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a b s t r a c t

We develop mathematical framework and computational tools for calculating frequency
responses of linear time-invariant PDEs in which an independent spatial variable belongs
to a compact interval. In conventional studies this computation is done numerically using
spatial discretization of differential operators in the evolution equation. In this paper, we
introduce an alternative method that avoids the need for finite-dimensional approximation
of the underlying operators in the evolution model. This method recasts the frequency
response operator as a two point boundary value problem and uses state-of-the-art auto-
matic spectral collocation techniques for solving integral representations of the resulting
boundary value problems with accuracy comparable to machine precision. Our approach
has two advantages over currently available schemes: first, it avoids numerical instabilities
encountered in systems with differential operators of high order and, second, it alleviates
difficulty in implementing boundary conditions. We provide examples from Newtonian
and viscoelastic fluid dynamics to illustrate utility of the proposed method.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

In many physical systems there is a need to examine the effects of exogenous disturbances on the variables of interest.
Frequency response analysis represents an effective means for quantifying the system’s performance in the presence of a
stimulus, and it characterizes the steady-state response of a stable system to persistent harmonic forcing. At each temporal
frequency, the frequency response of finite dimensional linear time-invariant systems with scalar input and output is a com-
plex number that determines the magnitude and phase of the output relative to the input. In systems with many inputs and
outputs (multi-variable systems), the frequency response is a complex matrix whose dimension is determined by the num-
ber of inputs and outputs. In systems with infinite dimensional input and output spaces that are considered in this paper, the
frequency response is an operator. It is well-known that the singular values of the frequency response matrix (in multi-var-
iable systems) or the frequency response operator (in infinite dimensional systems) represent proper generalization of the
magnitude characteristics for single-input single-output systems. At a specific frequency, the largest singular value deter-
mines the largest amplification from the input forcing to the desired output [1]. Furthermore, the associated left and right
principal singular functions identify the spatial distributions of the output (that exhibits this largest amplification) and the
input (that has the strongest influence on the system’s dynamics), respectively.

In this paper, we study the frequency responses of linear time-invariant partial differential equations (PDEs) in which an
independent spatial variable belongs to a compact interval. We are interested in computing the largest singular value of the
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frequency response operator and its corresponding singular functions. Computation of frequency responses for PDEs is typ-
ically done numerically using finite-dimensional approximations of the operators in the evolution equation. Pseudo-spectral
methods represent a powerful tool for discretization of spatial differential operators because they possess superior
numerical accuracy compared to approximation schemes based on finite differences [2–5]. In spite of their advantages,
pseudo-spectral methods may produce unreliable results and even fail to converge upon grid refinement when dealing with
systems that contain differential operators of high order; this lack of convergence is attributed to the loss of accuracy arising
from ill-conditioning of the discretized differentiation matrices [6]. Furthermore, implementation of general boundary
conditions may be challenging.

To alleviate these difficulties, we introduce a method that avoids the need for finite dimensional approximations of dif-
ferential operators in the evolution equation. This is accomplished by recasting the frequency response operator as a two
point boundary value problem (TPBVP) that is given by either an input–output differential equation of high order or by
an equivalent system of first order differential equations (i.e., spatial state-space representation). Furthermore, we present
a procedure for converting these differential representations into the corresponding systems of integral equations. This
transformation facilitates the use of recently developed computing environment, Chebfun [7], that is capable of solving
boundary value problems and eigenvalue problems with superior accuracy. Our mathematical framework in conjunction
with Chebfun’s state-of-the-art numerical algorithms has two main advantages over standard methods: first, it alleviates
numerical ill-conditioning encountered in systems with differential operators of high order; and second, it enables easy
implementation of a wide range of boundary conditions.

Chebfun is a collection of powerful algorithms for numerical computations that involve continuous and piecewise-contin-
uous functions. Instead of working in a finite dimensional setting, Chebfun allows users to symbolically represent functions
and operators in their infinite dimensional form with simple and compact MATLAB syntaxes. This provides an elegant high-
level language for solving linear and nonlinear boundary value and eigenvalue problems with few lines of code. Internally,
functions are computed numerically using automatic Chebyshev polynomial interpolation techniques, and the operators are
approximated using automatic spectral collocation methods. Finite dimensional approximations of functions and operators
are automatically refined in order to obtain accurate and convergent representations. Furthermore, once the boundary con-
ditions are specified Chebfun makes sure that they are automatically satisfied internally when solving differential or integral
equations.

The proposed method has many potential applications in numerical analysis, physics, and engineering, especially in systems
with generators that do not commute with their adjoints [8]. In these systems, standard modal analysis may fail to capture
amplification of exogenous disturbances, low stability margins, and large transient responses. In contrast, singular value
decomposition of the frequency response operator represents an effective tool for identifying these non-modal aspects of
the system’s dynamics. In particular, wall-bounded shear flows of both Newtonian and viscoelastic fluids have non-normal
dynamical generators of high spatial order and the ability to accurately compute frequency responses for these systems is of
paramount importance; additional examples of systems with non-normal generators, for which the tools developed in this pa-
per are particularly well-suited, can be found in the outstanding book by Trefethen and Embree [8] and the references therein.
The utility of non-modal analysis in understanding the dynamics of infinitesimal fluctuations around laminar flow conditions
has been well-documented; see [1,9–15] for Newtonian fluids and [16–20] for viscoelastic fluids. In viscoelastic fluids with
large polymer relaxation times, analysis is additionally complicated by the fact that pseudo-spectral methods exhibit spurious
numerical instabilities [21,22]. We use examples from fluid mechanics to demonstrate the ease of incorporating boundary con-
ditions and superior accuracy of our method compared to conventional finite dimensional approximation schemes.

Our presentation is organized as follows. In Section 2, we formulate the problem and discuss the notion of a frequency
response for PDEs. In Section 3, we present the method for converting the frequency response operator into a TPBVP that
can be posed as an input–output differential equation or as a spatial state-space representation. In Section 4, we show
how to transform a family of differential equations into equivalent integral equations and describe the use of Chebfun’s indef-
inite integration operator for determining the eigenvalues and corresponding eigenfunctions of the resulting integral equa-
tions. In Section 5, we demonstrate the utility of our developments by providing two examples from Newtonian and
viscoelastic fluid dynamics. We conclude with a brief summary of the paper in Section 6, and relegate the mathematical
developments to the appendices.

2. Motivating examples and problem formulation

In this section, we provide two examples that are used to motivate our developments and to illustrate the classes of sys-
tems that we consider. These examples are used throughout the paper to explain the problem setup and utility of the pro-
posed method. We then describe the class of PDEs that we study and briefly review the notion of a frequency response
operator.

2.1. Motivating examples

We next present two physical examples: the one-dimensional (1D) diffusion equation, and the system of PDEs that gov-
erns the dynamics of the flow fluctuations in an inertialess channel flow of viscoelastic fluids. The 1D diffusion equation has
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simple dynamics and it is used to illustrate mathematical framework developed in the paper. The example from viscoelastic
fluid mechanics is used to demonstrate utility of our approach on a system that is known to produce spurious numerical
instabilities. We show how numerical difficulties encountered in the computation of the frequency responses can be over-
come using the developed framework in conjunction with state-of-the-art automatic spectral collocation techniques.

2.1.1. One-dimensional diffusion equation
Let a one-dimensional diffusion equation with homogenous Dirichlet boundary conditions and zero initial conditions be

subject to spatially and temporally distributed forcing dðy; tÞ,

/tðy; tÞ ¼ /yyðy; tÞ þ dðy; tÞ;
/ð�1; tÞ ¼ 0;
/ðy;0Þ ¼ 0; y 2 �1;1½ �:

ð1Þ

Throughout the paper, the spatially independent variable is denoted by y, the time is denoted by t, and the subscripts denote
differentiation with respect to time/space. Considering / as the field of interest, the frequency response operator for this sys-
tem (from input d to output /) is obtained by evaluating the resolvent on the ix-axis

T ðxÞ ¼ ixI � Dð2Þ
� ��1

; ð2Þ

where Dð2Þ is the second derivative operator with homogenous Dirichlet boundary conditions, I is the identity operator, x is
the temporal frequency, and i is the imaginary unit.

It is well known that the second derivative operator with Dirichlet boundary conditions is self-adjoint with a complete set
of orthonormal eigenfunctions, vnðyÞ ¼ sin ðnp=2Þðyþ 1Þð Þ, n ¼ f1;2; . . .g. This information can be used to diagonalize oper-
ator Dð2Þ in T ðxÞwhich facilitates straightforward determination of the frequency response. For systems with spatially vary-
ing coefficients and non-normal generators the frequency response analysis is typically done numerically using finite
dimensional approximations of the differential operators. For example, the pseudospectral method [23] with N collocation
points can be used to transform the frequency response operator (2) of system (1) into an N � N matrix. However, for sys-
tems with differential operators of high order, spectral differentiation matrices may be poorly conditioned and implemen-
tation of boundary conditions may be challenging.

Alternatively, by applying the temporal Fourier transform to system (1) we obtain the following input–output differential
equation

/̂00ðy;xÞ � ix/̂ðy;xÞ ¼ �d̂ðy;xÞ; ð3aÞ
/̂ð�1;xÞ ¼ 0; ð3bÞ

where d̂ and /̂ are the Fourier transformed input and output fields, and /̂0 ¼ d/̂=dy. At each x, (3a) is a second-order ordin-
ary differential equation (in y) subject to the boundary conditions (3b). Equivalently, by defining x1 ¼ /̂ and x2 ¼ /̂0, (3) can
be brought into a system of first order differential equations

T ðxÞ :

x01ðyÞ
x02ðyÞ

� �
¼

0 1
ix 0

� �
x1ðyÞ
x2ðyÞ

� �
þ

0
�1

� �
dðyÞ;

/ðyÞ ¼ 1 0½ �
x1ðyÞ
x2ðyÞ

� �
;

0
0

� �
¼

1 0
0 0

� �
x1ð�1Þ
x2ð�1Þ

� �
þ

0 0
1 0

� �
x1ð1Þ
x2ð1Þ

� �
:

8>>>>>>>><
>>>>>>>>:

ð4Þ

We will utilize structures of the TPBVPs (3) and (4) in conjunction with recently developed automatic spectral collocation
techniques to study the frequency response across x.

