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Abstract: Design of optimal distributed controllers with a priori assigned
localisation constraints is a difficult problem. Alternatively, one can
ask the following question: given a localised distributed exponentially
stabilising controller, is it inversely optimal with respect to some cost
functional? We study this problem for linear spatially invariant systems
and establish a frequency domain criterion for inverse optimality (in the
LQR sense). We utilise this criterion to separate localised controllers that
are never optimal from localised controllers that are optimal. For the
latter, we provide examples to demonstrate optimality with respect to
physically appealing cost functionals. These are characterised by state
penalties that are not fully decentralised and they provide insight about
spatial extent of the LQR weights that lead to localised controllers.
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1 Introduction

Large arrays of spatially distributed dynamical systems are becoming prevalent in
modern applications. These systems can range from the macroscopic – such as
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vehicular platoons (Varaiya, 1993; Raza and Ioannou, 1996; Swaroop and Hedrick,
1999; Seiler et al., 2004; Jovanović and Bamieh, 2005; Jovanović et al., 2008),
Unmanned Aerial Vehicle (UAV) formations (Chichka and Speyer, 1998; Fowler
and D’Andrea, 2003), and satellites constellations (Kapila et al., 2000; Beard et al.,
2001; Wong et al., 2002) – to the microscopic, for example, arrays of micro-mirrors
(Neilson, 2001) or micro-cantilevers (Napoli et al., 1999). Significant potential for
research on these systems is due to the field of Micro-Electro-Mechanical Systems
(MEMS) where the fabrication of very large arrays of sensors and actuators is now
both feasible and economical. The key design issues in the control of these systems
are architectural such as the choice of localised vs. centralised control.

Design of optimal distributed controllers with pre-specified localisation
constraints is, in general, a difficult task (we refer the reader to Ayres and Paganini
(2002), Voulgaris et al. (2003), D’Andrea and Dullerud (2003), Dullerud and
D’Andrea (2004), Langbort et al. (2004), Bamieh and Voulgaris (2005), Rotkowitz
and Lall (2005), Rantzer (2006a, 2006b), Motee and Jadbabaie (2007), and Motee
et al. (2008) and references therein for recent efforts in this area). Alternatively, one
can ask a following question:

• Given a localised distributed exponentially stabilising controller, is it
inversely optimal with respect to some meaningful performance index?

We study this problem for Linear Spatially Invariant (LSI) systems (Bamieh
et al., 2002) and derive a frequency domain condition for inverse optimality.
This condition represents an extension of a well-known result for Linear Time
Invariant (LTI) systems (Kalman, 1964) to a class of systems studied in this
paper. We provide examples of localised distributed controllers that are inversely
optimal with respect to meaningful performance criteria, and examples of localised
distributed controllers that are not optimal in any sense. Our results can be used
to motivate design of both optimal and inversely optimal distributed controllers for
other classes of spatio-temporal systems (e.g., spatially varying).

Optimality of a closed-loop system is desirable because it guarantees, among
other properties, favourable gain and phase margins. These margins provide
robustness to different types of uncertainty (Anderson and Moore, 1990).
In addition to this traditional motivation for optimality, our objective is to gain
insight about spatial extent of the LQR weights that lead to distributed controllers
with favourable localisation properties. We note that a judicious selection of
weights can be also employed in design of optimal feedback controllers with degree
constraints (Takyar et al., 2008).

Our presentation is organised as follows: in Section 2, we setup the problem,
introduce necessary background material, and provide two examples of LSI systems
to illustrate that LQR design with fully decentralised performance indices yields
centralised optimal controllers. In Section 3, we establish frequency domain
criterion for inverse optimality of spatially invariant controllers. For systems with
a single input field, this criterion requires the absolute value of the corresponding
return difference to be greater than or equal to one at all spatio-temporal
frequencies. In Section 4, we provide examples of exponentially stabilising localised
distributed controllers and utilise results of Section 3 to characterise control laws
that are optimal (in the LQR sense). We show that optimality of localised distributed
controllers can be guaranteed by departing from fully decentralised performance
indices. In Section 4.3, we consider a vehicular platoon that is not spatially invariant



84 M.R. Jovanović

and demonstrate how ideas of this paper can be used to identify conditions for
inverse optimality in spatially varying distributed control problems. We end our
presentation with some concluding remarks in Section 5.

