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ABSTRACT

We consider the problem of designing optimal distributed controllers whose impulse response has limited
propagation speed. We introduce a state-space framework in which all spatially invariant systems with
this property can be characterized. After establishing the closure of such systems under linear fractional
transformations, we formulate the #¢, optimal control problem using the model-matching framework.
We demonstrate that, even though the optimal control problem is non-convex with respect to some
state-space design parameters, a variety of numerical optimization algorithms can be employed to relax
the original problem, thereby rendering suboptimal controllers. In particular, for the case in which every
subsystem has scalar input disturbance, scalar measurement, and scalar actuation signal, we investigate
the application of the Steiglitz—-McBride, Gauss—-Newton, and Newton iterative schemes to the optimal
distributed controller design problem. We apply this framework to examples previously considered in
the literature to demonstrate that, by designing structured controllers with infinite impulse response,
superior performance can be achieved compared to finite impulse response structured controllers of the

same temporal degree.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The synthesis problem of distributed control has received
considerable attention in recent years (Bamieh, Paganini, &
Dahleh, 2002; Bamieh & Voulgaris, 2005; Borrelli & Keviczky,
2008; D’Andrea & Dullerud, 2003; de Castro & Paganini, 2002;
Dullerud & D’Andrea, 2004; Jovanovi¢, 2010; Langbort, Chandra,
& D’Andrea, 2004; Motee & Jadbabaie, 2008; Rantzer, 2006a,b,
2009; Rotkowitz & Lall, 2006; Voulgaris, Bianchini, & Bamieh,
2003). Standard optimal control design methods, when applied
to distributed systems, yield centralized controllers (Bamieh
et al,, 2002). In this scenario the controller of each subsystem
demands information about the state of the entire system. Such
solutions are undesirable from a practical point of view, as they
are expensive in hardware and computation requirements and
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demand excessive communication between different subsystems.
In the control of distributed systems a desired scenario is to have
each subsystem possess its own controller and each controller
exchange information only within an a priori assigned local
architecture.

For optimal distributed controllers of spatially invariant
systems the dependence of a controller on information coming
from other parts of the system decays exponentially as one moves
away from that controller (Bamieh et al., 2002). This motivates the
search for inherently localized controllers. For example, one could
search for optimal controllers that are subject to the condition
that they communicate only to their nearest neighbors or to other
controllers within a certain radius.

Optimal control problems are often reformulated using the
model-matching framework, which allows for a closed-loop
transfer function that is affine in the Youla parameter (Francis,
1987; Youla, Jabr, & Bongiorno, 1976). However, in the distributed
setup this generally comes at the expense of losing convexity of the
constraint set to which the design parameter belongs. This is due
to the nonlinearity of the mapping from the controller to the Youla
parameter.

Recently, certain subspaces of localized systems which remain
invariant under this nonlinear mapping have been characterized.
Bamieh and Voulgaris (2005) and Voulgaris et al. (2003) intro-
duce the subspaces of cone causal and funnel causal systems, re-
spectively. These subspaces describe how information from every
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Fig. 1. The vertical axis denotes time and the horizontal axis denotes space. (a) The support of the spatio-temporal impulse response of a cone causal system. (b) The support

of the spatio-temporal impulse response of a centralized system.

controller propagates through the distributed system. A similar but
more general characterization, termed quadratic invariance, was
introduced in Rotkowitz and Lall (2006). It is important to note
that constructs such as cone and funnel causality lead to optimal
control problems that are convex in the Markov (i.e., impulse re-
sponse) parameters of the Youla variable, but not in the state-space
parameters. Therefore, one is still faced with solving a realization
problem for a distributed system.

In this paper we consider the problem of designing optimal
distributed controllers for spatially invariant systems with finite
communication speed. Our approach is close in spirit to Voulgaris
etal.(2003),in that we consider controllers whose spatio-temporal
impulse response belongs to a cone in the spatio-temporal plane.
However, we depart from Voulgaris et al. (2003) by considering
a state-space description of such controllers, which gives a new
physical interpretation to the framework of (Voulgaris et al., 2003)
in terms of nearest neighbor interactions. We show that although
the design problem is non-convex with respect to some state-
space design parameters, relaxations and numerical optimization
algorithms can often be effectively employed to obtain suboptimal
controllers. Such numerical schemes include Steiglitz-McBride
(SM) (Dumitrescu & Niemistd, 2004; Steiglitz & McBride, 1965),
Gauss-Newton (GN) (Nocedal & Wright, 2006), gradient descent,
and Newton’s method (Boyd & Vandenberghe, 2004).

The paper is organized as follows. In Section 2 we describe the
class of ¥-causal discrete time systems. In Section 3 we use the
model-matching framework to formulate the #, optimal design
problem. In Section 4 we present numerical algorithms for the
design of structured distributed controllers. We apply our results
toillustrative examples in Section 5, and conclude our presentation
in Section 6.

1.1. Preliminaries

We consider discrete time systems on a discrete one-
dimensional spatial lattice. All systems are linear time invariant
and spatially invariant, and all signals are functions of both space
and time. A denotes the temporal (one-sided) transform variable
corresponding to the time variable k,

Yn (W) =Y Vs Ak,
k=0

and ¢ denotes the spatial (two-sided) transform variable corre-
sponding to the spatial variable n,

V@) = D Yar ™

n=—oo
When evaluated on the unit circle, A and ¢ are denoted by e/ and

e, respectively. U* = U' if U is a constant matrix and U, )" =
U1, A™HT if U is a spatio-temporal transfer function, where
the overbar denotes complex conjugation and (-)” denotes
transposition. If U is a matrix, Ut denotes the pseudo-inverse of
U; if U is a system, then its pseudo-inverse is given by the formula
in Proposition 1. The distinction between inverses of matrices and
systems will be clear from the context.