2.1.2. Inertialess channel flow of viscoelastic fluids
We next consider a system that describes the dynamics of two-dimensional velocity and polymer stress fluctuations in an

inertialess channel flow of viscoelastic fluids; see Fig. 1 for geometry. The dynamics of infinitesimal fluctuations around the
mean flow (�v; �s) are given by

0 ¼ �$pþ 1� bð Þ$ � sþ b$2v þ d; ð5aÞ
0 ¼ $ � v; ð5bÞ

st ¼ $v þ $vð ÞT � sþWe s � $�v þ �s � $v þ �s � $vð ÞT þ s � $�vð ÞT � v � $�s� �v � $s
� �

: ð5cÞ

In shear driven flow, �v and �s are

�v ¼
y

0

� �
; �s ¼

�s11 �s12

�s12 �s22

� �
¼

2We 1
1 0

� �
;

248 B.K. Lieu, M.R. Jovanović / Journal of Computational Physics 250 (2013) 246–269



Author's personal copy

v ¼ u v½ �T , p, and s are the velocity, pressure, and stress fluctuations; u and v are velocities in x and y directions; $ is the
gradient; and $2 ¼ $ � $ is the Laplacian. System (5) is driven by spatially distributed and temporally varying body force fluc-
tuations d ¼ d1 d2½ �T with d1 and d2 representing the forcing in x and y. The non-dimensional parameters in (5) are the ratio
of the solvent to the total viscosity b 2 ð0;1Þ, and the ratio of the fluid relaxation time to the characteristic flow time We (the
Weissenberg number).

Static-in-time momentum (5a) and continuity (5b) equations describe the motion of incompressible fluids in the Stokes
flow, i.e., at zero Reynolds number. The constitutive equation (5c) captures the influence of the velocity gradients on the
dynamics of stress fluctuations in dilute polymer solutions [24]. For background material on the use of frequency response
analysis in understanding the dynamics of viscoelastic fluids, we refer the reader to [16–20].

By expressing the velocity fluctuations in terms of the stream function w,

u ¼ @yw; v ¼ �@xw;

pressure can be removed form the Eqs. (5). Furthermore, by applying the Fourier transform in x and t on (5c) and by substi-
tuting the resulting expression for stresses into the equation for w, we arrive at the following ordinary differential equation
(ODE) in y for the stream function,

T ðxÞ :

Dð4Þ þ a3ðyÞDð3Þ þ a2ðyÞDð2Þ þ a1ðyÞDð1Þ þ a0ðyÞ
� �

ŵðyÞ ¼

b1ðyÞDð1Þ þ b0ðyÞ
� �

d̂ðyÞ;

ûðyÞ
v̂ðyÞ

� �
¼ Dð1Þ

�ikx

" #
ŵðyÞ;

0 ¼ ŵðy ¼ �1Þ ¼ ŵ0ðy ¼ �1Þ;

8>>>>>>>>><
>>>>>>>>>:

ð6Þ

where DðkÞ ¼ @k=@yk, kx is the horizontal wave number, and

Dð1Þ ¼ Dð1Þ 0
0 Dð1Þ

" #
:

The coefficients faiðyÞ;bjðyÞg in (6) are reported in Appendix D. The system of Eqs. (6) is parameterized by x, kx, b, and We.
For notational convenience, we have suppressed the dependence of ŵ, d̂, û, and v̂ on these four parameters.

In Section 5, we show that spatial discretization of the operators in (5) using the pseudo-spectral method [23] can pro-
duce erroneous frequency responses. In contrast, transformation of the system into a TPBVP (which is then recast into an
equivalent integral form) followed by the use of the Chebfun environment [7] yields reliable results.

2.2. Problem formulation

We now formulate the problem for PDEs with the evolution equation

E/tðy; tÞ ¼ F /ðy; tÞ þ Gdðy; tÞ; ð7aÞ
uðy; tÞ ¼ H/ðy; tÞ; ð7bÞ

where t 2 ½0;1Þ and y 2 ½a; b� denote the temporal and spatial variables. The spatially distributed and temporally varying
state, input, and output fields are represented by /, d, and u, respectively. At each t;dð�; tÞ and uð�; tÞ denote the square-inte-
grable vector-valued functions, and fE;F ;G;Hg are matrices of differential operators with, in general, spatially varying coef-
ficients. For example, the ijth entry of the operator F can be expressed as

F ij ¼
Xnij

k¼0

fij;kðyÞDðkÞ;

where each fij;k is a function that is at least k times continuously differentiable on the interval ½a; b� [25], DðkÞ ¼ @k=@yk, and nij

is the order of the highest derivative in F ij.

Fig. 1. We consider the dynamics of flow fluctuations in the (x; y)-plane of the channel.
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The application of the temporal Fourier transform yields the frequency response operator of system (7)

T ðxÞ ¼ H ixE � Fð Þ�1G; ð8Þ

For an exponentially stable system (7), T ðxÞ describes the steady-state response to harmonic input signals across the tem-
poral frequency x. Namely, if the input is harmonic in t, i.e.,

dðy; tÞ ¼ d̂ðy;xÞeixt;

with d̂ð�;xÞ denoting a square-integrable spatial distribution in y, then the output is also harmonic in t with the same fre-
quency but with a modified amplitude and phase

uðy; tÞ ¼ T ðxÞ d̂ð�;xÞ
h i

ðyÞ
� �

eixt ¼ ûðy;xÞeixt ¼
Z b

a
T kerðy; n;xÞ d̂ðn;xÞdn

 !
eixt :

The amplitude and phase of the output at the frequency x are precisely determined by the frequency response operator
T ðxÞ, with T ker denoting the kernel representation of the operator T .

For the class of systems that we consider, the kernel representation of the frequency response operator T kerð �; �;xÞ is a
bounded matrix valued function on ½a; b� � ½a; b�. This implies that the operator T ðxÞ can be represented using the singular
value (i.e., Schmidt) decomposition [26],

ûðy;xÞ ¼ T ðxÞ d̂ð�;xÞ
h i

ðyÞ ¼
X1
n¼1

rnðxÞ ûnðy;xÞ v̂n; d̂
D E

; ð9Þ

where �; �h i is the standard L2 a; b½ � inner product,

v̂1; v̂2h i ¼
Z b

a
v̂�1ðyÞ v̂2ðyÞdy;

and v̂�1ðyÞ is the complex-conjugate-transpose of the vector v̂1ðyÞ. In (9), fûng and fv̂ng denote the left and the right singular
functions of the operator T associated with the singular value rn. These are obtained from the eigenvalue decomposition of
the operators T T H and T H T ,

T ðxÞT HðxÞ ûnð�;xÞ
� �

ðyÞ ¼ r2
nðxÞ ûnðy;xÞ;

T HðxÞT ðxÞ v̂nð�;xÞ
� �

ðyÞ ¼ r2
nðxÞ v̂nðy;xÞ;

where T H is the adjoint of the operator T . The singular values are positive numbers arranged in descending order,

r1 P r2 P � � � > 0;

and they are determined by the square root of the non-zero eigenvalues of T T H (or T H T ). On the other hand, the singular
functions fûng and fv̂ng form the orthonormal bases for the spaces of square integrable functions to which the output û and
the input d̂ belong.

From (9) we see that the action of the operator T ðxÞ on d̂ðy;xÞ is determined by the linear combination of the left sin-
gular functions fûng. The product between the singular values, rn, and the inner product of the input d̂ and the right singular
function v̂n; v̂n; d̂

D E
, yields the corresponding weights. Thus, for d̂ ¼ v̂m, the output is in the direction of ûm and its energy is

determined by r2
m,

d̂ðy;xÞ ¼ v̂mðy;xÞ ) ûðy;xÞ ¼ rmðxÞ ûmðy;xÞ;

implying that at any frequency x the largest singular value r1ðxÞ quantifies the largest energy of the output for unit energy
inputs. This largest energy can be achieved by selecting d̂ðy;xÞ ¼ v̂1ðy;xÞ, and the most energetic spatial output profile
resulting from the action of T ðxÞ is given by ûðy;xÞ ¼ r1ðxÞ û1ðy;xÞ.

In linear dynamical systems, spectral decomposition of the dynamical generators is typically used to identify instability.
Appearance of the eigenvalues with positive real part implies exponential temporal growth of infinitesimal fluctuations and
the associated eigenfunctions characterize spatial patterns of these growing modes. For systems with normal dynamical gen-
erators (i.e., operators that commute with their adjoints) the eigenfunctions are mutually orthogonal and the eigenvalues
provide complete information about system’s response. However, for systems with non-normal generators eigenvalues
may give misleading information about system’s responses. Even in the stable regime, non-normality can cause (i) substan-
tial transient growth of fluctuations before their asymptotic decay; (ii) significant amplification of ambient disturbances; and
(iii) substantial decrease of stability margins. We note that singular value decomposition of the frequency response operator
represents an effective tool for capturing these non-modal aspects of the system’s response.

In what follows, we describe the procedure for reformulating the frequency response operator (8) into corresponding two
point boundary value problems that are given by either an input–output differential equation or by a spatial state-space
representation. These can be solved with superior accuracy using recently developed computational tools [7]. We illustrate
the utility of our developments on an example from viscoelastic fluid dynamics, where standard finite dimensional
approximation techniques fail to produce reliable results.

