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Abstract

Even since pioneering work of Levine and Athans and Melzer and Kuo, control of vehicular
formations has been a topic of active research. In spite of its apparent simplicity, this problem
poses significant engineering challenges, and it has often inspired theoretical developments. In this
article, we view vehicular formations as a particular instance of dynamical systems over networks
and summarize fundamental performance limitations arising from the use of local feedback in
formations subject to stochastic disturbances. In topology of regular lattices, it is impossible to
have coherent large formations, which behave like rigid lattices, in one and two spatial dimensions;
yet this is achievable in 3D. This is a consequence of the fact that, in 1D and 2D, local feedback
laws with relative position measurements are ineffective in guarding against disturbances with slow
temporal variations and large spatial wavelength.
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Introduction

Control of vehicular strings has been an active area of research for almost five decades (Levine and
Athans 1966; Melzer and Kuo 1971a, b; Varaiya 1993; Swaroop and Hedrick 1996, 1999; Seiler
et al. 2004; Middleton and Braslavsky 2010; Lin et al. 2012). This problem represents a special
instance of more general vehicular formation problems which are encountered in the control of
unmanned aerial vehicles, satellite formations, and groups of autonomous robots (Bullo et al. 2009;
Mesbahi and Egerstedt 2010). Even for the simplest control objective, in which it is desired to
maintain a constant cruising velocity and a constant distance between the neighboring vehicles,
it has been long recognized that limited information exchange between the vehicles imposes
fundamental performance limitations for control design. In particular, look-ahead strategies that
rely only on relative spacing information with respect to the preceding vehicle suffer from
string instability. This phenomenon is characterized by unfavorable amplification of disturbances
downstream the vehicular string (Swaroop and Hedrick 1996, 1999; Seiler et al. 2004; Middleton
and Braslavsky 2010). In order to avoid this unfavorable spatial application, it is typically required
to broadcast the state of the leader to the rest of the formation.

While a precise characterization of fundamental performance limitations in the control of
vehicular formations is still an open question, in this article we review recent progress in this
area. We begin by highlighting performance limits that arise even in optimally controlled vehicular
strings. The LQR problem for vehicular strings was originally formulated in pioneering papers by
Levine and Athans (1966) and Melzer and Kuo (1971a, b). These formulations were revisited in
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Jovanović and Bamieh (2005) where it was shown that the time constant of the optimally controlled
closed-loop system increases linearly with the number of vehicles. This reference also employed
spatially invariant theory (Bamieh et al. 2002) to demonstrate the lack of exponential stability in the
limit of an infinite number of vehicles and to explain the arbitrarily slowing rate of convergence
observed in numerical studies of finite strings of increasing sizes. We then summarize a recent
result that viewed vehicular strings as the 1D version of vehicular formations on regular lattices
in arbitrary spatial dimensions and established fundamental performance limitations of spatially
invariant localized feedback strategies with relative position measurements (Bamieh et al. 2012). It
was shown that it is impossible to achieve robustness to stochastic disturbances with only localized
feedback in 1D and 2D; yet this can be achieved in 3D. This is a consequence of the fact that, in 1D
and 2D, local feedback laws are ineffective in guarding against disturbances with slow temporal
variations and large spatial wavelength. An “accordion” type of motion experienced by these
spatiotemporal modes compromises formation throughput, and it may occur even in formations
that are string stable. Since the phenomenon that we describe also occurs in distributed averaging
algorithms, global mean first passage time of random walks, effective resistance in electrical
networks, and statistical mechanics of harmonic solids, it is relevant for a broad class of networked
dynamical systems.

Optimal Control of Vehicular Strings

We next summarize a linear quadratic regulator problem for vehicular strings (Levine and Athans
1966; Melzer and Kuo 1971a, b) and demonstrate that strategies that penalize only relative
position errors between neighboring vehicles yield nonuniform rates of convergence towards the
desired formation (Jovanović and Bamieh 2005). In particular, the time constant of the optimally
controlled closed-loop system increases linearly with the number of vehicles, and the formation
loses exponential stability in the limit of infinite vehicular strings.