2. Cone causal and %-causal systems

Recently, Voulgaris et al. (2003) introduced a class of distributed
spatially invariant systems which have finite propagation speed
and are closed under the operations of addition, composition,
and inversion. Through use of these closure properties, it
was demonstrated in Voulgaris et al. (2003) that the optimal
control problem can be effectively formulated using the model-
matching framework. In this section we briefly review the results
of Voulgaris et al. (2003), and then introduce a new state-space
representation of such systems.

2.1. Cone causal systems

We begin by defining the class of cone causal systems
introduced in Voulgaris et al. (2003).

Definition 1. A linear spatially invariant discrete time system
defined on a discrete spatial lattice is called cone causal if its spatio-
temporal transfer function is of the form

GZ. 1) =) &), ()

k=0

k
8@ =) gl &) =g

n=—k
where g, x can be matrices in general.

Note that by the above definition, a spatio-temporal system
can be cone causal without being stable. Cone causality is only a
condition on the support of the impulse response in the spatio-
temporal domain. Fig. 1(a) illustrates the support of the spatio-
temporal impulse response of a cone causal system. A system
described by (1) in which the support of the impulse response is
not restricted to any cone in the spatio-temporal plane is said to
be centralized. In other words, a centralized system is one which
has infinite communication speed; for an illustration, see Fig. 1(b).

Example 1. Consider the following discrete time system

Xnk+1 = 01 Xp—1k + ag Xn,k +a_4 Xn+1,k + b Un k,
Ynk = CXnk + dun,k,
wheren € Zand {a;, b, c, d} are constant parameters. This nearest-

neighbor-interaction system is spatially invariant and its spatio-
temporal transfer function is determined by

Ach -1
G(C’)")= 7+d! a(;)=a*1§ +a0+a1§'

1—Xxa(¢)

The functions g(¢) in (1), which denote the ¢-parameterized
Markov parameters of this system, are determined by

go=d, ) =cd ()b,

Based on the definition of a(¢) we see that G(¢, 1) and g (¢) satisfy
Definition 1, which implies cone causality of this system.

k> 1.
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Fig. 2. A formation of identical vehicles arranged in a circle.
2.2. ¢-causal systems

Consider a linear system G with state-space representation

Al|B _
c:[%w}zmtxca—u\) 1B. (2)

Definition 2. We denote by ¥ the set of spatially invariant discrete
time systems, defined on a discrete spatial lattice, that satisfy the
following assumptions.

(i) Matrices B and D are independent of ¢.
(ii) Matrices A and C are of the form

AQ) =A T +A AL,
CO=Ca¢ '+ G+,
with A, C,,n = —1, 0, 1independent of ¢.
We refer to systems that belong to the set ¢ as ¢-causal.

Loosely speaking, systems that belong to the set ¢ are systems in
which effects propagate at most one unit in space for every unit
in time. Clearly, the above definition includes systems for which
either or both of the matrices A and C are ¢-independent. We
denote the dimension of the matrix A by u and refer to it as the
temporal order or temporal degree of G.

Example 2. Consider a formation of identical vehicles arranged in
a circle, as in Fig. 2. This is an idealization of the case of equally-
spaced vehicles on a closed track. The dynamics of each vehicle can
be modeled as the discrete time equivalent of a double integrator,
and the input to the nth vehicle is its control signal u,,. The objective
is to keep all vehicles at equal distances from each other.

The control signal for each vehicle is computed using measure-
ments of its distance with neighboring vehicles. This can be done in
a number of ways. If every vehicle only measures its distance with
the vehicle ahead, theny, = x;, — x,_1 and thus C(¢) = 1 — ¢.
Another possibility is for every vehicle to measure the sum of its
distances with its two immediate neighbors, in which case y, =
(X1 — Xng1) + (X — Xp—1) and thus C(¢) = —¢ ™' +2 — ¢. A more
general scenario is for every vehicle to independently measure its
distance with both the vehicle ahead and the one behind, so that
Yn=[Xa—Xp-1 Xn—Xpp1]"andthusC(¢) =[1-¢ 1-¢7'".In
all of these scenarios, both the dynamics and the actuation of each
vehicle is independent of other vehicles and therefore A and B are
¢-independent.

Example 3. Consider a large array of tightly-packed capacitively-
actuated micro-cantilevers, as in Fig. 3, used in applications such
as highly parallel scanning probe microscopy or high density

Fig. 3. An array of capacitively-actuated micro-cantilevers.

data storage. Each cantilever is the movable plate of a capacitor and
the displacement of the cantilever varies with the voltage applied
across the capacitor plates. Measurement of the displacement
is performed by observing the current through the capacitive
cantilever (Napoli, 2004).

Due to the small distance between micro-cantilevers, there
is coupling between neighboring devices as a result of the
capacitive fringe fields. Thus A(¢) = A_;¢7 ' 4+ Ay + A ¢,
where A_; and A; capture the effect of electrostatic coupling
with neighboring cantilevers. However, since each cantilever has
independent actuation and measurement capabilities, B and C are
¢-independent.

As we next show, ¥ is closed under addition, composition, and
inversion of systems. Thus it is closed under feedback and linear
fractional transformations (LFTs) (Zhou, Doyle, & Glover, 1996).