250 B.K. Lieu, M.R. Jovanović / Journal of Computational Physics 250 (2013) 246–269



Author's personal copy

3. Two point boundary value representations of T , T H, and TT H

In this section, we first describe the procedure for determining the two point boundary value representations of the fre-
quency response operator (8). These are given by either a high-order input–output differential equation or by a system of
first-order differential equations in spatial variable y. We then discuss the procedure for obtaining corresponding represen-
tations of the adjoint operator T H and the operator TT H.

3.1. Representations of the frequency response operator T

The application of the temporal Fourier transform to (7) yields

ðixE � FÞ/ðy;xÞ ¼ Gdðy;xÞ; ð10aÞ
uðy;xÞ ¼ H/ðy;xÞ; ð10bÞ

where we have omitted hats from the Fourier transformed fields for notational convenience (a convention that we adopt
from now on). System (10) represents an x-parameterized family of ordinary differential equations (ODEs) in y, with bound-
ary conditions at a and b. From the definitions of the operators fE;F ;G;Hg described in Section 2.2, (10) can be represented
by the following system of differential equations

T :

A0/½ �ðyÞ ¼ B0d½ �ðyÞ;
uðyÞ ¼ C0/½ �ðyÞ;
0 ¼ N 0/ðyÞ;

8><
>: ð11Þ

where

A0 ¼
Xn

i¼0

aiðyÞDðiÞ; B0 ¼
Xm

i¼0

biðyÞDðiÞ; C0 ¼
Xk

i¼0

ciðyÞD
ðiÞ;

N 0 ¼
X‘
i¼0

Wa;i Ea þWb;i Eb

� 	
DðiÞ;

DðiÞ ¼
DðiÞ

. .
.

DðiÞ

2
664

3
775; / ¼

/1

..

.

/s

2
664

3
775; d ¼

d1

..

.

dr

2
664

3
775; u ¼

u1

..

.

up

2
664

3
775:

Here, DðiÞ/j ¼ di/j=dyi, Ea and Eb denote the point evaluation functionals at the boundaries, e.g.,

Ea /ðyÞ ¼ /ðaÞ;

and fWa;i;Wb;ig are constant matrices that specify the boundary conditions on /. For notational convenience we have omit-
ted the dependence on x in (11), which is a convention that we adopt from now on. Here, n, m, k, and ‘ denote the highest
differential orders of the operatorsA0, B0, C0, andN 0, respectively. If the number of components in /, d, and u is given by s, r,
and p, then faiðyÞg are matrices of size s� s with entries determined by the coefficients of the operator ðixE � FÞ; fbiðyÞg are
matrices of size s� r with entries determined by the coefficients of the operator G; and fciðyÞg are matrices of size p� s with
entries determined by the coefficients of the operator H. We also normalize the coefficient of the highest derivative of each
/i to one, i.e.,

ani ;ii ¼ 1; i ¼ 1; . . . ; s;

where ani ;ii is the iith component of the matrix ani
, and ni identifies the highest derivative of /i. In order to make sure that the

input field d in (11) does not directly influence the boundary conditions and the output field u, we impose the following
technical assumptions on system (11),

‘ < n; m < n� ‘; k < n�m:

This assumption is satisfied in most physical problems of interest.
Alternatively we can bring (11) into a system of first-order differential equations (in y). This can be done by introducing

state variables, fxiðyÞg, where each of the states represents a linear combination of / and d, and their derivatives up to a
certain order. A procedure for converting a high-order two point boundary value realization (11) with spatially varying coef-
ficients to a system of first-order ODEs is described in Appendix A. This transformation yields the spatial state-space repre-
sentation of the frequency response operator T

T :

x0ðyÞ ¼ A0ðyÞxðyÞ þ B0ðyÞdðyÞ;
uðyÞ ¼ C0ðyÞxðyÞ;
0 ¼ Na xðaÞ þ Nb xðbÞ;

8><
>: ð12Þ
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where x is the state vector, A0, B0, and C0 are matrices with, in general, spatially varying entries, Na and Nb are constant
matrices that specify the boundary conditions, and x0 ¼ dx=dy. To avoid redundancy in boundary conditions, Na and Nb

are chosen so that the matrix Na Nb½ � has a full row rank. We note that (12) is well-posed (that is, it has a unique solution
for any input d) if and only if [27]

det Na þ Nb U0ðb; aÞð Þ – 0;

where U0ðy;gÞ is the state transition matrix of A0ðyÞ,

dU0ðy;gÞ
dy

¼ A0ðyÞU0ðy;gÞ; U0ðg;gÞ ¼ I;

and det �ð Þ is the determinant of a given matrix.
For the 1D diffusion equation of Section 2.1.1, the input–output differential equation and the corresponding spatial state-

space representation of the frequency response operator are given by (3) and (4), respectively. Note that the boundary con-
ditions (3b) can be rewritten into the form required by (11),

1
0

� �
E�1 þ

0
1

� �
E1


 �
/ðyÞ ¼

0
0

� �
:

3.2. Representations of the adjoint operator T H

We next describe the procedure for obtaining the two point boundary value representations of the adjoint of the fre-
quency response operator, T ; T H : f # g; see Fig. 2(b). As shown above, the operator T can be recast into the input–output
differential equation (11), and the corresponding representation of T H is given by

T H :

AH

0 w
� �

ðyÞ ¼ CH

0 f
� �

ðyÞ;
gðyÞ ¼ BH

0 w
� �

ðyÞ;
0 ¼ N H

0 w ðyÞ:

8><
>: ð13Þ

Here, the adjoint operators are [25,28]

AH

0 w
� �

ðyÞ ¼
Xn

i¼0

�1ð Þi DðiÞ a�i w
� 	h i

ðyÞ; CH

0 f
� �

ðyÞ ¼
Xk

i¼0

�1ð Þi DðiÞ c�i f
� 	h i

ðyÞ;

BH

0 w
� �

ðyÞ ¼
Xm

i¼0

�1ð Þi DðiÞ b�i w
� 	h i

ðyÞ; N H

0 w
h i

ðyÞ ¼
X‘
i¼0

WH

a;iEa þWH

b;iEb

� �
DðiÞw
h i

ðyÞ;

where a�i , b�i , and c�i are the complex-conjugate-transposes of the matrices ai; bi, and ci. The boundary conditions on the ad-
joint variable w are determined so that the boundary terms vanish when determining the adjoint of the operator A0. A pro-
cedure describing how to determine the boundary conditions of the adjoint system is given in [25, Section 5.5].

On the other hand, the state-space representation of the adjoint of the operator T is given in [27]

T H :

z0ðyÞ ¼ �A�0ðyÞzðyÞ � C�0ðyÞfðyÞ;
gðyÞ ¼ B�0ðyÞzðyÞ;
0 ¼MazðaÞ þMbzðbÞ;

8><
>: ð14Þ

where A�0, B�0, and C�0 denote the complex-conjugate-transposes of the matrices A0, B0, and C0. The boundary condition matri-
ces Ma and Mb are determined so that Ma Mb½ � has a full row rank and

Ma Mb½ �
N�a
�N�b

� �
¼ 0: ð15Þ

A procedure for selecting Ma and Mb that satisfy these two requirements is described in [29, Section 3.1]. Furthermore, we
note that the well-posedness of the adjoint representation (14) is guaranteed by the well-posedness of T .

For the 1D diffusion equation of Section 2.1.1, the adjoint of the operator T ðxÞ described by (3) has the following input–
output representation

Fig. 2. Block diagrams of (a) the frequency response operator T : d # u; and (b) the adjoint operator T H : f # g.
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T HðxÞ :

Dð2Þ þ ixI
� �

wðyÞ ¼ f ðyÞ;
gðyÞ ¼ �wðyÞ;

1
0

� �
E�1 þ

0
1

� �
E1


 �
wðyÞ ¼

0
0

� �
:

8>>>><
>>>>:

ð16Þ

As specified in (14), the state-space representation of T HðxÞ is determined by taking the appropriate complex-conjugate-
transposes of the corresponding matrices in (4) with the following boundary condition matrices

M1 ¼
0 1
0 0

� �
; M2 ¼

0 0
0 1

� �
:

3.3. Representations of TT H

From the above described representations of T and T H, we can determine corresponding representations of the operator
TT H : f # u. As illustrated in Fig. 3, this operator represents a cascade connection of the frequency response operator T and
its adjoint T H. The input–output differential equation for TT H is obtained by equating the output of T H in (13) with the input
of T in (11), i.e., d ¼ g, yielding

TT H :

An½ �ðyÞ ¼ B f½ �ðyÞ;
uðyÞ ¼ Cn½ �ðyÞ;
0 ¼ N n ðyÞ;

8><
>: ð17Þ

where

nðyÞ ¼
/ðyÞ
wðyÞ

� �
; A ¼ A0 �B0BH

0

0 AH

0

" #
;

N ¼
N 0 0
0 N H

0

� �
; B ¼

0
CH

0

� �
; C ¼ C0 0½ �:

Similarly, the spatial state-space representation of TT H is obtained by equating the input d in (12) to the output g in (14),
which yields

TT H :

q0ðyÞ ¼ AðyÞqðyÞ þ BðyÞ fðyÞ;
uðyÞ ¼ CðyÞqðyÞ;
0 ¼ La qðaÞ þ Lb qðbÞ;

8><
>: ð18Þ

with

qðyÞ ¼
xðyÞ
zðyÞ

� �
; AðyÞ ¼

A0ðyÞ B0ðyÞB�0ðyÞ
0 �A�0ðyÞ

� �
;

BðyÞ ¼
0

�C�0ðyÞ

� �
; CðyÞ ¼ C0ðyÞ 0½ �;

La ¼
Na 0
0 Ma

� �
; Lb ¼

Nb 0
0 Mb

� �
:

Since a cascade connection of two well-posed systems is well-posed, the existence and uniqueness of solutions of (17) and
(18) is guaranteed by the well-posedness of the corresponding two point boundary value representations of T and T H.

We next present a procedure for computing the largest singular value of T using the above representations of the oper-
ator TT H.

