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Abstract: Amplification of deterministic disturbances in inertialess channel flows of viscoelastic
fluids is studied by analyzing the frequency responses from spatio-temporal body forces to
the velocity fluctuations. In strongly elastic flows, we show that velocity fluctuations can
exhibit significant amplification even in the absence of inertia. Our analysis demonstrates that
streamwise-constant disturbances are the most amplified. Explicit expressions are established
for the worst-case amplification of velocity fluctuations arising from different components of
the body forces. These show that amplification from the wall-normal and spanwise forces
to the streamwise velocity component scales quadratically with the Weissenberg number.
The underlying physical mechanism involves stretching of polymer stress fluctuations by a
background shear, which is a close analog of the vortex titling mechanism that is responsible
for amplification in inertial flows of Newtonian fluids.
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1. INTRODUCTION

Newtonian fluids, such as air and water, transition to
turbulence under the influence of inertia. On the other
hand, recent experiments have shown that fluids contain-
ing long polymer chains may become turbulent even in low
inertial regimes [Larson, 2000, Groisman and Steinberg,
2000, 2004]. Since viscoelastic fluids are often encountered
in industrial and biological flows, transition to turbulence
in such fluids is important from both fundamental and
technological standpoints [Larson, 1992]. Understanding
of transition mechanisms in viscoelastic fluids is rele-
vant for polymer processing operations [Larson, 1992] and
micro/nano-fluidic device development [Groisman et al.,
2003, Groisman and Quake, 2004]. In the former case, tur-
bulence is generally undesirable, except for mixing steps.
In the latter case, the addition of polymers has been shown
to produce a transition to turbulence, thereby leading to
mixing enhancement [Groisman and Steinberg, 2001].

In prior work with a channel flow geometry, we have
considered amplification of velocity fluctuations that arises
from stochastic spatio-temporal body forces [Hoda et al.,
2008, 2009]. However, since the problem of determining
variance amplification becomes ill-posed when inertia is
completely absent, these results are restricted to cases
where the flow has finite inertia. This leaves open the
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question of amplification mechanism in inertialess flows
of viscoelastic fluids. In the present work, we address this
issue by considering worst-case amplification of determin-
istic disturbances in inertialess channel flows of viscoelastic
fluids.

2. PROBLEM FORMULATION

2.1 Governing equations

The momentum, continuity, and constitutive equations for
an incompressible channel flow of viscoelastic fluids, with
geometry shown in Fig. 1, are given by

ReV̇ =We
(
(1− β)∇ ·T + β∇2V −∇P −ReV ·∇V

)
,

(1a)
0 =∇ ·V, (1b)

Ṫ =We
(
T ·∇V + (T ·∇V)T −V ·∇T

)
∇V + (∇V)T −T. (1c)

Here, dot denotes partial derivative with respect to time
t, V is the velocity vector, P is pressure, T is the polymer
stress tensor, ∇ is the gradient, and ∇2 is the Laplacian.
System (1) has been non-dimensionalized by scaling length
with L, velocity with U0, polymer stresses with ηpU0/L,
pressure with (ηs + ηp)U0/L, and time with λ. Here, U0 is
the largest base flow velocity, L is the channel half-height,
and ρ is the fluid density. The key parameters in (1) are:
the viscosity ratio, β = ηs/ (ηs + ηp), where ηs and ηp
are the solvent and polymer viscosity, respectively; the
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Fig. 1. Geometry of a three-dimensional channel flow.

Weissenberg number, We = λU0/L, which is the ratio of
the fluid relaxation time λ to the characteristic flow time
L/U0; and the Reynolds number, Re = ρU0L/(ηs + ηp),
which represents the ratio of inertial to viscous forces.

The constitutive equation (1c) is given for an Oldroyd-
B fluid. This equation describes the dynamics of polymer
stresses and is obtained from a theory of dilute polymer
solutions in which each polymer molecule is modeled by
two spherical beads connected by a linear spring [Larson,
1999].