Ref. Voulgaris et al. (2003) demonstrates closure results for
cone causal systems using Markov parameter descriptions. The
following proposition proves closure results for ¢¥-causal systems
using state-space descriptions. Let G' and D' denote the right (left)
inverses of G and D, respectively.

Proposition 1. Let

- AlB
G = [i‘i] , G = —— ,
¢ c|D
and assume that D' exists. If G and G belong to ¢ then G+ 5, G 5, and
G' belong to .

Proof. We have

—~

Zhou et al., 1996)
B

| B
D+D
A—BD'C | —BD!
G = :
D'C D'
It is clear from Definition 2 and the state-space representations

of G 4+ G, GG, and G' that they all belong to %, and the proof is
complete. O

A
G+G6=1|0
C

[ =]

Proposition 2. The set ¢ is equal to the set of cone causal systems.

Proof. We first prove that ¢ is a subset of cone causal systems.
Let G belong to ¢. Then its state-space parameters satisfy the
conditions in Definition 2. Thus, from Definition 1, the systems
with transfer functions A A, B, C A, D are all cone causal. Therefore,
by closure of cone causality under addition, composition, and
inversion (Voulgaris et al., 2003), the system

G=D+ACI—1A"'B

is cone causal.

We now prove that the set of cone causal systems is a subset of
% .Let G be a cone causal system. Then from Definition 1 its transfer
function can be written as

G, 2) =) gu¢"M, =0 for|n> k.
n,k
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If we show that each of the terms in the above sum belongs to %,
then G € ¢ by the closure of ¥ under addition.
Define the transfer functions

Ho(;,mz[g Hzt,

Hm,m:[ ) ]:m,

01
Hf(;“,)\)=[,§ ) ]=I§A,

0 1
H\(é’,)\,) = [ Ié'_] 0 :| :Ié—*l)\’

all of which satisfy the conditions of Definition 2 and thus belong
to ¢. We demonstrate that any cone causal system with transfer
function gy x Z"A* |In|] < k can be written as a combination of
H,,Hy, H -, Hx_.

Assume that n > 0. From the cone causality of gk Ak it
follows that k > n. We compose the two transfer functions
Hun(¢,A) = I1¢™A" and Hop n(¢2,A) = ITA%™; the transfer
function Hy,,(¢,A) can be formed from the composition of n
identical systemsH » =1¢ A,

Hon(¢,A) =H H, ...H,

and the transfer function Hg—n(¢, A) can be formed from the
composition of k — n identical systems Hy =1 A,

HO,k—n(K, )\-) = HT HT e HT

(n times),

(k — n times).

Finally, g, x £"AX is obtained from the composition of H, (¢, A),
Hox—n(¢, ), and Ho0(¢, X)) = gnkHo = gn. Since ¢ is closed
under composition then g, , ¢"\¥ € %.

The steps for n < 0 are similar, with H » replaced by Hx . The
proof is now complete. O

3. The structured #¢, optimal control problem

In this section we use Youla parameterization (Youla et al.,
1976) and model-matching (Francis, 1987) to formulate the
distributed #¢, optimal control problem. In this framework, the set
of ¥-causal systems defined in the previous section plays a critical
role. The closure properties of % allow us to go back and forth
between the Youla parameter Q and the controller K without ever
leaving this set. In other words, an optimal Q € ¥ immediately
resultsinanoptimal K € %, even though the map that relates these
two systems is nonlinear.

Consider the system G € ¢,

G G,
G= zZw Zu
|: Gyw Gyu

Note that since G € ¢ then By, By, Dy, Dy, are independent
of ¢, and A, G, C, have ¢-dependence of the form described in
Definition 2. We also make the following simplifying assumption.

Assumption 1. For any given value of ¢, the state-space parame-
ters in system (3) have the following dimensions

A:ny xny, By:ngx1, By:nyxl,
G, 1 n; X ny, Dy in, x 1,
G :1xny, Dy :1x1,

where ny, and n, are the dimensions of the state and performance
output, respectively, after the application of a spatial Fourier
transform. Note that n,, = n, = n, = 1, where n,, ny, and n,
are the dimensions of the disturbance, the measurement, and the
control signal, respectively, after the application of a spatial Fourier
transform.

Assumption 1 implies that in the transform domain, for any given
value of ¢, the transfer functions G,, and G,, from disturbance w
and control u to measurement y are both SISO (single input single
output). In the spatial domain, this means that every subsystem
has scalar input disturbance, measurement, and control signal.

The closed-loop interconnection of G with a SISO controller K
results in the closed-loop transfer function

Gcl = sz + qu K (1 - Gyu K)_l Gyw~ (4)

Before we discuss the optimal control problem of interest, we have
to define the system norm we will be using.

Definition 3. Let G be a stable system. Then the spatio-temporal
Jt; norm of G is defined by (Bamieh et al., 2002)

1 2 2 . ) . )
IGallZ, = = / / tr[Ga(e”, &) Ga(e", &)*] df do,
4 0 0

where 6 and w denote the spatial and temporal frequencies,
respectively.

The problem of interest in this paper is the following.

e Given system G € ¥ find a stabilizing controller K € ¢ such that
the closed-loop norm ||Gy ||2ﬂ,2 is minimized.

Remark 1. The condition G € % can be relaxed to G, € ¢, i.e, it
suffices for the state-space parameters (C,, A, B,) to satisfy the
conditions in Definition 2.