4. Computation of the largest singular value of T

In this section, we utilize the structure of the two point boundary value representations (17) and (18) of TT H to develop a
method for computing the largest singular value of the frequency response operator T ðxÞ,

r2
max T ðxÞð Þ ¼ kmax T ðxÞT HðxÞ

� 	
;

Fig. 3. A cascade connection of T H and T with TT H : f # u.
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where kmaxð�Þ denotes the largest eigenvalue of a given operator. In what follows, we present the procedure for computing
the eigenvalues of TT H using both input–output (17) and state-space (18) representations of TT H. This is done by first recast-
ing the system of differential equations into a corresponding integral formulation; we then employ the recently developed
automatic Chebyshev spectral collocation method [7] to solve the eigenvalue problem for the resulting integral equation.
Note that the eigenfunction corresponding to the largest singular value identifies the output of the system that is most
amplified in the presence of disturbances. Similar procedure can be used to determine the principal eigenfunction of the
operator T HT , thereby yielding the input that has the largest influence on the system’s output.

The solution to a two point boundary value problem (17) can be obtained numerically by approximating the differential
operators using, e.g., a pseudo-spectral collocation technique [2–5]. For differential equations of a high-order, the resulting
finite-dimensional approximations may be poorly conditioned. This difficulty can be overcome by converting a high-order
differential equation into a corresponding integral equation [30]. This conversion utilizes indefinite integration operators
that are characterized by condition numbers that remain bounded upon discretization refinement, thereby alleviating ill-
conditioning associated with finite dimensional approximation of high-order differential operators. The procedure for
achieving this conversion, described in Section 4.2, extends the result of [31] from a scalar case to a system of high-order
differential equations. Furthermore, in Section 4.3 we show how a spatial state-space representation (18) can be transformed
to an equivalent integral form. Finally, we employ Chebfun’s function eigs to perform the eigenvalue decomposition of the
resulting system of equations.

4.1. An illustrative example

We first illustrate the procedure for converting a differential equation into its corresponding integral form using the 1D
diffusion equation (3),

Dð2Þ � ixI
� �

/ðyÞ ¼ �dðyÞ; ð19aÞ
1
0

� �
E�1 þ

0
1

� �
E1


 �
/ðyÞ ¼

0
0

� �
: ð19bÞ

System (19) can be converted into an equivalent integral equation by introducing an auxiliary variable

mðyÞ ¼ Dð2Þ/
h i

ðyÞ: ð20Þ

Integration of (20) yields

/0ðyÞ ¼
Z y

�1
mðg1Þdg1 þ k1 ¼ Jð1Þ m

h i
ðyÞ þ k1;

/ðyÞ ¼
Z y

�1

Z g2

�1
mðg1Þdg1


 �
dg2 þ k1 yþ 1ð Þ þ k2 ¼ Jð2Þ m

h i
ðyÞ þ Kð2Þk;

ð21Þ

where Jð1Þ and Jð2Þ denote the indefinite integration operators of degrees one and two, the vector k ¼ k2 k1½ �T contains the
constants of integration which are to be determined from the boundary conditions (19b), and

Kð2Þ ¼ 1 ðyþ 1Þ½ �:

The integral form of the 1D diffusion equation is obtained by substituting (21) into (19),

I � ixJð2Þ
� �

mðyÞ � ixKð2Þk ¼ �dðyÞ; ð22aÞ

1 0
1 2

� �
k2

k1

� �
þ

1
0

� �
E�1 þ

0
1

� �
E1


 �
Jð2Þm
h i

ðyÞ ¼
0
0

� �
: ð22bÞ

Now, by observing that

E�1 Jð1Þm
h i

ðyÞ ¼
Z �1

�1
mðgÞdg ¼ 0;

we can use (22b) to express the constants of integration k in terms of m,

k2

k1

� �
¼ �1

2
2 0
�1 1

� �
0
1

� �
E1 Jð2Þ m
h i

ðyÞ ¼
0
�1=2

� �
E1 Jð2Þ m
h i

ðyÞ: ð23Þ

Finally, substitution of (23) into (22a) yields an equation for m,

I � ixJð2Þ þ 1
2

ix yþ 1ð ÞE1 Jð2Þ

 �

mðyÞ ¼ �dðyÞ: ð24Þ
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Invertibility of the matrix that multiplies the integration constants k ¼ k2 k1½ �T in (22b) facilitates derivation of an ex-
plicit expression for k in terms of m. In situations where this invertibility condition fails to be satisfied, we next use the 1D
reaction–diffusion equation with homogenous Neumann boundary conditions,

Dð2Þ � cI � ixI
� �

/ðyÞ ¼ �dðyÞ; ð25aÞ
1
0

� �
E�1 þ

0
1

� �
E1


 �
Dð1Þ/
h i

ðyÞ ¼
0
0

� �
; ð25bÞ

to illustrate a procedure for obtaining an input–output representation that only contains indefinite integration operators and
point evaluation functionals. Substitution of (21) into (25) yields

I � ðixþ cÞ Jð2Þ
� �

mðyÞ � ðixþ cÞKð2Þk ¼ �dðyÞ; ð26aÞ

0 1
0 1

� �
k2

k1

� �
þ

0
1

� �
E1 Jð1Þm
h i

ðyÞ ¼
0
0

� �
: ð26bÞ

A positive reaction rate c in (25a) ensures stability in the presence of Neumann boundary conditions.
Lack of invertibility of the matrix that multiplies the integration constants in (26b) is an obstacle to determining k explic-

itly in terms of m. Instead, the dependence of m on k and d can be obtained from (26a),

mðyÞ ¼ I � ðixþ cÞJð2Þ
� ��1

ðixþ cÞKð2Þk� dðyÞ
� �

: ð27Þ

Now, substitution of (27) to (26b) yields

k ¼ G�1 0
1

� �
E1 Jð1Þ I � ðixþ cÞ Jð2Þ

� ��1
dðyÞ; ð28Þ

where the matrix G is given by

G ¼
0 1
0 1

� �
þ

0
1

� �
E1 Jð1Þ I � ðixþ cÞ Jð2Þ

� ��1
ðixþ cÞKð2Þ:

Finally, an equation for m is obtained by substituting (28) into (26a),

I � ðixþ cÞ Jð2Þ
� �

mðyÞ ¼ ðixþ cÞKð2ÞG�1 0
1

� �
E1 Jð1Þ I � ðixþ cÞ Jð2Þ

� ��1
� I


 �
dðyÞ: ð29Þ

Systems (24) and (29) only contain indefinite integration operators and point evaluation functionals which are known to be
well-conditioned. This is a major advantage compared to their corresponding input–output differential equations (19) and
(25).

4.2. Integral form of a system of high-order differential equations

We now present the procedure for converting a system of high-order differential equations (17),

TT H :

An½ �ðyÞ ¼ B f½ �ðyÞ;
uðyÞ ¼ Cn½ �ðyÞ;
0 ¼ N n ðyÞ;

8><
>: ð30Þ

to an equivalent integral form. The input and output vectors fðyÞ and uðyÞ have p elements, nðyÞ is a 2s-vector, and the oper-
ators in (30) are given by

A ¼
Xn

i¼0

aiðyÞDðiÞ; B ¼
Xk

i¼0

biðyÞDðiÞ; C ¼
Xk

i¼0

ciðyÞDðiÞ; N ¼
X‘
i¼0

Ya;i Ea þ Yb;i Eb

� 	
DðiÞ:

As illustrated in Section 4.1, instead of trying to find the solution n to (17) directly, we introduce two auxiliary variables, m
and k. The ith component of the vector mðyÞ ¼ m1ðyÞ � � � m2sðyÞ½ �T is determined by

miðyÞ ¼ DðniÞ ni

h i
ðyÞ; ð31Þ

where ni denotes the highest derivative of ni in

An½ �ðyÞ ¼ B f½ �ðyÞ:

Integration of (31) yields

DðjÞni

h i
ðyÞ ¼ Jðni�jÞmi

h i
ðyÞ þ Kðni�jÞki; j ¼ 0; . . . ;ni; ð32Þ

B.K. Lieu, M.R. Jovanović / Journal of Computational Physics 250 (2013) 246–269 255



Author's personal copy

where ki 2 Cni is the vector of integration constants which are to be determined from the boundary conditions, JðniÞ is the
indefinite integration operator of degree ni with Jð0Þ ¼ 0, and KðniÞ is the matrix with columns that span the vector space
of polynomials of degree less than ni,

KðniÞ ¼ K0ðyÞ K1ðyÞ � � � Kni�1ðyÞ
� �

; Kð0Þ ¼ 0;

K0ðyÞ ¼ 1; KjðyÞ ¼
1
j!

y� að Þj; j P 1:

Substitution of (32) into (30) yields the integral representation of the operator TT H,

TT H :

L11 L12

L21 L22

� �
m

k

� �
¼
B
0

� �
f;

u ¼ P1 P2½ �
m

k

� �
;

8>>><
>>>: ð33Þ

where

L11 ¼
Xn

i¼0

aiðyÞ Jðn�iÞ; L12 ¼
Xn

i¼0

aiðyÞKðn�iÞ;

L21 ¼
X‘
i¼0

Yb;i Eb Jðn�iÞ; L22 ¼
X‘
i¼0

Ya;i Ea þ Yb;i Eb

� 	
Kðn�iÞ;

P1 ¼
Xk

i¼0

ciðyÞ Jðn�iÞ; P2 ¼
Xk

i¼0

ciðyÞKðn�iÞ;

Jðn�iÞ ¼
Jðn1�iÞ

. .
.

Jðn2s�iÞ

2
664

3
775; Kðn�iÞ ¼

Kðn1�iÞ

. .
.