Equations (1) exhibit a steady-state solution for the veloc-
ities and polymer stresses of the following form

v̄ = [U(y) 0 0 ]T ,

τ̄ =

[
τ̄xx τ̄xy τ̄xz
τ̄xy τ̄yy τ̄yz
τ̄xz τ̄yz τ̄zz

]
=

 2We (U ′(y))2
U ′(y) 0

U ′(y) 0 0
0 0 0

 ,
where U(y) = y in shear-driven (Couette) flow, U(y) =
1 − y2 in pressure-driven (Poiseuille) flow, and U ′(y) =
dU(y)/dy.

In the absence of inertia, i.e. in flows with Re = 0, the
equations governing the dynamics (up to the first order)
of velocity, v = [u v w]T , pressure, p, and polymer stress
tensor, τ , fluctuations around the base flow (v̄, τ̄ ) are
given by

0 = −∇p+ (1− β)∇ · τ + β∇2v + d, (2a)
0 = ∇ · v, (2b)

τ̇ = ∇v + (∇v)T − τ +We (τ ·∇v̄ + τ̄ ·∇v +

(τ̄ ·∇v)T + (τ ·∇v̄)T − v ·∇τ̄ − v̄ ·∇τ ) . (2c)
Here u, v, and w are the velocity fluctuations in the

streamwise (x), wall-normal (y), and spanwise (z) direc-
tions, respectively. The momentum equation (2a) is driven
by a spatially distributed and temporally varying body
forcing, d = [d1 d2 d3]T , which we consider to be purely
harmonic in the horizontal directions and time, and deter-
ministic in the wall-normal direction.

2.2 State-space representation

We note that (2a) and (2b) can be simplified by expressing
the velocity fields in terms of the wall-normal velocity (v)
and vorticity (η = ∂zu − ∂yw) fluctuations. This is done
by first taking the divergence of (2a) and using (2b) to
get an expression for p. This can be used to eliminate p
from (2a), yielding an equation for v. The equation for
η can be obtained by taking the curl of (2a). Finally, by
rearranging the polymer stresses into the state vector ψ =[
ψT1 ψ

T
2 ψ3

]T
with ψ1 = [τyy τyz τzz]

T , ψ2 = [τxy τxz]
T ,

and ψ3 = τxx, we arrive at the following static-in-time
expression for v and η in terms of the polymer stress and
body forcing fluctuations

v = Cv ψ + Dv d,
η = Cη ψ + Dη d.

(3)

In addition, equation (2c) can be brought to the following
form

ψ̇1 = F11ψ1 + F1v v + F1η η,

ψ̇2 = F21ψ1 + F22ψ2 + F2v v + F2η η,

ψ̇3 = F32ψ2 + F33ψ3 + F3v v + F3η η.

(4)

Finally, substitution of (3) into (4) along with the applica-
tions of the Fourier transform in x and z yields the state-
space representation of system (2)

ψ̇(κ, y, t) = A(κ)ψ(κ, y, t) + B(κ) d(κ, y, t),
v(κ, y, t) = C(κ)ψ(κ, y, t) + D(κ) d(κ, y, t),

(5)

where κ = [kx kz]
T with kx and kz representing the

horizontal wavenumbers. The output in (5) is determined
by the velocity fluctuations. Due to space limitation, the
underlying operators will be reported elsewhere.

The boundary conditions on the wall-normal velocity and
vorticity are dictated by the no-slip and no-penetration
requirements
v(κ, y = ±1, t) = v′(κ, y = ±1, t) = η(κ, y = ±1, t) = 0.

We note that there are no boundary conditions on the
polymer stresses.

2.3 Spatio-temporal frequency responses

The frequency response of system (5) is given by

H(κ, ω;We, β) = C(κ) (iωI−A(κ))−1 B(κ), (6)
For a stable generator A, (6) describes the steady-
state response to harmonic input signals across spatial
wavenumbers (kx, kz) and temporal frequency ω. Namely,
if the input is harmonic in x, z, and t, i.e., d(y, z, t) =
d̄(y)ei(k̄xx+k̄zz+ ω̄t), with d̄(y) denoting some spatial dis-
tribution in the wall-normal direction, then the output is
also harmonic in x, z, and t with the same frequencies but
with a modified amplitude and phase

v(x, y, z, t)

=
([

H(k̄x, k̄z, ω̄)d̄
]

(y)
)

ei(k̄xx+ k̄zz+ ω̄t)

=
(∫ 1

−1

Hk(k̄x, k̄z, ω̄; y, ξ) d(ξ) dξ
)

ei(k̄xx+ k̄zz+ ω̄t),

where the amplitude and phase are precisely deter-
mined by the frequency response at the input frequen-
cies (k̄x, k̄z, ω̄). Here Hk denotes the kernel representation
of the frequency response operator. Note that we have
dropped the dependence of the frequency response opera-
tor on We and β for notational convenience.