Remark 2. Structured optimal control problems such as the one
posed above are hard to solve because of the nonlinear way
in which the design parameter K appears in the expression
for Gy in (4). As we show below, a change of variables allows
for a new design parameter Q to appear affinely in Gq, thus
forming a convex objective function. However, the mapping
from K to Q is nonlinear, and therefore a convex constraint set
for K is not always mapped to a convex constraint set for Q.
This underlines the importance of subspaces characterizing cone
causal (Voulgaris et al., 2003), funnel causal (Bamieh & Voulgaris,
2005), quadratically invariant (Rotkowitz & Lall, 2006), and
¢-causal systems: they remain invariant under the map K
Q. Since every subspace is a convex set, we thus end up with
optimizing a convex objective over a convex set, which is a desired
scenario. This remark is summarized in Theorem 3 below.

Using Youla parameterization (Youla et al., 1976), the transfer
function of the closed-loop system (4) can be recast in the model-
matching framework (Francis, 1987, Chap.3)asGq = T; — T, Q Ts.
From Assumption 1 and the description (Francis, 1987, Chap. 4) of
the transfer functions Ty, T, T3, it follows that T3 and Q are both
SISO and thus commute. Defining T := T; and U = T, T3, we
obtain

Ga=T-UQ. (5)

Thus the problem of minimizing |Gy ||[27{,2 can be rewritten as

minimize |T — U Qllifz, (6)

where Q, referred to as the Youla parameter, is the optimization
variable. The model-matching parameters T, U, and Q are all
stable transfer functions; T and U have known state-space
representations and can be found using only knowledge of the
open-loop system G (i.e., they are independent of Q ). Once problem
(6) is solved and the optimal Youla parameter Q°"* is found, the
optimal controller K°P! is obtained from Q °* as discussed in Francis
(1987) (see also proof of Theorem 3).
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From Francis (1987, Chap. 4) it follows that

A+B,F  —B,F B,
T= [ 0 A-+HC, | B, + HDy, } , (7)
C; +DuF  —DuF | 0
A+BJF  BG BuDy.,
U:|: 0 A+ HG, Bw+HDyw}, (8)
Cz + DzuF DzuCy ‘ DzuDyw

where F and H are chosen such that A + B,F and A + HC, are
Hurwitz at all spatial frequencies, i.e., the matrices [A + B,F](el?)
and [A + HG,](¢’) have eigenvalues with strictly negative real
parts for every & € [0, 2r]. Additionally, we make the following
assumptions on H and F, which can be thought of as stabilizability/
detectability-type conditions that respect the particular structure
of ¥-causal systems.

Assumption 2. For system (3) that satisfies Assumption 1,

(i) There exists an ny, x 1 vector H independent of ¢ such that
A(e?) + HCy(e) is Hurwitz for every 6 € [0, 27].
(ii) There exists a vector F of the form

FQ)=F_1{ "+ F+F¢

with 1 x ny vectors F_q, Fy, F; independent of ¢ such that
A(e) + B,F(el) is Hurwitz for every 6 < [0, 2r].

Remark 3. The above conditions on the stability of A 4+ HC, and
A + B,F are a generalization of the conditions given in Bamieh
and Voulgaris (2005), where it is assumed that H and F are
¢-independent.

We now state the main result of this section. Theorem 3 below
demonstrates that once the optimal Q € ¥ is found, it uniquely
determines the optimal controller K. Furthermore, K is guaranteed
to both be stabilizing and belong to the set %.

Theorem 3. Let system G € ¢ with state-space representation (3)
satisfy Assumption 2. Then the map Q + K is a bijection from % to
itself. In particular, K is stabilizing and belongs to ¢ if and only if Q is
stable and belongs to ¥.

Proof. The basic idea of the proof can be found in Bamieh and
Voulgaris (2005). By Assumption 2 there exist H and F such
that A + HC, and A + ByF are stable. From Chen and Francis
(1995, Thm. 5.4.1) and Zhou et al. (1996, Thm. 12.8) all stabilizing
controllers (¥-causal or not) can be parameterized by

K=Ji1+J2QU —J2Q) '),

= Jn Je | A+B”I;+Hcy‘_OH BI“ ’
b1 I —G, \ I 0

Q stable,

and any K found from the above relation is stabilizing if and only if
its corresponding Q is stable.

Next we bring into consideration the spatial structure of K and
Q, and show that the map Q +— K is a bijection on %.

From G € %, Assumption 2 on the matrices H and F, and the
state-space representation of J, it follows that ] € ¥. Now, assume
Q € %.Since K is given by a linear fractional transformation of Q
with coefficients J; € ¢,i,j = 1, 2thenK € %.Conversely, assume
K € %.From Chen and Francis (1995, Thm. 5.4.1) we have

Q =J5' K =Ji) ' 1+ K =) 5 2l ™
SinceJ; € ¢,1,j = 1, 2thenQ € %.The proofis thus complete. 0O

In light of Remark 1, it is clear that the condition G € ¥ in
Theorem 3 can be relaxed to G, € ¢ without affecting the proof.

3.1. Model-matching problem

In this section we present the model-matching problem. We
introduce an inner-outer factorization (Francis, 1987) of U, U =
Uin Uout, Where Uy, is stable with a stable right inverse, and Uj,
satisfies U;;, Ui, = I. For a general inner-outer factorization, Uj, and
U,y are tall and wide matrices, respectively. In this paper, however,
for any given ¢ the transfer function U has dimension n, x 1 and
thus Uy, is an n, x 1 vector and Uy, is a scalar.