2 Preliminaries

We consider distributed systems of the form

∂tψ(t, ξ) = [Aψ(t)](ξ) + [Bu(t)](ξ). (1)

where operator A generates a strongly continuous (Co) semigroup (Curtain and
Zwart, 1995; Banks, 1983). We assume that spatial coordinate ξ := [ξ1 · · · ξd]∗

belongs to a commutative group G, and that time independent operators A and B
are invariant with respect to translations in this coordinate. These properties imply
spatial invariance of equation (1). The analysis and design problems for LSI systems
are greatly simplified by the application of the appropriate Fourier transform in
the spatially invariant directions (Bamieh et al., 2002). By taking a (spatial) Fourier
transform of equation (1), we obtain

˙̂
ψκ(t) = Âκψ̂κ(t) + B̂κûκ(t), (2)

where κ := [κ1 · · ·κd]∗ denotes the vector of frequencies corresponding to the spatial
coordinates ξ = [ξ1 · · · ξd]∗, ψ̂κ(t) := ψ̂(t, κ), ûκ(t) := û(t, κ), whereas Âκ := Â(κ)
and B̂κ := B̂(κ) denote multiplication operators (i.e., Fourier symbols of operators
A and B, respectively). We note that equation (2) represents a finite dimensional
family of systems parameterised by κ ∈ Ĝ: if ψ(t, ξ) and u(t, ξ) respectively denote
fields with n and m components then, for any κ ∈ Ĝ and t ∈ R, ψ̂κ(t) ∈ C

n, ûκ(t) ∈
C

m, which implies that Âκ and B̂κ respectively denote matrices that belong to C
n×n

and C
n×m. We refer to the systems with m = 1 as single input systems. It was

established in Bamieh et al. (2002) that the dynamical properties of system (1) can
be inferred by checking the same properties of system (2) for all κ ∈ Ĝ. Similar holds
for design problems: for example, the solution to the optimal control problems for
system (1) can be obtained by solving the analogous problems for a κ-parameterised
family of finite dimensional systems (2).

2.1 Distributed LQR

We associate a quadratic performance index

J =
1
2

∫ ∞

0
(〈ψ, Qψ〉 + 〈u, Ru〉) dt, (3)

with equation (1). If Q ≥ 0 and R > 0 are translation invariant operators, the
application of spatial Fourier transform renders equation (3) into

J =
1
2

∫ ∞

0

∫
Ĝ

(
ψ̂∗

κ(t)Q̂κψ̂κ(t) + û∗
κ(t)R̂κûκ(t)

)
dκ dt (4)
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where dκ denotes the Haar measure. Thus, distributed LQR problems (1)
and (3) amounts to solving the κ-parameterised family of finite dimensional LQR
problems (2) and (4). If pairs (A, B) and (A∗, Q1/2) are exponentially stabilisable,
then the κ-parameterised family of Algebraic Riccati Equations (AREs)

Â∗
κP̂κ + P̂κÂκ + Q̂κ − P̂κB̂κR̂−1

κ B̂∗
κP̂κ = 0, (5)

has a unique positive definite uniformly bounded solution for every κ ∈ Ĝ

(Bamieh et al., 2002). This positive definite matrix determines the optimal stabilising
feedback for system (2) for every κ ∈ Ĝ

ûκ := K̂κψ̂κ = −R̂−1
κ B̂∗

κP̂κψ̂κ, κ ∈ Ĝ. (6)

In this case, there exist an exponentially stabilising translation invariant feedback
for system (1) that minimises equation (3) (Bamieh et al., 2002). This optimal
stabilising feedback for equation (1) is readily obtained by taking an inverse Fourier
transform of equation (6).

2.2 Return difference equality

System (2) with a state-feedback control law ûκ = K̂κψ̂κ can be equivalently
represented by a feedback arrangement shown in Figure 1. The so-called return
difference of system whose block diagram is shown in Figure 1 is defined by
(Anderson and Moore, 1990; Kalman, 1964)

Ĥκ(s) := I − K̂κ(sI − Âκ)−1B̂κ =: I − K̂κĜκ(s)B̂κ. (7)

Figure 1 Block diagram of system (2) with ûκ = K̂κψ̂κ

This quantity is important because its inverse determines the sensitivity function
Ŝκ(s) := Ĥ−1

κ (s). It is readily established that Ĥκ(jω) for every ω ∈ R and κ ∈ Ĝ

satisfies (Anderson and Moore, 1990; Kalman, 1964)

R̂κ + B̂∗
κĜ∗

κ(jω)Q̂κĜκ(jω)B̂κ = Ĥ∗
κ(jω)R̂κĤκ(jω), (8)

where, for example, Ĝκ(jω) := (jωI − Âκ)−1 and Ĝ∗
κ(jω) := −(jωI + Â∗

κ)−1.
Equation (8) is usually referred to as the return difference equality and it follows
directly from the ARE. A straightforward consequence of this equality is

Ĥ∗
κ(jω)R̂κĤκ(jω) ≥ R̂κ. (9)

Equations (8) and (9) are utilised in Section 3 to express a frequency domain
condition for inverse optimality of distributed exponentially stabilising spatially
invariant controllers.
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2.3 Distributed controller architectures

Figure 2 illustrates different control strategies that can be used for control
of spatially distributed systems: centralised, localised, and fully decentralised.
Centralised controllers require information from all plant units for achieving the
desired control objective. On the other hand, in fully decentralised strategies control
unit Kn uses only information from the nth plant unit Gn on which it acts.
An example of a localised distributed control architecture with nearest neighbour
interactions is shown in Figure 2.