The nth singular value of the frequency response operator
H is determined by

σ2
n (H) = λn (H∗H) ,

where λn(·) denotes the nth eigenvalue of a given operator.
For any (kx, kz, ω), σmax(H) = maxn σn(H) determines
the largest amplification from d to v. Furthermore, the
temporal-supremum of the maximal singular value of H
determines the so-called H∞ norm of system (5) [Zhou
et al., 1996]
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G(κ;We, β) = sup
ω

σ2
max(H(κ, ω;We, β)).

This measure of input-output amplification has several
appealing interpretations:

(a) for any (kx, kz), the H∞ norm represents the worst
case amplification of purely harmonic (in x, z, and
t) deterministic (in y) disturbances. This worst-case
input-output gain is obtained by maximizing over
input temporal frequencies (sup over ω) and wall-
normal shapes (maximal singular value of H);

(b) in the temporal domain, the H∞ norm represents the
energy gain for the forcing with the worst possible
frequency distribution

G(κ) = sup
Ed(κ) ≤ 1

Ev(κ)
Ed(κ)

,

where Ev(κ) denotes the κ-parameterized energy of
velocity fluctuations, i.e.,

Ev(κ) =
∫ ∞

0

∫ 1

−1

v∗(κ, y, t)v(κ, y, t) dy dt.

In other words, for a unit-energy forcing, G captures
the largest possible energy of velocity fluctuations;

(c) at any (kx, kz), the inverse of the H∞ norm quan-
tifies the size of an additive unstructured modeling
uncertainty Γ that can destabilize generator A in (5).
Namely, large H∞ norms indicate small stability mar-
gins (i.e., bad robustness properties to modeling im-
perfections). For systems with bad robustness proper-
ties, even small modeling uncertainties (captured by
operator Γ) can lead to instability of operator A+Γ.

We finally note that the frequency response of system (5)
can be further decomposed into 3× 3 block-operator form[

u
v
w

]
=

[Hu1 Hu2 Hu3

Hv1 Hv2 Hv3

Hw1 Hw2 Hw3

][
d1

d2

d3

]
. (7)

The above form is suitable for identifying the forcing
components that introduce the largest amplification of
the velocity fluctuations. In (7), Hrj maps dj to r, and
Grj(κ;We, β) = supω σ2

max(Hrj(κ, ω;We, β)) with r =
{u, v, w} and j = {1, 2, 3}. The finite-dimensional ap-
proximations of the underlying operators are obtained
using the pseudospectral method [Weideman and Reddy,
2000]. After discretization in the wall-normal direction,
each component in (7) becomes an N ×N matrix, where
N denotes the number of Chebyshev collocation points in
y. All computations are performed in Matlab, and a fast
algorithm [Bruinsma and Steinbuch, 1990] is implemented
to compute the H∞ norm. Finally, additional computa-
tions with larger number of grid points in y were used to
confirm convergence of our results.

3. FREQUENCY RESPONSES OF 3D VELOCITY
FLUCTUATIONS

In this section, we consider three dimensional fluctuations
in inertialess Poiseuille flow. We compute the worst-case
amplification of velocity fluctuations and identify the cor-
responding wavenumbers that are most amplified. Our
analysis shows that velocity fluctuations with large stream-
wise and O(1) spanwise length scales are most sensitive

to disturbances. We further utilize the component-wise
frequency responses to identify forcing components that
have the strongest influence on the velocity fluctuations.
We illustrate that the wall-normal and spanwise forces
have the highest impact, and that the streamwise velocity
is most amplified by the system’s dynamics.