Since the #¢, norm is a quadratic norm, it satisfies (Francis,
1987, Chap. 8, Lem. 1)

o _[ u

IEGIl%, = Gl where E = [’—”i"”i? '
We thus have
IT-UQl?,

IE (T — Uin Uout Q) %,
[

I=UnUT]|
Ui T = Uout QII%,, + 10 = Uin Up) TIIS,
= I Tlst + [Uj5 Tlun — Uou Q115

+ 1 = Uin Up) T3,
= IR = Uout Q113, + ILU3;, Tluall%,
+ 1 = Uin Up) T3,

where R = [U} Tls and [U}; T]un correspond to the stable and
unstable parts of U T, respectively. The last equality above follows
from the orthogonality of the spaces of stable and unstable transfer
functions in J¢,; see Chen and Francis (1995, Section 6.7) for
details (for continuous time, see Doyle, Francis, and Tannenbaum
(1990, Section 10.4)). The optimal solution, regardless of whether
it belongs to ¢ or not, is given by

Q = U, iR

out

Note that Q. is stable since U, is stable by construction.

The difficulty here is that once an inner-outer factorization of
U € ¢ is performed, in general neither U, nor Uy, belongs to .
In fact Q. is a centralized system in general. This is because Uj,
and Uy, contain parameters that are determined by the solution
of an algebraic Riccati equation (ARE). In general, this solution
cannot be expressed as a finite sum of powers of ¢ and ¢~!. In
particular, the state-space realizations of U;, and U, do not satisfy
conditions (i) and (ii) of Definition 2. This is reminiscent of Youla
parameterization in multidimensional systems theory (Youla &

Gnavi, 1979).
Henceforth, our aim is to find Q € ¥ that minimizes
J = IR = Uout Q1% = Uout(Qc — Q)13 9)

Thus we would like to find Q € % that best approximates the
centralized system Q. in the sense of the weighted #, norm; see
Fig. 4. Note that in (9) there is no restriction on the temporal order
of Q. However, one possibility is to choose the temporal order of Q
equal to that of Q, so that Q imitates the temporal dynamics of Q..
We emphasize that there is no reason to expect that such a choice
of temporal order is optimal. The issue of temporal order will be
further discussed in the examples of Section 5.

3.2. Literature overview

To the best of our knowledge, no exact solution to the problem
posed at the end of the previous section is known in general, and
to find Q € % one has to resort to some form of approximation.
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Qc
}— Uout —>
Q

Fig. 4. The problem of finding the cone causal Q that best approximates the
centralized Q. in the sense of the Uy -weighted #, norm.

Voulgaris et al. (2003) considered this problem in the Markov
parameter setting using the projection theorem for Hilbert spaces.
More specifically, Voulgaris et al. (2003) determined the spatio-
temporal Markov parameters ¢y i, up to time k = «, of an FIR (finite
impulse response) cone causal system Q*

K k
QU M=) @@, @@= quit"
k=0

n=—k
such that Q* minimizes
2
IR — Uout Qll%,, Q cone causal.

Here the temporal J¢, norm is computed up to time k = «.
Furthermore, weak convergence of Q to the unique optimal cone
causal system Q°Pt as k — oo was demonstrated in Voulgaris et al.
(2003).

In a mathematical sense the optimal control problem was
solved in Voulgaris et al. (2003). But the difficulty with this
approach is with regards to the implementation of the resulting
controller. The state-space realization of Q“ is a deadbeat system'
of order greater than or equal to k. If k is taken to be large to achieve
a small closed-loop norm, Q* and thus the controller K* will have
large temporal degrees.

It is well-known that generally an IIR (infinite impulse re-
sponse) system can achieve better performance compared to an
FIR system of the same temporal degree (Dumitrescu, 2007). This
motivates the problem of solving the structured optimal control
problem not with respect to the Markov parameters of Q, but with
respect to its state-space or transfer function representation. This
is the aim of Section 4, where for a given temporal order u, we
present numerical algorithms for computing Q € ¢ that minimize
the objective function in (9).

4. Relaxations and numerical algorithms for computing subop-
timalQ € ¢

In this section we search for a Youla parameter Q of temporal
order less than or equal to i that minimizes J in (9) subject to the
constraints that Q € ¢ and that Q is SISO for any given value of ¢.
The objective function J is a nonlinear function of the state-space
parameters of Q. We use various relaxation schemes and numerical
algorithms to find a suboptimal solution.

Consider the problem of minimizing the performance index in
(9) with

N, 2)

=d4+ —2" 10
Q +1+M(§,k) (10)

Aci(Q) + A2 (@) 4+ A ()
T+ 2a1(0) + 2% a(8) + -+ A ay Q)

0 1 0 0

_ o 0 (1)
—a,(¢) —a,10) —a1(¢) 1
W@ ) a@ | d

1 A deadbeat system is a discrete time system whose A-matrix has only zero
eigenvalues.

From Definition 2, it follows that Q belongs to ¥ if d is independent
of ¢ and

1 1
a@) =Y il @@= aui™ (12)

n=-1 n=-1

We assume that the temporal order u of Q has been specified a
priori (perhaps based on the temporal order of Q.).

4.1. Steiglitz-McBride method

The Steiglitz-McBride (SM) algorithm is an iterative numerical
optimization scheme originally used for the identification of linear
systems (Steiglitz & McBride, 1965). Recently it has been further
developed and coupled with other numerical methods for the
purpose of designing IIR digital filters (Dumitrescu & Niemisto,
2004).