Figure 2 Distributed architectures for centralised, localised (with nearest neighbour
interactions), and fully decentralised control strategies

2.4 Examples of optimal distributed design

We next provide two examples of spatially invariant systems with fully distributed
measurements and controls:

• diffusion equation over an infinite domain (G := R)

• mass-spring system on an infinite line (G := Z).

We demonstrate that the LQR design with fully decentralised performance indices
yields centralised optimal controllers for these systems.

2.4.1 Diffusion equation

We consider a one-dimensional diffusion equation

ψt(t, ξ) = ψξξ(t, ξ) + cψ(t, ξ) + u(t, ξ), ξ ∈ R. (10)

The application of the standard spatial Fourier transform yields

˙̂
ψκ(t) = (c − κ2)ψ̂κ(t) + ûκ(t) =: Âκψ̂κ(t) + B̂κûκ(t), κ ∈ R,

which implies that equation (10) is not (open-loop) exponentially stable if c ≥ 0.
Choosing, for example, Q := qI and R := rI in equation (3), with (q = const. > 0,
r = const. > 0), yields the following positive definite solution to the κ-parameterised
ARE (equation (5)):

P̂κ = r(c − κ2) +
√

r2(c − κ2)2 + rq,
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which gives the optimal control of the form (6) with

K̂κ = −(
(c − κ2) +

√
(c − κ2)2 + q/r

)
.

Since K̂κ is irrational function of κ, it cannot be implemented by a PDE (in t and ξ).
Rather, the optimal control in the physical space assumes the form

u(t, ξ) =
∫

R

K(ξ − ζ)ψ(t, ζ) dζ. (11)

In Bamieh et al. (2002), it was established that K decays exponentially fast
as a function of its argument which is a desirable property for implementation.
Despite this nice feature, equation (11) represents a centralised controller.

2.4.2 Mass-spring system

A system consisting of an infinite number of identical masses and springs on a
line is shown in Figure 3. If restoring forces are considered as linear functions of
displacements, the dynamics of the mass indexed by ξ ∈ Z are given by

ẍ(t, ξ) = x(t, ξ − 1) − 2x(t, ξ) + x(t, ξ + 1) + u(t, ξ),

where x(t, ξ) represents the displacement from a reference position of the mass ξ,
and u(t, ξ) is the control applied on the mass ξ. A state-space representation of this
system is given by

ψ̇(t, ξ) =
[

0 1
T−1 − 2 + T1 0

]
ψ(t, ξ) +

[
0
1

]
u(t, ξ),

(12)
ψ(t, ξ) := [x(t, ξ) ẋ(t, ξ)]∗, ξ ∈ Z,

where T−1 and T1 respectively denote the operators of translation by −1 and 1
(in the mass’ index). We utilise the fact that system (12) has spatially invariant
dynamics over discrete spatial lattice Z and apply the appropriate Fourier transform
(spatial Z transform evaluated on a unit circle) to obtain

˙̂
ψκ(t) =

[
0 1
aκ 0

]
ψ̂κ(t) +

[
0
1

]
ûκ(t), =: Âκψ̂κ(t) + B̂κûκ(t),

(13)
aκ := 2(cos κ − 1), κ ∈ [0, 2π),

where, for example,

û(t, κ) :=
∑
ξ∈Z

u(t, ξ)e−jκξ.

Figure 3 Mass-spring system
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Selecting, for example, fully decentralised weights

Q :=
[
q1I 0
0 q2I

]
, R := rI,

with (q1 = const. > 0, q2 = const. ≥ 0, r = const. > 0), renders equation (3) into

J :=
1
2

∫ ∞

0

( ∑
ξ∈Z

q1x
2(t, ξ) + q2ẋ

2(t, ξ) + ru2(t, ξ)

)
dt,

and yields the following optimal control

ûκ(t) = K̂κψ̂κ(t) := [K̂1κ K̂2κ]ψ̂κ(t),

K̂1κ = 2(1 − cos κ) −
√

4(cos κ − 1)2 + q1/r, K̂2κ = −
√

−2K̂1κ + q2/r.