Optimal Control of Finite Strings
A string consisting of M identical unit mass vehicles is shown in Fig. 1a. Each vehicle is modeled
as a point mass that obeys the double-integrator dynamics:

Rxn D un; n 2 f1; : : : ;M g (1)

where xn is the position of the nth vehicle and un is the control applied on the nth vehicle. A control
objective is to provide the desired constant cruising velocity Nv and to keep the constant distance ı
between the neighboring vehicles. By introducing the absolute position and velocity error variables

pn.t/ WD xn.t/ � Nvt C nı

vn.t/ WD Pxn.t/ � Nv; n 2 f1; : : : ;M g

system (1) can be brought into the state-space form (Melzer and Kuo 1971a, b):
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Fig. 1 Finite and infinite strings of vehicles

Fig. 2 Finite string with fictitious lead and follow vehicles
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where p WD Œp1 � � �pM �T , v WD Œv1 � � � vM �T , and u WD Œu1 � � � uM�T .
Following Melzer and Kuo (1971a, b), fictitious lead and follow vehicles, respectively, indexed

by 0 and M C 1, are added to the formation; see Fig. 2. These two vehicles are constrained to
move at the desired velocity Nv, and the relative distance between them is assumed to be equal
to .M C 1/ı for all times. A quadratic performance index that penalizes control effort, relative
position, and absolute velocity error variables is associated with system (2):
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The control problem (2) and (3) is in the standard LQR form with the state and control weights:

Q WD
�
Qp 0
0 qvI

�
; Qp WD qpTM ; R WD rI:

Here, TM is anM �M symmetric Toeplitz matrix with the first row given by [ 2 �1 0 � � � 0 ] 2 RM .
We next briefly summarize the explicit solution to the LQR problem (2) and (3) and refer

the reader to Jovanović and Bamieh (2005) for additional details. By performing a spectral
decomposition of the Toeplitz matrix TM ,

TM D U�TU
�; UU � D U �U D I

�T D diagf�1.TM /; : : : ; �M.TM /g
�n.TM/ D 2

�
1 � cos n�

MC1

�
; n 2 f1; : : : ;M g

(4)

the solution to the LQR algebraic Riccati equation can be represented as
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Here,
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and the eigenvalues of the closed-loop A-matrix are determined by the solutions to the following
system of the uncoupled quadratic equations:

s2
n C bnsn C cn D 0; n 2 f1; : : : ;M g

cn WD �
�n.TM /qp

ı
r
�1=2

bn WD .2cn C qv=r/
1=2 :

(5)

From the above expression, it can be shown that in large-scale formations, the least-stable
eigenvalue of the closed-loop system approaches the imaginary axis at the rate that is inversely
proportional to the number of vehicles. As can be seen from the PBH detectability test, this
is because the pair (Q, A) gets closer to losing its detectability as the number of vehicles
increases. This clearly indicates that the resulting optimal control strategy leads to closed-loop
systems with arbitrarily slow decay rates as the number of vehicles increases. As summarized in
section “Optimal Control of Infinite Strings,” the absence of a uniform rate of convergence for
a finite number of vehicles manifests itself as the absence of exponential stability in the limit of
infinite vehicular strings.

Optimal Control of Infinite Strings
The LQR problem for a system of identical unit mass vehicles in an infinite string (see Fig. 1b) was
originally studied in Melzer and Kuo (1971a). As summarized below, using the theory for spatially
invariant linear systems (Bamieh et al. 2002), it was shown in Jovanović and Bamieh (2005) that
the resulting LQR controller does not provide exponential stability of the closed-loop system due
to the lack of detectability of the pair (Q, A).

The infinite dimensional equivalent of (2) is given by

� Ppn
Pvn
�

D
�

0 I
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� �
pn
vn

�
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un DW An n C Bnun; n 2 Z (6)
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Z 1

0
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�
qp.pn.t/ � pn�1.t//

2 C qvv
2
n.t/C r u2

n.t/
�
dt (7)

with qp, qv, and r being positive design parameters. Spatial invariance over a discrete spatial lattice
Z can be used to establish that the solution to the LQR problem does not provide an exponentially
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Fig. 3 The spectra of the closed-loop generators in LQR-controlled finite (symbols) and infinite (solid line) strings of
vehicles withM = 50 and qp D qv D r = 1. The closed-loop eigenvalues of the finite string are points in the spectrum
of the closed-loop infinite string. As the number of vehicles increases, the number of eigenvalues that accumulate in
the vicinity of the stability boundary gets larger and larger

stabilizing feedback for system (6). In particular, the spectrum of the closed-loop generator in an
LQR-controlled spatially invariant string of vehicles (6) with performance index (7) is given by
the solutions to the following � -parameterized quadratic equation:

s2
� C b�s� C c� D 0;

c� WD �
2.qp

ı
r/.1 � cos �/

�1=2

b� WD .2c� C qv=r/
1=2

(8)

where � 2 Œ0; 2�/ denotes the spatial wave number. By comparing (4), (5) and (8), we see that the
closed-loop eigenvalues of the finite string are points in the spectrum of the closed-loop infinite
string. Furthermore, from these equations it follows that as the size of the finite string increases,
this set of points becomes dense in the spectrum of the infinite string closed-loop A-operator. The
spectrum of the closed-loop generator, shown in Fig. 3 for qp D qv D r D 1, illustrates the
absence of exponential stability.