Let Q be as in (10), and consider

J = l0ou(Qc — Q)%

= (U, Q. —d N
- out 1+M

~ H U

2

ko)

2

—7 (@ —d+[Q —dM—N)

1+M (13)

Ho

Our objective is to find d and the coefficients of N and M so that Q
belongs to ¥ and minimizes J.

The difficulty here is that J is not jointly convex in d and the
coefficients of M and N. The SM algorithm circumvents this issue
by relaxing the objective function (13) to

2
Uout

1+M

(Q. —d+[Q. —dIM — N) (14)

Jsm = H

o

where d and M correspond to d and M obtained from the previous
iteration or an initial guess. Js is now convex in the unknown
coefficients since d, N, and M all appear affinely inside the norm
and any norm is a convex function of its argument.

We rewrite the terms inside the norm in (14) as

Q—d—N+[Q —dM = Q — A" x«

=Q—-A"Xy
where the vector xsq contains the (spatially dependent) coeffi-
cients d, ¢, a; of Q, and the vector x contains the (spatially
independent) coefficients d, ¢, x, an x of Q after their spatial depen-
dence has been stripped away. The matrix X contains all spatial

transform variables and the vector A contains all remaining terms.
For example, if

AC
=d
Q +1—)»a
then
1 d
A= A ~ | Xsd=|:c:|»
A (Q.—d) a
and
d
Cq
1 0 00 0 0O o
=0 ¢'" 1 ¢ 0 0 0|, x=|g
0 0 0 0 ¢' 1 ¢ a
do

aq



886 M. Fardad, M.R. Jovanovic / Automatica 47 (2011) 880-889

In general, we have

‘ Uouc_
1+M
1
=X Tx+p'x+r,
which is a standard quadratic program in y with

1 wm pon
2w p2n

= 22 / /
2w p2n

t= 4712 /

The new set of coefficients is therefore found by setting %JSM =0,
which yields

x=-I"p.

The vector of coefficients x found above is the result of a single
iteration and can now be used to form M and d to initialize the next

iteration, and so on. We summarize the SM iterative algorithm as
follows.

Steiglitz—McBride method.

given initial x that yields a stable Q € %.
repeat

1. Set¥ = x.

2. Obtaind and M from ¥ X-

3. Compute the updated coefficients .

until stopping criterion |M| < ¢ is satisfied.

2

(Q— A" x)

Jsm

E3)

UOth

+M

2
>*AAT ¥ d6 do,

Oth

2
Re{Q} AT £}d6 do,

out

|QC| do do.

Jsm(X)

Remark 4. The #, norm of a linear dynamical system can also
be computed by solving an algebraic Lyapunov equation (Zhou
et al.,, 1996). For the class of spatially invariant systems considered
here, this would alleviate integration with respect to the temporal
frequency variable w. The Lyapunov equation was used in the SM
algorithm in Fardad and Jovanovi¢ (2008).

Remark 5. The SM algorithm as described above does not
guarantee the stability of Q at every step, although in many
examples the resulting Q is indeed stable. In the absence of a
spatial transform variable, Dumitrescu (2007) and Dumitrescu and
Niemistd (2004) describe how at every step the SM optimization
problem can be transformed to a semidefinite quadratic linear
program (SQLP) for which reliable solution algorithms exist in the
literature; see Dumitrescu (2007) for details.

4.2. Gauss—-Newton method

The Gauss-Newton (GN) method is an iterative optimization
scheme that decreases the value of the objective function J by
incrementally improving the unknown coefficients x of Q. The
method is based on finding the descent direction § at every
iteration by replacing Q (x + §) in the objective with its first order
approximation, and then computing § that minimizes the resulting
J(x + 8). Thus, in the expression for ] we substitute

Q(x +8) ~ Q(x) + [VQI"(x) 8

= Q(x) +IVQl'(x) Z s,

where the column vector [VQ](x) is composed of the partial
derivatives of Q with respect to each of its coefficients and then
evaluated at the current value x of the coefficients, the vector
8sq contains the corresponding (spatially dependent) increments

of the coefficients of Q, and the vector § contains the increments
of the coefficients of Q after their spatial dependence has been
stripped away. The matrix X contains all spatial transform
variables. For ease of notation, we will henceforth drop the
x -dependence from the gradient of Q. For example, if

Q=d+ *c
- 1—Xa
then
—Q 1
d sd
VQ=|—Q|= 1—Aa ) 3sa = | 6c |,
C )\.ZC Sa
i _ 2
aQ (1—xa)
and
8d
SC_l
1 0 00 0O 00O 8¢o
y=lo ¢t 1 ¢ 0o 0 0|, &=|3dq
0 0o 00 ¢ ' 1 ¢ da_,
800
801

In general, we have
J = Uout(Q — Q(x + )13,
1Uout(Q — Q) — [VQIT(x) £ 8) 1%,

A

1
= 56T1“3+,0T5+r

= Jon,

which is a standard quadratic program in § with

2 2
F_z 5 / [Uoue|* £*VQ VIQ ¥ df dw,
T
2 2
=55 / f |Uout|* Re{(Qc — Q)* VIQ X}d6 dw,

27 27
t_47,2 f Uou|* 1Qc — QI* d6 de.

The optlmal descent direction § is therefore found by setting
2Jon = 0, which yields

§=—r"1p.

At any iteration, after having found the descent direction § as
above, we initiate a line search that updates the coefficients
x of Q such that both the objective function | decreases and
the stability of Q is preserved. A comprehensive treatment of
numerical optimization methods and line search algorithms can be
found in Boyd and Vandenberghe (2004).