Kðn2s�iÞ

2
664

3
775;

JðiÞ ¼ 0; KðiÞ ¼ 0; i 6 0:

Using (33) we can determine an expression for the integration constants,

L22 k ¼ � L21 m½ �ðyÞ: ð34Þ

If the matrix L22 is invertible, Eq. (34) in conjunction with (33) yields

mðyÞ ¼ L11 � L12L�1
22 L21

� 	�1 ðB fÞ
h i

ðyÞ; ð35aÞ

uðyÞ ¼ P1 � P2L�1
22 L21

� 	
m

� �
ðyÞ; ð35bÞ

and the representation of the operator TT H is obtained by substituting (35a) into (35b). Thus, determination of the left sin-
gular functions fung of the operator T amounts to solving the following eigenvalue problem

P1 � P2L�1
22L21

� 	
L11 � L12L�1

22L21
� 	�1ðB unÞ

h i
ðyÞ ¼ r2

nunðyÞ; ð36Þ

where rn denotes the corresponding singular value of T .
On the other hand, if L22 is singular, we can determine an expression for m in terms of k and f from (33),

mðyÞ ¼ L�1
11B f

� �
ðyÞ � L�1

11L12k: ð37Þ

Furthermore, substitution of (37) into (34) yields

k ¼ �G�1L21 L�1
11B f

� �
ðyÞ; ð38Þ

where the matrix G is given by

G ¼ L22 � L21L�1
11L12:

This expression for k in conjunction with (33) yields

mðyÞ ¼ L�1
11 B þ L12G�1L21L�1

11B
� �

f
h i

ðyÞ; ð39aÞ

uðyÞ ¼ P1m½ �ðyÞ � P2G�1L21L�1
11B f

h i
ðyÞ: ð39bÞ

The integral representation of the operator TT H can be obtained by substituting (39a) into (39b), and the left singular pair
ðrn;unÞ of the operator T is determined from the solution to the following eigenvalue problem
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P1L�1
11 þ P1L�1

11L12G�1L21L�1
11 � P2G�1L21L�1

11

� �
ðBunÞ

h i
ðyÞ ¼ r2

nunðyÞ: ð40Þ

4.3. Integral form of a spatial state-space representation

We next describe a procedure for transforming a spatial state-space representation (18),

TT H :

q0ðyÞ ¼ AðyÞqðyÞ þ BðyÞfðyÞ;
uðyÞ ¼ CðyÞqðyÞ;
0 ¼ LaqðaÞ þ LbqðbÞ;

8><
>: ð41Þ

into a system of first-order integral equations. In a similar manner as in Section 4.2, we introduce two auxiliary variables m
and k so that

mðyÞ ¼ q0ðyÞ ) qðyÞ ¼ Jm½ �ðyÞ þ k; ð42Þ

where J is a block diagonal matrix of the first order indefinite integration operators Jð1Þ,

J ¼
Jð1Þ

. .
.

Jð1Þ

2
664

3
775:

Substitution of (42) into (41) yields a system of first order integral equations for the operator TT H,

mðyÞ ¼ AðyÞ Jm½ �ðyÞ þ AðyÞkþ BðyÞfðyÞ; ð43aÞ

uðyÞ ¼ CðyÞ Jm½ �ðyÞ þ CðyÞk; ð43bÞ

0 ¼ LaEa þ LbEbð Þ Jm½ �ðyÞ þ La þ Lbð Þk: ð43cÞ

An expression for m in terms of the forcing f and the integration constants k can be obtained from (43a),

mðyÞ ¼ I� AJð Þ�1 Bfð Þ
h i

ðyÞ þ I� AJð Þ�1A
h i

ðyÞk: ð44Þ

Furthermore, substitution of (44) into (43c) yields

k ¼ �H�1LbEb J I� AJð Þ�1Bf
h i

ðyÞ; ð45Þ

where H is a matrix given by

H ¼ LbEb J I� AJð Þ�1A
h i

ðyÞ þ La þ Lb:

Finally, substitution of (44) and (45) into (43b) yields

uðyÞ ¼ CJ I� AJð Þ�1Bf
h i

ðyÞ � CH�1LbEbJ I� AJð Þ�1Bf
h i

ðyÞ � CJ I� AJð Þ�1AH�1LbEbJ I� AJð Þ�1Bf
h i

ðyÞ; ð46Þ

where invertibility of the matrix H follows from the well-posedness of the two-point boundary value problem (41). Thus, the
singular values rn and the associated left singular functions un of T can be obtained by solving the following eigenvalue
problem

CJ I� AJð Þ�1Bun

h i
ðyÞ � CH�1LbEbJ I� AJð Þ�1Bun

h i
ðyÞ � CJ I� AJð Þ�1AH�1LbEbJ I� AJð Þ�1Bun

h i
ðyÞ ¼ r2

nunðyÞ: ð47Þ

In summary, the principal left singular pair of the operator T can be determined by rewriting either the input–output
differential equation (17) or the system of first-order differential equations (18) representing TT H into their respective inte-
gral forms (33) and (43). The resulting eigenvalue problems (36) and (47) are solved using Chebfun [7]. The detailed discus-
sion on how Chebfun can be used to solve the eigenvalue problems (36) and (47) is relegated to Appendix B.

5. Examples

We next use our method to study frequency responses of two systems from fluid mechanics: three-dimensional incom-
pressible channel flow of Newtonian fluids, and two-dimensional inertialess channel flow of viscoelastic fluids. In the latter
example, we show how numerical instabilities encountered when using finite dimensional approximation techniques can be
alleviated. The utility of theoretical and computational tools of this paper goes beyond fluids; they can be used to examine
dynamics of a broad class of physical systems with normal or non-normal dynamical generators, and spatially constant or
varying coefficients.
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5.1. Three-dimensional incompressible channel flows of Newtonian fluids

We first study the dynamics of infinitesimal three-dimensional fluctuations in a pressure-driven channel flow with base
velocity UðyÞ ¼ 1� y2; see Fig. 4 for geometry. As shown in [11], the linearized Navier–Stokes (NS) equations can be brought
to the evolution form (7) with state / ¼ /1 /2½ �T , where /1 and /2 are the normal velocity and vorticity fluctuations. Fur-
thermore, d ¼ d1 d2 d3½ �T and u ¼ u v w½ �T are the input and output fields whose components represent the body
forcing and velocity fluctuations in the three spatial directions, x; y, and z. Owing to translational invariance in x and z,
(7) is parameterized by the corresponding wave numbers kx and kz with the boundary conditions on the normal velocity
and vorticity,

/1ðkx;�1; kz; tÞ ¼ Dð1Þ/1ðkx;�1; kz; tÞ ¼ 0;
/2ðkx;�1; kz; tÞ ¼ 0; kx; kz 2 R; t P 0:

The operators in (7) are given in Appendix C and, for any pair of kx and kz, they are matrices of differential operators in
y 2 ½�1;1�.

In what follows, we set the Reynolds number to R ¼ 2000, kx ¼ kz ¼ 1 and compute the singular values of T using the
method developed in Section 4.2. Fig. 5 shows two largest singular values, r1 and r2, of the frequency response operator
T for the linearized NS equations as a function of the temporal frequency x. The largest singular value r1 exhibits two dis-
tinct peaks at x � �1 and x � �0:4. Our results have been verified against predictions resulting from earlier studies [1,32];
cf. Fig. 5 with figure 4.10b in [1]. We also note that these peaks are caused by different physical mechanisms which can be
uncovered by investigating responses from individual forcing to individual velocity components [11]. The discussion of these
mechanisms is beyond the scope of this paper.

Fig. 6 shows isosurfaces of the most amplified streamwise velocity fluctuations corresponding to the two peaks shown in
Fig. 5. These output structures are purely harmonic in x; z, and t, and their profiles in y are determined by the left principal
singular functions of the frequency response operator at x ¼ �0:385 and x ¼ �0:982. For x ¼ �0:385; u is localized in the
near-wall region. On the other hand, for x ¼ �0:982 the fluctuations occupy the center of the channel. The development of
the streamwise velocity (color plots), and streamwise vorticity wy � vz (contour lines) fluctuations in the channel’s cross-
section is shown in Fig. 7. For x ¼ �0:385, the most amplified set of fluctuations results in pairs of counter rotating

Fig. 4. Channel flow geometry.

Fig. 5. Two largest singular values of the frequency response operator for the linearized Navier–Stokes equations as a function of the temporal frequency x
in a channel flow with R ¼ 2000, kx ¼ 1, and kz ¼ 1: blue �;r1ðT Þ; and red 	;r2ðT Þ. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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streamwise vortices that generate high and low velocity in the vicinity of the lower and upper walls. In contrast, for
x ¼ �0:982 there is a large concentration of arrays of counter rotating streamwise vortices in the center of the channel. Even
though the spatial patterns identified by our analysis represent an idealized view of the flow, their utility in understanding
the early stages of transition to turbulence has been well-documented [12]. The spatial structure of input forcing that trig-
gers largest response of velocity fluctuations is determined by the right principal singular function of the frequency response
operator T (i.e., the principal eigenfunction of the operator T HT ). For brevity, we do not report these forcing structures here.

5.2. Inertialess channel flow of viscoelastic fluids

We next compute the frequency responses of the inertialess flow of viscoelastic fluids presented in Section 2.1.2. This
example illustrates the utility of our method in situations where standard finite dimensional approximations may fail to pro-
duce accurate results. For this example, the input–output and spatial state-space representations of the frequency response
operator are given in Appendix D. We compute the largest singular value using the procedure described in Section 4 and
provide comparison of our results with those obtained using a pseudo-spectral collocation method [23].