We first analyze the effect of viscosity ratio β and Weis-
senberg number We on the amplification of velocity fluctu-
ations. In flows withWe = 50 and β = {0.1, 0.5, 0.9}, Fig. 2
shows the worst-case amplification of velocity fluctuations
in the presence of all three body forces. For β = 0.1,
the peak amplification takes place at (kx = kz = 0); see
Fig. 2(a). We observe that the amplification of velocity
fluctuations decreases with increasing β. In addition, for
β = 0.5, a new peak starts to emerge in a narrow region
near kx ≈ 0 and kz ≈ 2 and, for β = 0.9, the small
wavenumbers again become dominant. In Section 4, we
explain these observations by developing explicit scaling
relationships of the worst-case amplification for streamwise
constant fluctuations.

Figure 3 shows the worst-case amplification of velocity
fluctuations triggered by all three body forces in flows
with We = {10, 50, 100} and β = 0.5. We see that the
velocity fluctuations become more amplified as We in-
creases. For We = 10, the peak amplification is located
in a region where kx ≈ 0 and kz ≈ 0 (cf. Fig. 3(a)).
However, as We increases to 50, a dominant peak appears
at nonzero value of kz and, as We increases to 100, this
peak value gets significantly larger than the amplifica-
tion at other wavenumbers. In flows with large enough
We, the streamwise-elongated and spanwise periodic flow
fluctuations are the most amplified by deterministic body
forces. This suggest that in strongly elastic channel flows,
the streamwise-constant fluctuations are most sensitive to
external disturbances.

We next study the frequency responses from different
forcing components to different velocity components. This
analysis enables us to identify forcing components that are
most effective in amplifying velocity fluctuations. Figure 4
shows the worst-case amplification of selected frequency
response components in (7) for Poiseuille flow with We =
50 and β = 0.5. The streamwise velocity fluctuations are
the most amplified and this high amplification is triggered
by d2 and d3. Furthermore, the maximum amplification
in these two responses occurs at kx ≈ 0 and kz ≈ O(1).
This illustrates that streamwise velocity fluctuations are
responsible for the most amplified region (kx ≈ 0, kz ≈ 2)
in Fig 3(b). On the other hand, the yellow region in
figure 3(b) arises from the responses of streamwise and
spanwise velocity fluctuations to d1 and d3, respectively.
Since the amplification of the wall-normal velocity is much
smaller than that of the other two velocity components, we
have not shown the frequency responses of v in Fig. 4.

The results of this section clearly illustrate the dominance
of streamwise-constant and nearly streamwise-constant ve-
locity fluctuations. The streamwise velocity is most ampli-
fied by disturbances and this large response is caused by
the wall-normal and spanwise body forces. In addition,
energy amplification gets larger with increase in the Weis-
senberg number; this suggests that the increase in polymer
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G(κ; 50, 0.1) G(κ; 50, 0.5) G(κ; 50, 0.9)

(a) (b) (c)

Fig. 2. Worst-case amplification from d to v in Poiseuille flow with We = 50 and: (a) β = 0.1; (b) β = 0.5; and (c)
β = 0.9.

relaxation time enhances amplification in inertialess flows
of viscoelastic fluids.

4. DEPENDENCE OF WORST-CASE
AMPLIFICATION ON THE WEISSENBERG

NUMBER

Motivated by the observation that the most amplified
velocity fluctuations have large streamwise length-scale,
we next examine the linearized model at kx = 0. We use
this model to establish an explicit scaling of the frequency
responses with We and β, and explain the observations
made in Section 3. In particular, we demonstrate that the
worst-case amplification from wall-normal and spanwise
forcing to the streamwise velocity scales quadratically with
the Weissenberg number. Furthermore, we show that this
We-scaling comes from the stretching of polymer stress
fluctuations by base shear.

