζ1)
∂yE−1

uu EuvDvj

+ 2We3(iω + 3f̄ )

f̄ (iωβ + f̄ )(ζ0 − ω2 + iωζ1)
∂yDvj

)
, j= {2, 3}. (C 8)
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LIEU, B. K. & JOVANOVIĆ, M. R. 2011 Computation of frequency responses of linear

time-invariant PDEs on a compact interval. J. Comput. Phys. (submitted) arXiv:1112.0579v1.
MEULENBROEK, B., STORM, C., MOROZOV, A. N. & VAN SAARLOOS, W. 2004 Weakly nonlinear

subcritical instability of visco-elastic Poiseuille flow. J. Non-Newtonian Fluid Mech. 116,
235–268.

MOROZOV, A. N. & VAN SAARLOOS, W. 2005 Subcritical finite-amplitude solutions for plane
Couette flow of viscoelastic fluids. Phys. Rev. Lett. 95, 024501.

OTTINO, J. M. & WIGGINS, S. 2004 Introduction: mixing in microfluidics. Phil. Trans. R. Soc.
Lond. A 362, 923–935.

PAN, L., MOROZOV, A. & ARRATIA, P. 2011 Nonlinear elastic instabilities in parallel shear flows.
In Bulletin of the American Physical Society, Vol. 56. Baltimore.

SCHMID, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129–162.
SCHOPPA, W. & HUSSAIN, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid

Mech. 453, 57–108.
TREFETHEN, L. N. & EMBREE, M. 2005 Spectra and Pseudospectra: the Behavior of Nonnormal

Matrices and Operators. Princeton University Press.



Amplification of disturbances in inertialess flows of viscoelastic fluids 263

TREFETHEN, L. N., HALE, N., PLATTE, R. B., DRISCOLL, T. A. & PACHÓN, R. 2011 CHEBFUN
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