Again, since K̂κ is irrational function of κ, it cannot be implemented by a localised
distributed controller. Rather, the optimal control in the physical space is a
centralised controller of the form

u(t, ξ) =
∑
ζ∈Z

K(ξ − ζ)ψ(t, ζ), ξ ∈ Z. (14)

In Section 4, we illustrate that both spatially localised and fully decentralised
exponentially stabilising controllers for diffusion equation (10) and mass-spring
system (12) can be inversely optimal with respect to physically appealing cost
functionals. In particular, for a diffusion equation, these cost functionals incorporate
penalties on spatial derivatives of ψ (in addition to penalties on ψ), which implies
that they are no longer fully decentralised.

3 The inverse problem of optimal distributed control

In this section, we consider the inverse problem of optimal exponential stabilisation
of LSI system (1). This problem is inverse because we assume that an exponentially
stabilising state-feedback control law for equation (1) is available and search for
performance indices of the form (3) for which this control law is optimal. In other
words, operators Q and R in equation (3) are not a priori assigned; rather, they
are determined a posteriori by the exponentially stabilising state-feedback. We state
a frequency domain condition that separates distributed controllers that are never
optimal (in the LQR sense) from distributed controllers that are optimal (in the
LQR sense). This condition represents an extension of a well-known result for
finite dimensional LTI systems (Kalman, 1964) to a class of systems considered
in this paper. In particular, for single input systems, the inverse optimality of an
exponentially stabilising control law K is guaranteed if and only if the absolute value
of the return difference:

Ĥκ(jω) := I − K̂κ(jωI − Âκ)−1B̂κ =: I − K̂κĜκ(jω)B̂κ,
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is not less than one at any spatio-temporal frequency pair (κ, ω) (see Theorem 1 for
precise formulation).

Theorem 1 and Corollary 2 are readily established by recognising that the
application of the appropriate spatial Fourier transform renders LSI systems into
a κ-parameterised family of finite dimensional LTI systems. We refer the reader
to Appendix A for proof of Theorem 1 and to Anderson and Moore (1990) and
Kalman (1964) for finite dimensional LTI results.

Theorem 1: Let a triple {A, B, K} for LSI system (1) satisfy:

(a) A is a generator of a Co semigroup

(b) (A, B) is exponentially controllable

(c) K is an exponentially stabilising translation invariant state-feedback
operator.

Then, a necessary and sufficient condition for K to be an optimal control law with
respect to a performance index given by equation (3), with R > 0 and (Q1/2, A)
exponentially observable, is that the return difference equality (8) holds for all
ω ∈ R and κ ∈ Ĝ.

Remark 1: From Theorem 1 it is straightforward to see that an exponentially
stabilising translation invariant state-feedback controller K is inversely optimal if
the return difference inequality

σmin

{
R̂1/2

κ Ĥκ(jω)R̂−1/2
κ

}
≥ 1, (15)

holds for all ω ∈ R and κ ∈ Ĝ. For a single input LSI system (1), condition (15)
simplifies to

|Ĥκ(jω)| ≥ 1, ∀ω ∈ R, ∀κ ∈ Ĝ. (16)

Corollary 2: Let a quadruple {A, B, K, R} for LSI system (1) satisfy:

(a) A is a generator of a Co semigroup

(b) (A, B) is exponentially stabilisable

(c) K is an exponentially stabilising translation invariant state-feedback
operator

(d) R > 0

(e) return difference inequality (15) holds for all ω ∈ R and κ ∈ Ĝ.

Then, there exist a translation invariant operator Q = DD∗ with (A∗, D)
exponentially stabilisable such that the optimal state-feedback operator K̄
associated with the LQR problem (1), (3) satisfies K̄G(jω)B = KG(jω)B.
If a pair (A, B) is exponentially controllable, then K = K̄.
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If Corollary 2 is satisfied, then a translation invariant operator D (Q = DD∗)
can be determined from return difference equality (8) using polynomial matrix
fraction description of Ĥκ(jω). This operator can always be selected to guarantee
exponential stabilisability of pair (A∗, D) (we refer the reader to Anderson and
Moore (1990) and Kalman (1964) for finite dimensional LTI version). In general,
for a given R there are many different D’s that satisfy (8) and yield K as a solution
to the corresponding LQR problem. For single input systems, D̂κ can be determined
from Anderson and Moore (1990) and Kalman (1964)

‖D̂∗
κĜκ(jω)B̂κ‖2 = R̂κ(|Ĥκ(jω)|2 − 1). (17)