It is well-known that inertialess flows of viscoelastic fluids exhibit spurious numerical instabilities at high-Weissenberg
numbers [21,22]. In view of this, we fix kx ¼ 1, b ¼ 0:5, and x ¼ 0 and examine the effects of the Weissenberg number, We,
on the frequency response. We first compute the largest singular value of T using a pseudo-spectral collocation method [23].
This is achieved by approximating the operators in the input–output representation (17) of TT H with differentiation matrices
of different sizes. Fig. 8(a) shows that rmax converges as the number of collocation points, N, increases from 50 to 200 for

Fig. 6. Spatial structure of the streamwise velocity fluctuations for largest singular value of the frequency response operator in a pressure-driven channel
flow with R = 2000, kx ¼ kz ¼ 1: (a) x ¼ �0:385, and (b) x ¼ �0:982. High and low velocity regions are represented by red and green colors. Isosurfaces of u
are taken at �0:55. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Spatial structure of the streamwise velocity (color plots) and vorticity, wy � vz , (contour lines) fluctuations for largest singular value of the frequency
response operator in the cross section of a pressure-driven channel flow with R ¼ 2000, kx ¼ kz ¼ 1, (a) x ¼ �0:385, and (b) x ¼ �0:982. Red color
represents high speed and blue color represents low speed streaks. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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1 6We 6 9. However, for We > 9 the increased number of collocation points in y does not necessarily produce convergent
results; see Fig. 8(b). Furthermore, in certain cases, the eigenvalues of the operator TT H computed using pseudo-spectral
method have large negative values. This is clearly at odds with the fact that TT H is a non-negative self-adjoint operator,
which indicates that the negative eigenvalues arise from numerical artifacts.

Fig. 8(c) and (d) show the largest singular value of the operator T computed using the method of Section 4. For
1 6We 6 9, the largest singular values obtained in Chebfun for both input–output and spatial state-space integral represen-
tations of TT H are equal to each other and they agree with the results of pseudo-spectral method; see Fig. 8(c). For We > 9
we see that the largest singular value computed using Chebfun exhibits nice trends as We increases. Furthermore, the auto-
matic Chebyshev spectral collocation method employed by Chebfun makes sure that grid point convergence of the singular
values is satisfied. We note that the singular values computed using the input–output and spatial state-space integral rep-
resentations of TT H are equal to each other for We 6 12. On the laptop used for computations, MATLAB has experienced mem-
ory issues when solving the eigenvalue problem in the state-space formulation (47) for We > 12. These memory issues may
arise from solving a large system of linear equations internally in Chebfun. While internal memory issues can be alleviated
using a platform with larger memory capacity, we show these limitations in order to illustrate the trade-off arising from the
use of the state-space and the input–output formulations in Chebfun. In Chebfun, the input–output formulation appears to be
better suited for efficient computations than the state-space formulation. We further note that the singular values can be
computed accurately using the input–output integral representation at much higher Weissenberg numbers.

We next present the wall-normal shapes of the principal singular functions corresponding to the streamwise (u) and wall-
normal (v) velocity fluctuations in a flow with We ¼ 19:5. These are obtained using pseudo-spectral method and Chebfun

with the input–output integral representation. Figs. 9(a) and 9(b) show the spatial profiles of velocity fluctuations that expe-
rience the largest amplification in the presence of disturbances. These profiles are obtained using pseudo-spectral method
with different number of collocation points. Note the lack of convergence as the number of collocation points is increased.
On the other hand, Chebfun does not suffer from numerical instabilities, and the corresponding principal singular functions

Fig. 8. The largest singular values of the frequency response operator for an inertialess shear-driven channel flow of viscoelastic fluids as a function of We at
kx ¼ 1, b ¼ 0:5, and x ¼ 0. Results are obtained using: (a) and (b) Pseudo-spectral method with N ¼ 100, blue ; N ¼ 150, red ; and N ¼ 200, green ; (c)
and (d) Chebfun with integral forms of input–output differential equations, blue4; and spatial state-space representations, red O. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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exhibit the expected symmetry with respect to the center of the channel; see Figs. 9(c) and 9(d). Similar trends are observed
for larger values of We.

6. Concluding remarks

We have developed a method for computing the principal singular value and the corresponding singular functions
of the frequency response operator for distributed systems with a spatial variable that belongs to a compact inter-
val. Our method avoids the need for numerical approximation of differential operators in the evolution equation.
This is achieved by recasting the frequency response operator as a two point boundary value problem; the resulting
system of differential equations is then brought into an equivalent integral form which alleviates ill-conditioning and
is well-suited for employing Chebfun computing environment. When dealing with spatial differential operators of
high order our method exhibits two advantages over conventional techniques: numerical ill-conditioning associated
with high-order differential matrices is overcome; and boundary conditions are easily implemented and satisfied.
We have provided examples from Newtonian and viscoelastic fluid dynamics to illustrate the utility of our
developments.

Our method has been enhanced by the development of easy-to-use MATLAB functions which take the system’s coefficients
and boundary condition matrices as inputs and yield the desired number of left (or right) singular pairs as the output. The
coefficients and boundary conditions of the adjoint systems are automatically implemented within the code using the meth-
od described in this paper. The burden of finding the adjoint operators and boundary conditions is thus removed from the
user who can instead focus on interpreting results and understanding the essential physics.

Even though we have confined our attention to computation of the frequency responses for PDEs, the developed frame-
work allows users to employ Chebfun as a tool for determining singular value decomposition of compact operators that admit

Fig. 9. Wall-normal shapes of the streamwise (u) and wall-normal velocity (v) fluctuations for the largest singular value of the frequency response operator
in an inertialess shear-driven flow of viscoelastic fluids with We ¼ 19:5, kx ¼ 1, b ¼ 0:5, and x ¼ 0. First column: real part of u; second column: imaginary
part of v. Results are obtained using: (a) and (b) Pseudo-spectral method with N ¼ 50, red ; N ¼ 100, blue ; N ¼ 200, green ; (c) and (d) Chebfun with
integral form of input–output differential equations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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two point boundary value representations. In particular, our approach paves the way for overloading MATLAB’s command svds,
from matrices to compact operators.

While the body of the paper focuses on PDEs with distributed input and output fields, by considering an Euler–Bernoulli
beam with boundary actuation in Appendix E, we illustrate how Chebfun can be used to compute frequency responses of sys-
tems with boundary inputs. This problem turns out to be much simpler than the problems with distributed inputs, and it can
be implemented with only few lines of code in Chebfun. We also use this example to demonstrate the utility of integral for-
mulation in producing accurate results even for systems with poorly scaled coefficients.

In all examples that we considered, it is much more efficient to compute the eigenvalue pairs for a system of high-order
integral equation (36) than for a system of first-order integral equation (47). We believe that larger number of dependent
variables is reducing efficiency of computations that rely on spatial state-space representation. We note that Chebfun auto-
matically adjust the number of collocation points in order to obtain solutions with an a priori specified tolerance. The com-
putational speed can be increased by lowering this tolerance using the following command in MATLAB

chebfunpref (‘res’, tolerance).

Our ongoing efforts are focused on employing Chebfun as a tool for computing the peak (over temporal frequency) of the
largest singular value of the frequency response operator. In systems and controls literature, supxrmaxðT ðxÞÞ is known as the
H1 norm and its computation requires identification of purely imaginary eigenvalues of a Hamiltonian operator in
conjunction with bisection [33]. In addition to quantifying the worst-case amplification of purely harmonic (in time) deter-
ministic (in space) disturbances, the inverse of the H1 norm determines the size of an unstructured modeling uncertainty
that can destabilize the nominal system. Thus, large frequency response peaks indicate small stability margins (i.e., poor
robustness properties to modeling imperfections), and they are a reliable predictor of systems in which small modeling
imperfections can introduce instability. This interpretation of the H1 norm is closely related to the notion of pseudospectra
of linear operators [8] and it has been used to provide useful insight into dynamics of systems with non-normal generators
[9,12,20,32].

We finally note that the frequency response analysis can also be used to study the dynamics of systems with two or three
spatial variables that belong to a compact interval. However, in 2D and 3D the two-point boundary value structure of the
frequency response operator that we exploit in this paper is lost. Furthermore, for 2D, and especially for 3D problems,
one would have to develop iterative solvers for the corresponding eigenvalue problems. This would necessitate determina-
tion of finite dimensional approximations of both the frequency response operator T and its adjoint T H. Once these are avail-
able, standard power-iteration-based methods (e.g., Lanczos algorithm) can be utilized to determine spatial structures of the
principal input and output directions. We note that a recent extension of Chebfun to two-dimensional problems – Chebfun2 –
may be used to address this challenge in 2D.

Supplementary material

All MATLAB codes for computing frequency responses are publicly available at www.umn.edu/
mihailo/software/chebfun-svd/.
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Appendix A. Conversion to a spatial state-space realization

We next describe how a high-order ODE with spatially varying coefficients can be converted to a family of first-order
ODEs (12). We consider the following ordinary differential equation with boundary conditions:

/ðnÞðyÞ ¼ �
Xn�1

i¼0

aiðyÞ/ðiÞðyÞ þ
Xm

i¼0

biðyÞd
ðiÞðyÞ; m < n� ‘; ðA:1aÞ

uðyÞ ¼
Xk

i¼0

ciðyÞ/
ðiÞðyÞ; k < n�m; ðA:1bÞ

0 ¼
X‘
i¼0

Ni;a/
ðiÞðaÞ þ Ni;b/

ðiÞðbÞ; ‘ < n; ðA:1cÞ

where /ðiÞ ¼ di/=dyi. Since coefficients fbiðyÞg in (A.1a) are spatially varying, the standard observer and controller canonical
forms cannot be used to obtain a system of first-order ODEs (12). Instead, we introduce a new variable wðyÞ,
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wðyÞ ¼
Xm

i¼0

biðyÞd
ðiÞðyÞ; ðA:2Þ

and substitute (A.2) into (A.1a) to obtain

/ðnÞðyÞ ¼ �
Xn�1

i¼0

aiðyÞ/ðiÞðyÞ þwðyÞ; ðA:3Þ

Here, a state-space realization of (A.3) is given by the controller canonical form,

z0ðyÞ ¼ A1ðyÞzðyÞ þ enwðyÞ; ðA:4aÞ
/ðyÞ ¼ eT

1zðyÞ; ðA:4bÞ

where

and ei is the ith unit vector. It is a standard fact that the solution to (A.4) is given by

zðyÞ ¼ U1ðy; aÞzðaÞ þ
Z y

a
U1ðy;gÞenwðgÞdg; ðA:5Þ

where U1ðy;gÞ is the state-transition matrix of A1ðyÞ. Substituting (A.2) into (A.5) yields

zðyÞ ¼ U1ðy; aÞzðaÞ þ
Z y

a
U1ðy;gÞen

Xm

i¼0

biðgÞd
ðiÞðgÞ

 ! !
dg: ðA:6Þ

Application of integration by parts to the integral in (A.6) along with a change of variables leads to the following two point
boundary value state-space representation of (A.1)

x0ðyÞ ¼ A0ðyÞxðyÞ þ B0dðyÞ; ðA:7aÞ
uðyÞ ¼ C0xðyÞ; ðA:7bÞ
0 ¼ NaxðaÞ þ NbxðbÞ; ðA:7cÞ

where

xðyÞ ¼ zðyÞ �
Xm�1

i¼0

Xm�i

j¼1

Q j�1ðbiþjðyÞÞ
 !