Coherence in Large-Scale Formations

Fundamental performance limitations arising from the use of local feedback in networks subject
to stochastic disturbances were recently examined in Bamieh et al. (2012). For consensus and
vehicular formation control problems in topology of regular lattices, it was shown that it is
impossible to guarantee robustness to stochastic exogenous disturbances in one and two spatial
dimensions. Yet it was proved that this is achievable in 3D. This phenomenon is a consequence of
the fact that, in 1D and 2D, local feedback laws are ineffective in guarding against disturbances
with large spatial wavelength, and it has also been observed in global mean first passage time of
random walks, effective resistance in electrical networks, and statistical mechanics of harmonic
solids. We next briefly summarize the implications of these results for the control of vehicular
formations and refer the reader to Bamieh et al. (2012) for details.
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Stochastically Forced Vehicular Formations with Local Feedback
Let us consider M WD Nd identical vehicles arranged in a d -dimensional torus, ZdN , with the
double integrator dynamics:

Rxn D un C wn (9)

where n WD .n1; : : :; nd/ is a multi-index with each ni 2 ZN WD f0; : : :; N � 1g, u is the control
input, and w is a mutually uncorrelated white stochastic forcing. Each position vector xn is a d -
dimensional vector with components xn WD �

x1
n � � � xdn

	T
. The control objective is to have the nth

vehicle follow the absolute desired trajectory Nxn:

Nxn WD Nvt C nı ,

2
64
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n
:::
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3
75 WD

2
64
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:::

Nvd

3
75 t C

2
64
n1
:::

nd

3
75 ı:

In other words, it is desired that all vehicles move with constant heading velocity Nv while
maintaining their respective position in a ZdN grid with spacing of ı in each dimension.

By introducing the position and velocity deviations from the desired trajectory,

pn WD xn � Nxn; vn WD Pxn � Nv

and by confining our attention to static-feedback policies,

u.t/ D �ŒKp Kv �

�
p.t/

v.t/

�
(10)

equations of motion for the controlled system (9) can be brought into the state-space form

� Pp
Pv
�

D
�

0 I

�Kp �Kv

� �
p

v

�
C
�

0
I

�
w DW A C Bw

z D C :

(11)

Here, p and v are the position and velocity vectors of all vehicles, z is the performance output, and
w is the forcing vector.

An Example

In one-dimensional formations with nearest neighbor relative position and velocity measurements,
the control acting on the nth vehicle is given by

un.t/ D �k�
p .pn.t/ � pn�1.t// � kC

p .pn.t/ � pnC1.t//

�k�
v .vn.t/ � vn�1.t// � kC

v .vn.t/ � vnC1.t//
(12)

where kṗ and kv̇ are positive design parameters. For a system that evolves over a 1D lattice,
the feedback gain matrices Kp and Kv are tridiagonal Toeplitz matrices implying that the

Page 6 of 10



Encyclopedia of Systems and Control
DOI 10.1007/978-1-4471-5102-9_221-1
© Springer-Verlag London 2014

Fig. 4 Finite string of vehicles with a nearest neighbor relative position and velocity feedback

closed-loop systems have been effectively converted into a mass-spring-damper system shown
in Fig. 4. Figure 5 shows the results of a stochastic simulation for the closed-loop system (11) and
(12) with 100 vehicles with desired inter-vehicular spacing ı D 20 and kṗ D kv̇ D 1. These plots
indicate the lack of formation coherence. This is only discernible when one “zooms out” to view
the entire formation. The length of the formation fluctuates stochastically, but with a distinct slow
temporal and long spatial wavelength signature. In contrast, the zoomed-in view in Fig. 5 shows a
relatively well-regulated vehicle-to-vehicle spacing. In general, small-scale (both temporally and
spatially) disturbances are well regulated, while large-scale disturbances are not. This indicates
that a local feedback strategy (12) cannot regulate against large-scale disturbances.

Structural Assumptions
We now list the assumptions on the operators Kp , Kv, and C in (11) under which asymptotic
scaling trends summarized in section “Scaling of Variance per Vehicle with System Size” are
obtained.

(A1) Spatial invariance. Operators Kp, Kv, and C in (11) are spatially invariant with respect to
ZdN .

(A2) Spatial localization. The feedback (10) uses only local information from a neighborhood of
width 2q, where q is independent of N .

(A3) Reflection symmetry. The interactions between vehicles exhibit mirror symmetry.
(A4) Coordinate decoupling. For d � 2, control in each coordinate direction depends only on

measurements of position and velocity error vector components in that coordinate.