4 Examples of inversely optimal distributed design

In this section, we investigate inverse optimality of localised distributed
exponentially stabilising controllers for diffusion equation (10) and mass-spring
system (12). We utilise results of Section 3 to distinguish between controllers that
are never optimal and controllers that are optimal. In the latter case, we show that
inverse optimality is guaranteed with respect to physically appealing performance
criteria. For a diffusion equation, we demonstrate that localised distributed and
even fully decentralised optimal controllers can be obtained by incorporating spatial
derivatives of ψ (in addition to ψ) in the performance index. Similarly, for a
mass-spring system, we establish that spatially localised cost functionals can produce
controllers with favourable architectures. These observations should be compared
to the results of Section 2.4, where it was shown that LQR design with fully
decentralised performance criteria results into centralised optimal controllers for
both these systems. Finally, in Section 4.3, we consider a vehicular platoon that
is not spatially invariant and demonstrate how ideas of this paper can be used to
identify conditions for inverse optimality in spatially varying distributed control
problems.

4.1 Diffusion equation

It is readily established that the following spatially invariant localised distributed
controller

u(t, ξ) = −(βψξξ(t, ξ) + (c + α)ψ(t, ξ)),
� (18)

ûκ(t) = K̂κψ̂κ(t) = −(c + α − βκ2)ψ̂κ(t),

provides exponential stability of equation (10) so long as κ-independent real design
parameters α and β respectively satisfy α > 0 and β ∈ (−∞, 1]. Based on Theorem 1,
it follows that controller (18) is inversely optimal if and only if

(α − c + (2 − β)κ2)(α + c − βκ2) ≥ 0,

holds for all κ ∈ R. This condition is satisfied for all κ ∈ R if and only if α ≥ c
and β ≤ 0. Thus, if either α < c or β ∈ (0, 1] then controller given by equation (18)
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is never optimal in the LQR sense. In other words, for this choice of design
parameters α and β it is not possible to select a pair (Q ≥ 0, R > 0) for which
equation (18) is obtained as a solution to the corresponding LQR problem (1), (3).
This implies that this exponentially stabilising control law does not have any stability
margins: with a slightly perturbed feedback closed-loop system becomes unstable.
On the other hand, for α ≥ c and β ≤ 0 there always exist (Q ≥ 0, R > 0) in
equation (3) with respect to which controller given by equation (18) is inversely
optimal. Choosing, for example, R := rI in equation (3), with r = const. > 0, yields
the following state penalty:

Q̂κ = r((α2 − c2) + 2(c + α(1 − β))κ2 + β(β − 2)κ4),
�

Q = r((α2 − c2)I − 2(c + α(1 − β))∂ξξ + β(β − 2)∂ξξξξ).

Since for any κ ∈ R, κ-parameterised diffusion equation represents a scalar system,
this state penalty is obtained as a unique solution to equation (17) for any r > 0.

Thus, we have established optimality of spatially invariant localised distributed
controller given by equation (18) with respect to the following performance index

J =
r

2

∫ ∞

0
((α2 − c2) 〈ψ, ψ〉 + 2(c + α(1 − β)) 〈ψξ, ψξ〉

+ β(β − 2) 〈ψξξ, ψξξ〉 + 〈u, u〉)dt, r > 0, α ≥ c, β ≤ 0. (19)

In particular, for β = 0 controller given by equation (18) is fully decentralised and
equation (19) simplifies to

J =
r

2

∫ ∞

0
((α2 − c2) 〈ψ, ψ〉 + 2(α + c) 〈ψξ, ψξ〉 + 〈u, u〉)dt, r > 0, α ≥ c. (20)

To recap:

• a fully decentralised controller, u(t, ξ) = −(c + α)ψ(t, ξ), with α ≥ c
represents exponentially stabilising solution to the LQR problem (10), (20)

• a localised distributed controller, u(t, ξ) = −(βψξξ(t, ξ) + (c + α)ψ(t, ξ)),
with α ≥ c, β < 0 represents exponentially stabilising solution to the LQR
problem (10), (19).

Remark 2: Our analysis indicates that a choice of the state-space on which optimal
control problems are formulated can significantly influence localisation properties
of resulting distributed optimal controllers. Example of Section 2.4.1 illustrates
that the spatially invariant LQR problem (for a diffusion equation) formulated on
the space of square integrable functions L2(−∞, ∞) yields centralised controllers.
On the other hand, the LQR design performed on the Sobolev spaces H1(−∞, ∞) or
H2(−∞, ∞) can result into localised distributed and fully decentralised controllers
provided that the penalties on 〈ψ, ψ〉, 〈ψξ, ψξ〉, and 〈ψξξ, ψξξ〉 are appropriately
selected.
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4.2 Mass-spring system

It is easily shown that the exponential stability of equation (12) is guaranteed with
the spatially invariant localised distributed controller of the form

u(t, ξ) = − [ α + β(T−1 − 2 + T1) γ ] ψ(t, ξ)
= −(α − 2β)x(t, ξ) − γẋ(t, ξ) − β(x(t, ξ − 1) + x(t, ξ + 1)), ξ ∈ Z,

(21)
�

ûκ(t) = K̂κψ̂κ(t) = − [ α + βaκ γ ] ψ̂κ(t), κ ∈ [0, 2π),

so long as κ-independent real design parameters α, β, and γ satisfy

γ > 0 and

{
α > 0, β ∈ (−∞, 1],

α > 4(β − 1), β > 1.