dðiÞðyÞ;

A0ðyÞ ¼ A1ðyÞ; B0ðyÞ ¼
Xm

i¼0

Q iðbiðyÞÞ;

C0ðyÞ ¼ c0ðyÞ � � � ckðyÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
kþ1

0 � � � 0|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�k�1

2
64

3
75;

Na ¼

N0;a

. .
.

N‘;a

2
664

3
775; Nb ¼

N0;b

. .
.

N‘;b

2
664

3
775:

We note that, for a given function b, Q i can be recursively determined from

Q iðbðyÞÞ ¼ A1ðyÞQ i�1ðbðyÞÞ �
d

dy
Q i�1ðbðyÞÞ; i ¼ 1; . . . ;m;

Q 0ðbðyÞÞ ¼ enbðyÞ:

Appendix B. Implementation of eigenvalue problems in integral formulation using Chebfun

The eigenvalue problems (36) and (47) derived in Sections 4.2 and 4.3 are solved using Chebfun. Here, we show how to
implement the functions and operators in Chebfun to solve (36); a similar procedure can be used to solve (47). The eigenvalue
problem (36) requires the construction of a number of operators and quasimatrices (terminology used by the authors of
Chebfun to denote vectors of functions). The operator A in (30) is represented by the coefficients aiðyÞ which are functions
determining columns of a quasimatrix. For example, consider the differential equations representing the operator TT H for
the 1D diffusion equation
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Dð2Þ � ixI �I

0 Dð2Þ þ ixI

" #
n1ðyÞ
n2ðyÞ

� �
¼

0
I

� �
f ðyÞ;

/ðyÞ ¼ I 0½ �
n1ðyÞ
n2ðyÞ

� �
;

1 0
0 0

� �
n1ð�1Þ
n01ð�1Þ

� �
þ

0 0
1 0

� �
n1ðþ1Þ
n01ðþ1Þ

� �
¼

0
0

� �
;

1 0
0 0

� �
n2ð�1Þ
n02ð�1Þ

� �
þ

0 0
1 0

� �
n2ðþ1Þ
n02ðþ1Þ

� �
¼

0
0

� �
:

ðB:1Þ

The code used to generate operator A for the 1D diffusion equation is given by

%% Operator A for the 1D diffusion equation

dom = domain(-1,1); % domain of functions

fone = chebfun(1,dom); % fone (y) = 1

fzero = chebfun(0,dom); % fzero (y) = 0

% w is the temporal frequency and 1i is the imaginary unit

% (1,1) element of operator A

A11 = [-1i*w*fone, fzero, fone]; % -i*w*xi_1 + 0*D
^{(1)}*xi_1 + 1*D

^{(2)}*xi_1
% (1,2) element of operator A

A12 = [-fone, fzero, fzero]; % �1*xi_2 + 0*D
^{(1)}*xi_2 + 0*D

^{(2)}*xi_2
% (2,1) element of operator A

A21 = [fzero, fzero, fzero]; % 0*xi_1 + 0*D
^{(1)}*xi_1 + 0*D

^{(2)}*xi_1
% (2,2) element of operator A

A22 = [1i*w*fone, fzero, fone]; % i*w*xi_1 + 0*D
^{(1)}*xi_1 + 1*D

^{(2)}*xi_1

% form operator A using cell-array construction

A = {A11, A12; A21, A22};

The variable dom denotes the domain of the functions, and fone and fzero represent unit and zero functions. The dimension
of each Chebfun’s function in MATLAB is1� 1, where the first index represents the continuous variable y. Hence, the quasima-
trices A11, A12, A21, and A22 have dimensions1� 3. Since the dimension of quasimatrices prohibits the construction of ma-
trix of functions, we instead utilize MATLAB’s cell arrays (using curly brackets) to represent the operator A. The boundary
condition matrices are given by.

Ya1 = [1, 0; 0, 0]; Ya2 = [1, 0; 0, 0];

Yb1 = [0, 0; 1, 0]; Yb2 = [0, 0; 1, 0];

Ya = {Ya1; Ya2}; Yb = {Yb1; Yb2};

The code used to generate the quasimatrix KðnÞ is given by.

n = size (A,1); % number of states in your system of ODEs

% determine the highest differential order of each component of nxi in the equations ni = zeros (n,1);
for j = 1:n

ni (j) = size(A{j,j}, 2) - 1;

end

% indefinite integration operator

J = cumsum(dom);

%% Construct each component of K

Ki = chebfun(1,dom);

for j = 2: max (ni)

Ki(:,j) = J*Ki(:,j-1);

end

% construct quasimatrix K using cell-array

for j = 1:n

K{j}=Ki(:,1:ni(j));
end

The indefinite integration operator is obtained using Chebfun’s command cumsum. The variable ni contains the highest differ-
ential order of each state ni in the system. We next determine the matrix L22 appearing in (33) by applying the boundary
condition operator N to K. The following code is used to generate L22.
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%% Determine the matrix L_{22}
% loop through each component of nxi
for j = 1:n

% quasimatrix K associated with nxi_{j}
Kj = K{j};
L22{j} = Ya{j} + Yb{j}*toeplitz ([1 zeros (1, ni (j)-1)], Kj( b,: ));

end

The quasimatrix L12 is obtained by multiplying coefficients of the operator A with the quasimatrix K,

%% Determine the functional operator L_{12}
% loop through each component of L_{12}, which has size n x n

for i = 1:n

for j = 1:n

% initialize the (i,j) component of L_{12} and
% get the quasimatrix K associated with nxi_{j}
L12ij = 0; Kj = K{j};
% get the (i,j) component of operator A

Aij = A{i,j};
for indni = 1: ni (j)

L12ij = L12ij + diag( Aij (:, ind) )*Kj;

Kj = [ chebfun(0,dom), Kj(:, 1:ni (j) - 1) ];

end

L12{i, j} = L12ij;

end

end

The operator L11 in (33) is realized using the following MATLAB’s commands.

%% Determine the operator L_{11}
% loop through each component of L_{11}, which has size n x n

for i = 1: n

for j = 1: n

% get the (i,j) component of A

Aij = A{i,j};
% initialize (i,j) component of L11 with Aij_0
L11ij = diag( Aij (:,1) );

for indni = 1: ni (j) - 1

L11ij = L11ij*J + diag( Aij (:, indni +1) );

end

L11ij = L11ij*J + diag( Aij (:, ni (j) + 1) );

L11{i,j} = L11ij;

end

end

The boundary point evaluation functional Eb is easily constructed by.

Eb = linop (@(n) [zeros (1,n-1) 1], @(u) feval (u,b), dom);

In a similar manner, the operator L21 is realized by.

%% Determine the operator L_{21}
% loop through each component of L_{21} which has size of n x 1

for j = 1:n

% get the j component of the boundary condition matrix Yb

Ybj = Yb{j};
L21j = Ybj(:,1)*Eb;

for indni = 1: ni(j) - 1

L21j = L21j*J + Ybj(:, ind+1)*Eb;

end

L21{j} = L21j*J;

end
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We note that the operators P1 and P2 in (33) can be constructed using similar procedure. We have shown how to construct
all operators and quasimatrices appearing in (33). However, the eigenvalue problem (36) requires the operator L12L�1

22 L21.
This operator can only be realized using explicit construction [31] because Chebfun syntax does not allow this expression to
be formed directly.

%% determining the operator H = L_{12} L_{22}^{-1} L_{21}
% looping through each component of H which has size of n x n

for i = 1:n

for j = 1:n

L12ij = L12{i,j};
L22j = L22{j};
L21j = L21{j};

% m-by-m discretization of H (discretized form)

mat = @(m) L12ij( chebpts (m,dom),: )*( L22j n L21j(m) );

% functional expression of H (functional form)

op = @(v) L12ij*( L22j n (L21j*v) );

% explicit construction of a linear operator in Chebfun

H{i,j} = linop (mat,op,dom);

end

end

A similar procedure is used to construct the operator P2L�1
22 L21. Finally, Chebfun’s eigenvalue solver (eigs) is used to com-

pute the eigenvalues and eigenfunctions. We note that we use similar method to construct the operators for the spatial state-
space representation of the eigenvalue problem discussed in Section 4.3. For brevity, they are not presented here. All codes
for solving the eigenvalue problems in the integral formulation using Chebfun are available at www.umn.edu/
mihailo/soft-

ware/chebfun-svd/.