We summarize the GN iterative algorithm as follows.

Gauss-Newton method.

given initial x that yields a stable Q € %.

repeat

1. Compute the descent direction &.

2. Line search (see below) to choose the step size s.
3. Update x := x + Sé.

until stopping criterion || p||, < € is satisfied.

Line search.
given a descent direction § and « € (0, 0.5), 8 € (0, 1).
repeats := s, starting ats = 1.
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until both conditions below are satisfied.
1. Q(x + sd) is stable.
2. J(x +58) <J(x) +asp’s.

Remark 6. The vector p is nothing but the gradient VJ of |
evaluated at x. The matrix I" is an approximation of the Hessian
V2] of ] evaluated at x.

Remark 7. The algorithm outlined above ensures stability of Q at
every step. If the algorithm is initialized with coefficients x that
yield a stable Q € ¥, then the line search guarantees that stability
is preserved through changing the coefficients by a sufficiently
small increment.

4.3. Gradient descent and Newton'’s method

The gradient descent and Newton’s method are variants
of the GN optimization scheme described above, with the
descent direction in each case, respectively, given by (Boyd &
Vandenberghe, 2004)

8grad =—pP, (SNewt = _F]\;g\lm p-

Here, p is the same as in the GN method and

_ 1 27 2w , R
FNewt - ﬁ |U0ut| (E VQV QX
0 0

—Re{(Q: — Q)* ¥"V?*Q X}) df dw

is the Hessian of J evaluated at y. Furthermore, the stopping
criterion for Newton's method is often taken to be (Boyd &
Vandenberghe, 2004)

o! ! p < 2e.

Newt

The square root of the term on the left hand side is called the
Newton decrement.

4.4. Comparison of different optimization schemes

Each of the iterative schemes presented above has its advan-
tages and disadvantages. In general, the SM algorithm is very
efficient at avoiding local minima that reside close to the initializa-
tion point (Dumitrescu & Niemistd, 2004), but lacks proof of con-
vergence and can be oscillatory as it approaches an optimal point.
Classical descent algorithms such as gradient descent or Newton'’s
method are guaranteed to converge to an optimum, however they
may be trapped in local optima close to the initialization point
(Dumitrescu & Niemistd, 2004). Furthermore, the convergence of
gradient descent can be very slow, and Newton’s method has to
be modified for non-convex problems to guarantee a positive defi-
nite Hessian matrix at every iteration (Nocedal & Wright, 2006). For
most problems the GN method constitutes a good compromise, in
that it avoids local minima close to the initialization point, is guar-
anteed to converge to an optimum quickly, and automatically finds
a positive definite approximation of the Hessian matrix.

It has been suggested in the digital filter design literature (Du-
mitrescu & Niemisto, 2004) that the best computational method is
a multistage scheme where the SM, GN and classical descent are
applied in this order, and each is initialized with the result of the
previous algorithm. We refer the reader to Dumitrescu (2007) and
Dumitrescu and Niemistd (2004) for a more detailed discussion.

5. Examples

This section contains numerical examples that illustrate the
utility of the results of Section 4 in solving the structured optimal
control problem characterized by (9).

Example 1. Consider the discrete time system

ag) |1 1
_ 1 0
o= Lo o Y]
1 0 0

Assuming that G is open-loop stable, i.e., |a(e?)| < 1forall 8 e
[0, 2], we have

A A N
T=|1=-xal, U=—-|1-xa .
|: 0 :| |: 1 1—Aa

Performing an inner-outer factorization on U and carrying out the
steps described in Section 3, we arrive at

R=dy+ % (15)
TR
raw + A2
Uout = dU + ’ (16)
(1 =2Aaw)(1 = Arayw)
where
ag = a, c=1/(y* —«*/a), dp =1/y",
awy =a, ay = a, dy = «,
Clu=2ak —y, Cy = -k,
and
K =\/1—|—a*a/2—|—\/l+(a*a)2/4, y =a/k*.

For concreteness, we assume that
a@Q) =¢7'/A+1/2+¢/8,

and consider Q € ¥ as described in (11) and (12). We compute
the optimal Q for different temporal orders © = 0, 1, 2, 3, where
a temporal order of zero corresponds to Q being just a constant
gain, Q = d. The results are summarized in the table below, where
the row indexed “o.l.” corresponds to the open-loop scenario,
Q = 0. These results were obtained as follows. For every u the
GN algorithm was initialized either with a random guess of the
unknown parameters d, ¢, k, dnx (under the condition that the
resulting Q is stable) or with the result of an SM iteration. Although
we make no claim for the global optimality of the obtained
parameters, we point out that the solution of the numerical scheme
always converged to the values that appear in Table 1 regardless of
the initial guess. Furthermore, convergence was generally achieved
in fewer than 20 iterations.

Fig. 5 shows the value of | versus the temporal order w of Q.
There is a large decrease in | from 4 = 0 to u = 1. There is a
decrease of approximately 10% inJ from u = 1to u = 2. However,
further increase of the temporal order beyond © = 2 does not
result in significant decrease of J. It is interesting to note that
Q. = U,,t Ris a second order transfer function. Therefore it seems
that taking Q to be of the same temporal order as Q. is a good
compromise between minimizing the value of | and keeping down
the complexity of Q.