Based on Theorem 1, it follows that controller (21) is inversely optimal if and only if

(γ2 − 2(α + βaκ))ω2 + (α + βaκ)(α + (β − 2)aκ) ≥ 0,

holds for all ω ∈ R, κ ∈ [0, 2π). This criterion for inverse optimality is satisfied
for all ω ∈ R, κ ∈ [0, 2π) if and only if either {α > 0, β ≤ 0, γ ≥ √

2(α − 4β)} or
{α ≥ 4β, β > 0, γ ≥ √

2α}. Hence, controller (21) is never optimal in the LQR sense
if parameters α, β, and γ fail to satisfy either of these two conditions. On the
other hand, if α, β, and γ satisfy either of these two conditions than there always
exist (Q ≥ 0, R > 0) in equation (3) with respect to which controller (21) is optimal.
Selecting, for example,

R := rI

r = const. > 0

}
, Q :=

[Q11 0
0 Q22

]
, (22)

in equation (3) yields the following state penalty:

Q̂11κ = r(α2 + 2α(β − 1)aκ + β(β − 2)a2
κ), Q̂22κ = r(γ2 − 2(α + βaκ)),

�
Q11 = r(α2 + 2α(β − 1)(T−1 − 2 + T1) + β(β − 2)(T−2 − 4T−1 + 6 − 4T1 + T2)),

Q22 = r(γ2 − 2(α + β(T−1 − 2 + T1))).

Thus, we have established optimality of spatially invariant localised distributed
controller (21) with respect to the following performance index

J =
1
2

∫ ∞

0

∑
n∈Z

∑
m∈Z

(ψ∗(t, n)Qn−mψm(t, m) + u∗(t, n)Rn−mu(t, m))dt, (23)
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where

{R0 = r = const. > 0; Rn = 0, ∀n ∈ Z \ {0}}, {Qn = 0, ∀n ∈ Z \ {0, ±1, ±2}},

Q0 = r

[
α2 − 4α(β − 1) + 6β(β − 2) 0

0 γ2 − 2(α − 2β)

]
, (24)

Q±1 = r

[
2α(β − 1) − 4β(β − 2) 0

0 −2β

]
, Q±2 = r

[
β(β − 2) 0

0 0

]
.

In particular, for β = 0 controller (21) is fully decentralised and equation (24)
simplifies to

{R0 = r = const. > 0; Rn = 0, ∀n ∈ Z \ {0}}, {Qn = 0, ∀n ∈ Z \ {0, ±1}},
(25)

Q0 = r

[
α2 + 4α 0

0 γ2 − 2α

]
, Q±1 = r

[−2α 0
0 0

]
.

To recap:

• a fully decentralised controller, u(t, ξ) = −(αx(t, ξ) + γẋ(t, ξ)), with {α > 0,
γ >

√
2α} represents exponentially stabilising solution to the LQR

problem (12), (23), (25)

• a nearest neighbour interaction controller, u(t, ξ) = −(α − 2β)x(t, ξ)
− γẋ(t, ξ) − β(x(t, ξ − 1) + x(t, ξ + 1)), with either {α > 0, β < 0,
γ ≥ √

2(α − 4β)} or {α ≥ 4β, β > 0, γ ≥ √
2α} represents exponentially

stabilising solution to the LQR problem (12), (23), (24).

Remark 3: The above penalties on {x(t, ξ)}ξ∈Z and {ẋ(t, ξ)}ξ∈Z represent unique
solutions to equation (17) provided that equation (22) is satisfied (that is, Q12 ≡ 0).
However, for given R := rI > 0, there are many other operators Q = Q∗ ≥ 0 with
non-zero off-diagonal elements (that is, Q12 �= 0) that satisfy equation (17) and give
controller (21) as a solution to the corresponding LQR problem.

Remark 4: Example of Section 2.4.2 illustrates that the spatially invariant LQR
design (for a mass-spring system) with fully decentralised performance indices yields
centralised controllers. On the other hand, spatially localised performance indices
(with penalties on positions and velocities of several neighbouring masses) can
yield localised distributed and fully decentralised controllers, provided that these
penalties are appropriately assigned. However, it is very difficult to choose these
cost functionals a priori. Rather, they have been determined a posteriori by the
exponentially stabilising control law using the return difference equality.