Appendix C. Representations of the frequency response operator for the linearized Navier–Stokes equations

In this section, we provide the input–output and spatial state-space representations of the frequency response operator
for the linearized NS equations. The input–output differential equations for the three-dimensional incompressible channel
flow are given by

T :

a4 Dð4Þ þ a2ðyÞDð2Þ þ a0ðyÞ
� �

/ðyÞ ¼ b1 Dð1Þ þ b0

� �
dðyÞ;

u

v
w

2
64

3
75 ¼ c1 Dð1Þ þ c0

� �
/ðyÞ;

0 ¼ ðW�1;1 E�1 þW1;1 E1ÞDð1Þ þ ðW�1;0 E�1 þW1;0 E1Þ
� �

/ðyÞ;

8>>>>>>>><
>>>>>>>>:

ðC:1Þ

where

a4ðyÞ ¼
1 0
0 0

� �
; a2ðyÞ ¼

a2;1ðyÞ 0
0 1

� �
; a0ðyÞ ¼

a0;1ðyÞ 0
�ikz U0ðyÞ a0;2ðyÞ

� �
;

a2;1ðyÞ ¼ � 2j2 þ ikxRUðyÞ þ ixR
� 	

;

a0;1ðyÞ ¼ j4 þ ikxj2RUðyÞ þ ikxRU00ðyÞ þ ixj2R;

a0;2ðyÞ ¼ � j2 þ ikxRUðyÞ þ ixR
� 	

;j2 ¼ k2
x þ k2

z ;

b1 ¼
ikxR 0 ikzR

0 0 0

� �
; b0 ¼

0 j2R 0
�ikzR 0 ikxR

" #
;

cT
1 ¼

1
j2

ikx 0 ikz

0 0 0

� �
; cT

0 ¼
1
j2

0 j2 0
�ikz 0 ikx

" #
;

W�1;0 ¼
1 0 0 0 0 0
0 0 0 0 1 0

� �T

; W1;0 ¼
0 1 0 0 0 0
0 0 0 0 0 1

� �T

;

W�1;1 ¼
0 0 1 0 0 0
0 0 0 0 0 0

� �T

; W1;1 ¼
0 0 0 1 0 0
0 0 0 0 0 0

� �T

:

The spatial state-space representation of T is obtained by rewriting (C.1) into a system of first-order differential equations
given by (12) with the following matrices
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A0 ¼

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

�a0;1ðyÞ 0 �a2;1ðyÞ 0 0 0
0 0 0 0 0 1

ikzRU0ðyÞ 0 0 0 �a0;2ðyÞ 0

2
666666664

3
777777775
; B0 ¼

0 0 0
0 0 0

ikxR 0 ikzR

0 j2R 0
0 0 0
�ikzR 0 ikxR

2
666666664

3
777777775
;

C0 ¼
1
j2

0 ikx 0 0 �ikz 0
j2 0 0 0 0 0
0 ikz 0 0 ikx 0

2
64

3
75;

N�1 ¼

I2�2 02�2 02�1 02�1

02�2 02�2 02�1 02�1

01�2 01�2 1 0
01�2 01�2 0 0

2
6664

3
7775; N1 ¼

02�2 02�2 02�1 02�1

I2�2 02�2 02�1 02�1

01�2 01�2 0 0
01�2 01�2 1 0

2
6664

3
7775:

The input–output and state-space representations of the adjoint of the operator T can be determined using the procedure
presented in Section 3.2.

Appendix D. Representations of the frequency response operator for the inertialess channel flow of viscoelastic fluids

We next show how to formulate the input–output and spatial state-space representations of the frequency response
operator for the inertialess flow of viscoelastic fluids. We begin by rewriting (6) into the input–output representation (11),

T :

Dð4Þ þ a3ðyÞDð3Þ þ a2ðyÞDð2Þ þ a1ðyÞDð1Þ þ a0ðyÞ
� �

wðyÞ ¼ b1ðyÞDð1Þ þ b0ðyÞ
� �

dðyÞ;
u

v

� �
¼ c1 Dð1Þ þ c0

� �
wðyÞ;

0 ¼ ðW�1;1 E�1 þW1;1 E1ÞDð1Þ þ ðW�1;0 E�1 þW1;0 E1Þ
� �

wðyÞ;

8>>>>><
>>>>>:

ðD:1Þ

where

a0ðyÞ ¼
kx4

a4ðyÞ
b�

2We2 ðb� 1Þ 2We2 þ 1
� �

ðikxWeyþ ixþ 1Þ3
�
ðb� 1Þ 2We2 þ 1

� �
ikxWeyþ ixþ 1

0
@

1
A;

a1ðyÞ ¼
1

a4ðyÞ
2ik3

x We ðb� 1Þ ðixþ ikxWeyÞ ikxWeyþ ix� 2We2 þ 1
� �

ðikxWeyþ ixþ 1Þ3
;

a2ðyÞ ¼
1

a4ðyÞ
�2bk2

x þ
2k2

x b� 1ð Þ We2 þ 1
� �

ikxWeyþ ixþ 1
� 4 b� 1ð Þk2

x We2

ðikxWeyþ ixþ 1Þ2
þ 2 b� 1ð Þk2

x We2

ðikxWeyþ ixþ 1Þ3

0
@

1
A;

a3ðyÞ ¼ �
1

a4ðyÞ
2ikxWe ðb� 1Þ ðikxWeyþ ixÞ

ðikxWeyþ ixþ 1Þ2
; a4ðyÞ ¼

b ikxWeyþ b ixþ 1
ikxWeyþ ixþ 1

;

b1ðyÞ ¼ �
1

ba4ðyÞ
; b0ðyÞ ¼

ikx

ba4ðyÞ
; b1ðyÞ ¼ b1ðyÞ 0½ �; b0ðyÞ ¼ 0 b0ðyÞ½ �;

c1 ¼ 1 0½ �T ; c0 ¼ 0 �ikx½ �T ; W�1;1 W1;1 W�1;0 W1;0½ � ¼ I4�4:

The spatial state-space representation of T is obtained by rewriting (D.1) into a system of first-order differential equations.
Using the procedure described in Appendix A yields

A0 ¼

0 1 0 0
0 0 1 0
0 0 0 1

�a0ðyÞ �a1ðyÞ �a2ðyÞ �a3ðyÞ

2
6664

3
7775; B0 ¼

0 0
0 0

b1ðyÞ 0
�b01ðyÞ � a3ðyÞb1ðyÞ b0ðyÞ

2
6664

3
7775;

C0 ¼
0 1 0 0
�ikx 0 0 0

� �
; N�1 ¼

I2�2 02�2

02�2 02�2

� �
; N1 ¼

02�2 02�2

I2�2 02�2

� �
:

The input–output and state-space representations of the adjoint of the operator T can be determined using the procedure
described in Section 3.2.
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Appendix E. Frequency response of an Euler–Bernoulli beam

In this section, we consider an Euler–Bernoulli beam that is clamped at the left end and subject to a boundary actuation
uðtÞ at the other end; see Fig. E.10 for an illustration. The vertical displacement of the beam /ðy; tÞ is governed by [34],

l/ttðy; tÞ þ
aEI

‘4 /tyyyyðy; tÞ þ
EI

‘4 /yyyyðy; tÞ ¼ 0; y 2 0;1½ �; ðE:1aÞ

/ð0; tÞ ¼ /yð0; tÞ ¼ 0; ðE:1bÞ

/yyð1; tÞ ¼ 0;
aEI

‘3 /tyyyð1; tÞ þ
EI

‘3 /yyyð1; tÞ ¼ uðtÞ: ðE:1cÞ

Here, the input uðtÞ denotes the force acting on the tip of the beam, ‘ is the length of the beam, l is the mass per unit length
of the beam, EI is the flexural stiffness, and a is the Voigt damping factor.

Eq. (E.1) can be used to model the movement of a micro-cantilever in atomic force microscopy applications [35] with

‘ ¼ 240� 10�6 m; l ¼ 1:88� 10�7 kg=m;

EI ¼ 7:55� 10�12 N m2; a ¼ 5� 10�8 s:
ðE:2Þ

In contrast to the body of the paper, the forcing uðtÞ does not enter to the equation as an additive input but as a boundary
condition. We next show how easily frequency response in this case can be computed using Chebfun.

Application of the temporal Fourier transform to (E.1) yields

T ðxÞ :

EI
‘4 1þ ixað Þ/0000 ðy;xÞ � lx2 /ðy;xÞ ¼ 0;

/ð0;xÞ ¼ /0ð0;xÞ ¼ 0;
/00ð1;xÞ ¼ 0; EI

‘3 1þ ixað Þ/000ð1;xÞ ¼ uðxÞ:

8>><
>>: ðE:3Þ

Fig. E.10. An Euler–Bernoulli beam that is clamped at the left end and subject to a boundary actuation at the other end.

Fig. E.11. Frequency response of the Euler–Bernoulli beam (E.1)–(E.2) with the output determined by the vertical displacement of the beam at the right
end. (a) magnitude of the frequency response jT ðxÞj; (b) phase of the frequency response \T ðxÞ.
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At each x, the mapping from uðxÞ to /ðy;xÞ can be obtained by computing the solution to (E.3) with uðxÞ ¼ 1 using Chebfun.
The energy of the beam is determined by

EðxÞ ¼ 1
2

/00ð�;xÞ;/00ð�;xÞh i þx2 /ð�;xÞ;/ð�;xÞh i
� 	

;

and it can be simply computed with the aid of Chebun’s functions diff and cumsum. On the other hand, if the output is given by
the vertical displacement at the right end of the beam, the frequency response is simply determined by the magnitude and
phase of the complex number /ð1;xÞ; see Fig. E.11.

For parameters given by (E.2), even the use of Chebfun’s differential operators to construct

A0 ¼
EI

‘4 1þ ixað ÞDð4Þ � lx2 I;

with appropriate boundary conditions may lead to unfavorable conditioning of differentiation matrices. This can be allevi-
ated by determining and solving instead the integral form of (E.3). The procedure for achieving this closely follows the meth-
od presented in Section 4.2. The MATLAB code used for computing the frequency response with integral formulation can be
found at www.umn.edu/
mihailo/software/chebfun-svd/.
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