4.1 Streamwise-constant model

In the absence of streamwise variations (i.e., at kx = 0),
τxx does not influence the dynamics of ψ1 and ψ2 and as
a result, τxx has no impact on the dynamics of velocity
fluctuations. This allows us to rewrite (4) and (3) as

ψ̇1 = −ψ1 + F1vv, (8a)

ψ̇2 = We (F21ψ1 + F2vv) + (−ψ2 + F2ηη) , (8b)

v = Cv1ψ1 + Dv2 d2 + Dv3 d3, (8c)

η = Cη2ψ2 + Dη1 d1. (8d)
Now, substitution of (8c) and (8d) into (8a) and (8b)
can be used to obtain a state-space representation of a
streamwise-constant linearized model. Alternatively, poly-
mer stresses can be eliminated from the model by substi-
tuting the temporal Fourier transform of (8a) and (8b)
into (8c) and (8d). This implies that H in (7) can be
simplified to uv

w

 =

 H̄u1 We H̄u2 We H̄u3

0 H̄v2 H̄v3

0 H̄w2 H̄w3


 d1

d2

d3

 , (9)

where the We-independent operators H̄rj are given by

H̄u1(kz, ω;β) =
iω + 1

iωβ + 1
Cuη Dη,

H̄u2(kz, ω;β) =
(1− β)

(iωβ + 1)2
Cuη Cη2 F21 F1v Dv2,

H̄u3(kz, ω;β) =
(1− β)

(iωβ + 1)2
Cuη Cη2 F21 F1v Dv3,

H̄v2(kz, ω;β) =
iω + 1

iωβ + 1
Dv2,

H̄v3(kz, ω;β) =
iω + 1

iωβ + 1
Dv3,

H̄w2(kz, ω;β) =
iω + 1

iωβ + 1
Cwv Dv2,

H̄w3(kz, ω;β) =
iω + 1

iωβ + 1
Cwv Dv3.

These can be used to obtain explicit expressions for the
worst-case amplification from different forcing to different
velocity components. For example, the worst-case amplifi-
cation from d2 to u is given by
Gu2(kz;We, β) = sup

ω
σ2

max (Hu2(kz, ω;We, β))

= We2 sup
ω

σ2
max

(
H̄u2(kz, ω;β)

)
= We2 (1− β)2

σ2
max (CuηCη2F21F1vDv2)

= We2 (1− β)2
gu2(kz),

where the function gu2 captures the spanwise frequency
response (from d2 to u) and is independent of We and
β. Using a similar procedure, we can obtain the following
expression for the worst-case amplification from dj to r Gu1 Gu2 Gu3

Gv1 Gv2 Gv3

Gw1 Gw2 Gw3

 =

 fu1(kz)/β2 We2(1− β)2 gu2(kz) We2(1− β)2 gu3(kz)
0 fv2(kz)/β2 fv3(kz)/β2

0 fw2(kz)/β2 fw3(kz)/β2

 ,
(10)

where the functions f and g represent the We- and β-
independent spanwise frequency responses of system (5)
at kx = 0.

The base-flow-independent functions frj(kz) with {r =
v, w; j = 1, 2}, are shown in Fig. 5. We see that fv2 and fv3
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G(κ; 10, 0.5) G(κ; 50, 0.5) G(κ; 100, 0.5)

(a) (b) (c)

Fig. 3. Worst-case amplification from d to v in Poiseuille flow with β = 0.5 and: (a) We = 10; (b) We = 50; and (c)
We = 100.

Gu1(κ; 50, 0.5) Gu2(κ; 50, 0.5) Gu3(κ; 50, 0.5)

(a) (b) (c)

Gw1(κ; 50, 0.5) Gw2(κ; 50, 0.5) Gw3(κ; 50, 0.5)

(d) (e) (f)

Fig. 4. Worst-case amplification from dj to r with r = {u,w} and j = {1, 2, 3} in Poiseuille flow with We = 50 and
β = 0.5.

exhibit similar trends with peaks at O(1) values of kz. On
the other hand, fw3 has a low-pass shape with maximum
occurring at kz = 0. The peak value of this function is
about four times larger than the peak values of fv2 and
fv3 = fw2.