4.3 An example of a spatially varying problem

We next present an example of a problem that is not spatially invariant where
approach of this paper can be utilised to identify conditions for inverse optimality
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(for additional detail, see Jovanović et al. (2008)). We consider a system of M
identical vehicles, shown in Figure 4. Each vehicle is modelled as a double-integrator

ẍn = un, n ∈ {1, . . . , M}, (26)

where xn represents the position of the nth vehicle, and un is the control applied on
the nth vehicle.

Figure 4 Platoon of M vehicles

A design goal is to provide a desired constant cruising velocity vd and to keep
the inter-vehicular distance at a constant level δ. For each vehicle, we introduce
the position and velocity error variables with respect to the (absolute) desired
trajectories

ξn(t) := xn(t) − vdt + nδ, ζn(t) := ẋn(t) − vd,

and rewrite equation (26) as

[
ξ̇

ζ̇

]
=

[
0 I

0 0

] [
ξ

ζ

]
+

[
0
I

]
u =: Aψ + Bu, (27)

where ξ := col{ξn}, ζ := col{ζn}, and u := col{un}. The relative position errors
between neighbouring vehicles are determined by

ηn(t) := xn(t) − xn−1(t) + δ = ξn(t) − ξn−1(t), n ∈ {2, . . . , M}.

We propose the following static distributed controller

u = Kψ = −[aI + bL cI]ψ, (28)

where a, b, and c denote positive design parameters, and L ∈ R
M×M is a matrix

describing information exchange between different vehicles. If L is a diagonal
matrix then there is no information exchange between the vehicles and control
strategy (28) is fully decentralised. This approach ignores the fact that a vehicle
is a part of the platoon and as such is not safe for implementation. If L is a full
matrix then there is communication between all the vehicles and controller (28) is
centralised. In this case, every vehicle utilises information from all other vehicles
for achieving the desired control objective which usually results in best performance,
but it requires excessive communication. If L is a banded matrix then there is a



On the optimality of localised distributed controllers 95

communication between few neighbouring vehicles, and equation (28) represents a
localised distributed controller. For example, if L is given by

L :=



1 −1 0 0 0 0
−1 2 −1 0 0 0

0 −1 2 0 0 0
. . .

0 0 0 2 −1 0
0 0 0 −1 2 −1
0 0 0 0 −1 1


, (29)

then the controller for vehicle n utilises information about absolute position and
velocity of vehicle n, and information about the distances between vehicle n and
neighbouring vehicles n − 1 and n + 1. The architecture of this localised controller
with nearest neighbour interactions is shown in the middle plot of Figure 2.

A spectral decomposition of L

L = V ΛV ∗, V V ∗ = V ∗V = I, Λ = diag{λ1(L), . . . , λM (L)},

can be used to establish stability of equations (27)–(29) for any choice of positive
design parameters a, b, and c. This follows directly from the fact that the eigenvalues
of L are determined by (see, for example, Grenander and Szegö (1984)):

λn(L) =

2
(
1 − cos

nπ

M

)
n ∈ {1, . . . , M − 1},

0 n = M.

Next, we address the question of whether it is possible to select the weights in the
LQR problem

J =
1
2

∫ ∞

0
(ξ∗Qξξ + ζ∗Qζζ + u∗Ru)dt, (30)

with Qξ = Q∗
ξ ≥ 0, Qζ = Q∗

ζ ≥ 0, and R = R∗ > 0, to obtain a localised distributed
controller for equation (27). Any quadratic cost functional for system (27) that
does not penalise products between positions and velocities, can be represented
by equation (30). By selecting R = rI in equation (30) with r > 0, a spectral
decomposition of L can be used to show that controller (28) and (29) represents an
inversely optimal controller for the LQR problem (27), (30) if and only if

c2 ≥ 2(a + bλ1(L)).

If this condition is not satisfied than controller given by equations (28) and (29) fails
to be optimal in the LQR sense. If this condition is satisfied, the state penalty

Q :=
[
Qξ 0
0 Qζ ,

]
,
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can be determined from return difference equality, and it is given by Qξ = r
(aI + bL)2, Qζ = r((c2 − 2a)I − 2bL). These penalties on ξ and ζ represent unique
solutions to return difference equality provided that the products between positions
and velocities are not penalised in J . However, for given R := rI > 0, there are
many other matrices

Q =
[

Qξ Qξζ

Q∗
ξζ Qζ

]
≥ 0,

with non-zero off-diagonal elements (that is, Qξζ �= 0) that satisfy return difference
equality and give controller (28), (29) as a solution to the corresponding LQR
problem.