While assumptions (A3) and (A4) were made to simplify calculations, assumptions (A1) and
(A2) were essential for the developments in Bamieh et al. (2012).

Performance Measures
We next examine the dependence of the steady-state variance of stochastically forced system (11)
on the number of vehicles. In the presence of relative position or velocity measurements, the matrix
A in (11) is not necessarily Hurwitz, and the state  may not have finite steady-state variance.
However, for connected networks, the performance output z that does not penalize the motion of
the mean will have finite steady-state variance; this is because the modes of A at the origin will be
unobservable from z. The steady-state variance of z,

V WD
X
n2ZdN

lim
t!1 E �zTn .t/zn.t/� (13)
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Fig. 5 Position trajectories of a stochastically forced formation with 100 vehicles controlled with nearest neighbor
strategy (12). Left plot demonstrates accordion-like motion of the entire formation; right plot shows that vehicle-to-
vehicle distances are relatively well regulated

is quantified by the square of theH2 norm of the system (11) from w to z, and it can be determined
from the solution of the algebraic Lyapunov equation.

We next summarize two different performance measures for stochastically forced vehicular
formations.

(P1) Local error. This is a measure of the difference of neighboring vehicles positions from the
desired spacing. In 1D, the performance output of the nth vehicle is given by

zn WD pn � pn�1:

In d -dimensions, the performance output vector contains as its components the local error in
each respective dimension. Since this output involves quantities local to any vehicle within a
formation, the corresponding steady-state variance is referred to as a microscopic performance
measure, Vmicro.

(P2) Deviation from average. This is a measure of the deviation of each vehicle’s position error
from the average of the overall position error.

zn WD pn � 1

M

X
j2ZdN

pj : (14)

Since this output determines deviation from average, and thereby quantities that are far apart in
the network, the corresponding steady-state variance is referred to as a macroscopic performance
measure, Vmacro.

Scaling of Variance per Vehicle with System Size
We next summarize asymptotic bounds for both microscopic and macroscopic performance
measures derived in Bamieh et al. (2012). The upper bounds result from simple feedback laws
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Table 1 Asymptotic scalings of microscopic and macroscopic performance measures in terms of the total number of
vehicles M D Nd , the spatial dimensions d , and the control effort per vehicle Umax. Quantities listed are up to a
multiplicative factor that is independent of M or Umax:

Feedback type Vmicro/M Vmacro/M
Absolute position
Absolute velocity

1
Umax

1
Umax

Relative position
Absolute velocity

1
Umax

1
Umax

8<
:

M d D 1
log.M/ d D 2

1 d � 3

Relative position
Relative velocity

1
U 2

max

8<
:

M d D 1
log.M/ d D 2

1 d � 3

1
U 2

max

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

M 3 d D 1
M d D 2

M 1=3 d D 3
log.M/ d D 4

1 d � 5

similar to the one given in (12). In the situations where either absolute position or velocity
measurement are available, additional terms proportional to pn and vn will appear in (12). The
lower bounds have been obtained for any linear static feedback control policy satisfying the
structural assumptions (A1)–(A4) and the following constraint on control variance at each vehicle:

E �uTn un
� � Umax: (15)

Under this constraint, the equivalence between scaling trends of lower and upper bounds can be
established. As illustrated in Table 1, the dependence of the asymptotic bounds on the number of
vehicles is strongly influenced by the underlying spatial dimension d .

Since the macroscopic performance measure captures how well the formation regulates against
large-scale disturbances, the scaling results presented in Table 1 demonstrate that local feedback
with relative position measurements is unable to regulate against these large-scale disturbances
in 1D. To the contrary, in higher spatial dimensions, local feedback can regulate against large-
scale disturbances and provide formation coherence. As shown in Table 1, the “critical dimension”
needed to achieve network coherence depends on the type of feedback strategy: dimension 3 for
relative position and absolute velocity feedback and dimension 5 for relative position and velocity
feedback.

Summary and Future Directions

For stochastically forced vehicular formations in topology of regular lattices, we have summarized
fundamental performance limitations resulting from the use of local feedback. Even for formations
that are string stable, local feedback is not capable of guarding against slowly varying disturbances
with long spatial wavelength in 1D and 2D. The observed phenomenon also arises in distributed
averaging and estimation algorithms, global mean first passage time of random walks, effective
resistance in electrical networks, and statistical mechanics of harmonic solids. Since performance
measures that we used to quantify robustness to disturbances are easily extensible to networks with
arbitrary topology and more complex node dynamics, they can be used to evaluate performance of
a broad class of networked dynamical systems in future studies.
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