The functions characterizing the largest amplification of
u caused by d1, d2, and d3 are shown in Fig. 6. From
Fig. 6(a), we observe that fu1 has high values for low
spanwise wavenumbers. The kz-dependence of fu1 is sim-
ilar to that of fw3, but much larger in magnitude (cf.
Figs. 6(a) and 5(b)). On the other hand, functions gu2

and gu3 have peak values at kz ≈ O(1). For completeness,
in Figs. 6(b) we also show the worst-case amplification of
u in the presence of [ d2 d3 ]T , gu,23. We note that the
peak values of the g-functions are almost two orders of
magnitude smaller than the peak value of fu1. However,
since Gu2 and Gu3 in (10) are proportional to We2, as the

fv2, fv3, fw2 fw3

(a) (b)

Fig. 5. Functions characterizing worst-case amplification
from d2 and d3 to v and w; frj(kz) with {r = v, w;
j = 1, 2}. (a) fv2 (�), fv3 (◦), and fw2 (×); and (b)
fw3.

Weissenberg number increases d2 and d3 are going to have
more pronounced influence on u than d1.
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fu1 gu2, gu3, gu,23

(a) (b)

Fig. 6. Functions characterizing the worst-case amplifica-
tion from d1, d2, d3, and [ d2 d3 ]T to u. (a) fu1; and
(b) gu2 (×), gu3 (◦), and gu,23 (solid) in Poiseuille
flow.

The effect of β on the amplification of velocity fluctuations
is captured by (10). Note that Gu2 and Gu3 scale as
(1−β)2, while the other G-functions in (10) scale as 1/β2.
Thus, in the Newtonian limit (i.e., as β increases to 1)
the influence of disturbances on velocity fluctuations is
reduced and governed by viscous dissipation.

The results of this section can be used to clarify the
observations made in Section 3. Since the streamwise
velocity is most amplified by disturbances, we consider the
peak value of the spanwise frequency responses from dj to
u

G̃uj(We, β) = sup
kz

Guj(kz;We, β).

In flows with We = 50, we have

(i) for β = 0.1, G̃u1 ≈ 16.42 and G̃u2 ≈ 2.58;
(ii) for β = 0.5, G̃u1 ≈ 0.66 and G̃u2 ≈ 0.80; and
(iii) for β = 0.9, G̃u1 ≈ 0.2 and G̃u2 ≈ 0.03.

Therefore, for β = 0.1, d1 triggers the largest response
of u, implying dominance of small spanwise wavenumbers
(cf. Fig. 2(a)). As β increases to 0.5, influence of d2 and d3

becomes more important leading to the peaks at kz ≈ 2
(cf. Fig. 2(b)). Finally, for β = 0.9, fu1 again takes over as
reflected in the peaks around kz = 0 in Fig. 2(c). Similar
argument can be used to explain shifting of the peaks from
kz ≈ 0 to kz ≈ 2 as We gets increased in Fig. 3.

We next discuss the physical mechanisms responsible for
large amplification of streamwise velocity fluctuations in
flows with high We. The key ingredient responsible for
providing We2-scaling of Gu2 and Gu3 is the operator
F21, which couples ψ1 to ψ2. Without this operator,
all responses would be We-independent and dynamics of
velocity fluctuations in inertialess channel flows of vis-
coelastic fluids would be dominated by viscous dissipation.
A careful examination of the constitutive equation (2c)
shows that, from a physical point of view, F21 accounts the
stretching of polymer stress fluctuations by base shear (i.e.,
τ · ∇v). We note that the polymer stretching mechanism
has been recently identified as the primary cause behind
large transient growth of the velocity and polymer stress
fluctuations in Jovanović and Kumar [2010, 2011].

5. CONCLUDING REMARKS

In this study, we have analyzed non-modal amplification
of disturbances in inertialess channel flows of viscoelastic

fluids by studying the frequency responses from body
forces to the velocity fluctuations. The results presented
here illustrate that the velocity fluctuations can experi-
ence significant amplification even when inertial effects
are negligible. This demonstrates that small modeling un-
certainties can destabilize nominally stable flows even in
the absence of inertia. This uncertainty may arise from
inevitable imperfections in the laboratory environment or
from the approximate nature of the governing equations.

Our ongoing efforts are directed towards examining the
influence of disturbances on the dynamics of polymer stress
fluctuations. This analysis is expected to enhance the
understanding of the early stages of transition to elastic
turbulence in channel flows of viscoelastic fluids.
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N. Hoda, M. R. Jovanović, and S. Kumar. Energy
amplification in channel flows of viscoelastic fluids. J.
Fluid Mech., 601:407–424, April 2008.
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