To recap:

• A localised distributed controller, u = −((aI + bL)ξ + cζ), {a > 0, b > 0,
c ≥ √

2(a + bλ1(L))}, represents a stabilising solution to the LQR
problem (27), (30) with L given by equation (29) and {Qξ = r(aI + bL)2,
Qζ = r((c2 − 2a)I − 2bL), r > 0}.

5 Concluding remarks

This paper deals with the inverse problem of optimal distributed stabilisation of
LSI systems. We establish a frequency domain criterion that separates controllers
that are never optimal (in the LQR sense) from controllers that are optimal (in the
LQR sense). This criterion is expressed in terms of return difference and, for systems
with a single input field, the return difference is required to be at least equal
to one at all spatial and temporal frequencies. We provide examples of localised
distributed controllers that are inversely optimal with respect to physically appealing
performance indices. A distinctive feature of these indices is the absence of fully
decentralised state penalties that always seem to yield centralised optimal controllers.
Our results indicate that a judicious selection of spatial weights in distributed
optimal control problems can lead to controllers with favourable architectural
properties.
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Appendix

A. Proof of Theorem 1

Necessity: Suppose there exists an exponentially stabilising control law K for
system (1) that is optimal with respect to a performance index (3). Then, for
each κ ∈ Ĝ, there is a unique positive definite P̂κ satisfying equation (5) which yields
stabilising feedback gain for LQR problem (2), (4), K̂κ = −R̂−1

κ B̂∗
κP̂κ. Adding and

subtracting jωP̂κ to the ARE (5) results into

P̂κ(jωI − Âκ) + (−jωI − Â∗
κ)P̂κ = Q̂κ − P̂κB̂κR̂−1

κ B̂∗
κP̂κ.

If we multiply the left-hand-size and the right-hand-side of the last equation by
B̂∗

κĜ∗
κ(jω) and Ĝκ(jω)B̂κ, respectively, we obtain

B̂∗
κĜ∗

κ(jω)P̂κB̂κ + B̂∗
κP̂κĜκ(jω)B̂κ = B̂∗

κĜ∗
κ(jω)(Q̂κ − P̂κB̂κR̂−1

κ B̂∗
κP̂κ)Ĝκ(jω)B̂κ.

From this expression, and definitions of optimal feedback gain K̂κ and matrix
Ĥκ(jω) (see equation (7)) it is easy to obtain return difference equality (8).

Sufficiency: Let K be a given exponentially stabilising control law and let return
difference equality (8) hold. If (A, B) is exponentially controllable and (Q1/2, A)
is exponentially observable then there is a unique positive definite solution P
to corresponding ARE yielding an optimal control law K = −R−1B∗P . Using
equation (8), we will show that K = K, which will establish sufficiency of return
difference equality for optimality.
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If we substitute expression for B̂∗
κĜ∗

κ(jω)Q̂κĜκ(jω)B̂κ from equation (8) to

B̂∗
κĜ∗

κ(jω)P̂κB̂κ + B̂∗
κP̂κĜκ(jω)B̂κ

= B̂∗
κĜ∗

κ(jω)(Q̂κ − P̂κB̂κR̂−1
κ B̂∗

κP̂κ)Ĝκ(jω)B̂κ, (31)

we obtain

Ĥ∗
κR̂κĤκ = Ĥ

∗
κR̂κĤκ,

where Ĥκ := I − K̂κĜκ(jω)B̂κ. We note that equation (31) represents a direct

consequence of corresponding ARE leading to optimal controller K̂κ. Now, using a

polynomial matrix fraction description of Ĥκ and Ĥκ, after some manipulations the
last equation can be transformed to (Anderson and Moore, 1990)

R̂κ(I + (K̂κ − K̂κ)(jωI − Âκ − B̂κK̂κ)−1B̂κ)

= (I − B̂∗
κ(−jωI − Â∗

κ − K̂∗
κB̂∗

κ)−1(K̂
∗
κ − K̂∗

κ))R̂κ.

At each κ, the left-hand-side in the last equation is a transfer function matrix with
the poles in the open left-half of the complex plane, and the right-hand-side is a
transfer function matrix with the poles in the open right-half of the complex plane.
Thus, both the left and the right-hand sides are constant and this constant can be
obtained by setting ω = ∞, which results into:

R̂κ + (K̂κ − K̂κ)(jωI − Âκ − B̂κK̂κ)−1B̂κ = R̂κ.

Owing to exponential controllability of (Âκ, B̂κ) we conclude K̂κ = K̂κ.