Example 2. We consider the discrete time example given in
Voulgaris et al. (2003)

A 22
Ve ——
(IT—=Ap)A—2ar)

with

p(C)=¢""/64+1/3+¢/6,
r(¢)=¢""/8+1/4+¢/8.
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Table 1
Optimal values of the state-space parameters and the objective function for
different temporal orders © = 0, 1, 2, 3 of Q. The rows indexed by “o0.l.” and

Table 2
Optimal values of the state-space parameters and the objective function for
different temporal orders ©# = 0, 1,2, 3 of Q. The rows indexed by “o.l.” and

“nu = 0" correspond to Q = 0 and Q = d, respectively.

“n = 0" correspond to Q = 0 and Q = d, respectively.

M d Cn.k an k J M d Cn.k An k J
ol 27.0917 ol 0.1154
0 0.1011 26.8364 0 0.1869 0.0427
c_11 = —1.1070 a_y; = 0.1769 c_1;1 = —0.0139 a_q; = —0.0914
1 2.5902 co1 = —2.2121 ap; = 0.1256 11.4055 1 0.2515 co1 = —0.0572 ap; = —0.1883 0.0318
¢y = —0.5559 a;; = 0.1302 ¢y = —0.0139 a;; = —0.0914
c_11 = —1.2164 a_11 = 0.0865 c_11 = —0.0104 a_;;1 = —0.1184
Cor = —2.3907 o1 = —0.4849 cor = —0.0521 dg1 = 0.0917
11 = —0.6380 ay = 0.0570 11 = —0.0104 ap; = —0.1184
2 2.7110 10.3247 2 0.2500 0.0317
c_12 = 0.6703 a_;; = 0.0351 c_1; = —0.0084 a_; = —0.0031
Cop = 1.4290 dgp = —0.0494 Co2 = —0.0231 Qo = 0.0142
c1p = 0.3320 a;; = 0.0119 c1 = —0.0084 a;; = —0.0031
c_11 = —1.2159 a_q; = 0.0715 c_11 = —0.0104 a_;; = —0.1165
Co1 = —2.3939 ag; = —1.0535 co1 = —0.0521 ag1 = —0.3647
11 = —0.6368 ay = 0.0344 11 = —0.0104 a1; = —0.1165
€1 = 1.4156 a_1; = —0.0091 ¢_12 = —0.0037 a_1; = 0.0483
3 27124 Co2 = 2.8086 apy = 0.2252 10.3122 3 0.2500 co2 = 0.0006 ag; = —0.0218 0.0317
cip = 0.7527 a;; = —0.0055 c1p = —0.0037 ap; = 0.0483
c_13 = —0.4324 a_13 = —0.0059 c-13 = 0.0039 a_13 = 0.0006
co3 = —0.7869 a3 = 0.0060 co3 = 0.0102 ap3 = —0.0058
€13 = —0.2302 a3 = —0.0030 ¢13 = 0.0039 a;3 = 0.0006
28 0.12
* % *
26 1 0.11 |- g
241 1 01} 1
2 1 0.09 |- ,
201 1 0.08 |- f
18t 1 0.07 - g
161 1 0.06 | 1
4L 1 0.05 |- 1
124 1 0.04 - * 1
*
10 I I * 1 0.03 ! * *
0-1. 0 1 2 3 0.1. 0 1 2 3

n

Fig. 5. Plot of ] against u corresponding to Table 1.

The transfer functions R and U, for this problem have the same
form as in (15) and (16) with

a=r, g=r’ dg=r,
aw = p, Gy =T, dy =1,
Cw=p+r, Cuy = —pT.

We consider Q € ¥ as described in (11) and (12), and proceed as
in the previous example. We compute the optimal Q for different
temporal orders u© = 0, 1, 2, 3. The results are summarized in the
table below. Just as in the previous example, for every u the GN
algorithm was initialized with a random guess of the unknown
parameters d, C, k, dn x (under the condition that the resulting Q
is stable). Again the solution of the numerical scheme always
converged to the values that appear in Table 2 regardless of the
initial guess, and convergence was generally achieved in fewer than
20 iterations.

Fig. 6 shows the value of | versus the temporal order u of Q. It
is clear from the figure that increase of the temporal order beyond
i = 2 does not result in significant decrease of J. Note that Q. =
Ugut R is a second order transfer function.

u

Fig. 6. Plot of ] against u corresponding to Table 2.

Finally, we compare the results of the present work with those
of Voulgaris et al. (2003). Let Q' denote the first order (u =
1) optimal Q obtained above, and let QVE® be the “truncated 2-
relaxed” solution found in Voulgaris et al. (2003). Then

IR = Uoue Q'[13,, = 0.0318,
IR — Uout Q"*[13,, = 0.0659.

Note that both Q! and Q®® can be implemented with a single
temporal delay element.

6. Conclusions

For spatially invariant systems, we consider the design of #,
optimal distributed controllers with finite communication speed.
These are controllers whose impulse response has support inside
a cone in the spatio-temporal domain. A state-space description of
such systems, referred to as ¢-causal, is given and closure proper-
ties under addition, composition, and inversion are proved. Using
these closure properties and the model-matching framework, an
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optimal control design problem is formulated for the case in which
each subsystem has scalar input disturbance, measurement, and
actuation signal. It is shown that the resulting optimization prob-
lem is non-convex in some state-space parameters. Different relax-
ations and numerical optimization techniques are then applied to
the optimal design problem to obtain suboptimal controllers. Sev-
eral examples suggest that the proposed numerical methods are
indeed successful in finding a ¥-causal controller whose perfor-
mance is close to globally optimal.
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