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Performance of leader-follower networks in directed trees and lattices

Fu Lin, Makan Fardad, and Mihailo R. Jovanovié

Abstract— We study the performance of externally forced
leader-follower networks in directed trees and lattices. By
exploiting the lower triangular structure of Laplacian matrices
of both classes of graphs, we derive explicit formulae for the
transfer function from disturbances to the states of the nodes.
For directed trees, we show that the worst-case componentwise
amplification of disturbances is achieved at zero temporal
frequency and that it is a convex function of edge weights. For
directed 1D and 2D lattices, we study the steady-state variance
distribution in networks with leaders placed on the boundary.
We show that as one moves away from leaders, the variance of
the followers scales as a square-root function of node indices
in 1D lattices and as a logarithmic function along the diagonal
nodes in 2D lattices.

Index Terms— Convex optimization, directed lattices, di-
rected trees, Laplacian matrices, leader-follower networks,
lower triangular matrices.

I. INTRODUCTION

Systems over graphs arise in many emerging applications
ranging from control of vehicular formations, to distributed
estimation in sensor networks, to synchronization of net-
works of oscillators [1]-[11]. Recent studies have estab-
lished fundamental performance limitations in the control
of these multi-agent systems [3]-[11]. Even though most
of these studies employ undirected graphs to model the in-
terconnections between subsystems, several references have
demonstrated that departing from undirected information
patterns can significantly improve performance of dynamic
networks [6]—-[8], [11]. In spite of this appealing feature,
analysis and design problems for systems on directed graphs
are in general more challenging than those for systems on
undirected graphs. Several research efforts have thus focused
on identifying classes of directed networks that are more
amenable to analysis and design [8], [12]. Our paper is a
step in this direction.

We focus on two classes of directed graphs, namely, on
directed trees and directed lattices. We exploit the lower
triangular structure of Laplacian matrices arising in these
graphs, and examine performance of the corresponding
leader-follower networks. The major contributions of this
paper are summarized as follows.

« For directed trees, we show that the sparsity structure of
the inverse of reduced Laplacian matrices (obtained by
removing rows and columns from graph Laplacian) is
characterized by the existence of directed paths between
two nodes. In particular, the ijth entry of the inverse
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matrix is nonzero if and only if there is a directed path
from node j to node 1.

o For directed trees, we obtain explicit formulae for the
transfer function from disturbances to the states of
the leader-follower network. We show that the worst-
case componentwise amplification of disturbances is
achieved at zero temporal frequency and that it is a
convex function of edge weights.

o Finally, for 1D and 2D directed lattices, we study
the steady-state variance distribution in networks with
leaders placed on the boundary. For 1D lattices (i.e.,
directed paths) with the root being the leader, we
show that the variance of the follower nodes grows
asymptotically as a square-root function of the distance
from the leader. For 2D lattices with nodes on the first
row and the first column assigned as leaders, we show
that the variance along the lattice diagonal grows as a
logarithmic function of node indices.

Related work on leader-follower consensus problems has
examined how controllability of the network can be influ-
enced by assigning a number of agents as leaders [13],
[14]. The problem of selecting a fixed number of leaders
to minimize the steady-state variance of deviation from
consensus has been studied recently by several authors [15]—
[18]. All these studies considered undirected graphs as the
underlying interconnected network. Recently, several authors
have also exploited lower triangular structure in the design
of optimal distributed controllers; see [19]-[21]

The paper is organized as follows. In Section II, we
consider Laplacian matrices of directed trees and determine
the inverse of reduced Laplacian matrices. In Section III, we
apply these results to the leader-follower network and study
the worst-case amplification from disturbances to the states
of the network. In Section IV, we establish the asymptotic
scaling of the variance of followers in directed 1D and 2D
lattices with boundary nodes being assigned as leaders. We
summarize our results in Section V and relegate the proofs
to the appendices.

II. LAPLACIAN MATRICES OF DIRECTED TREES

In this section, we examine structure of Laplacian matrices
associated with directed trees. We also provide an example of
leader-follower network to motivate the study of the inverse
of reduced Laplacian matrices.

A directed graph is a rooted tree if it does not contain a
cycle and if it has a node that is connected to every other
node via a directed path. Such a node is called the root of the
tree. Let us assign index 1 to the root and let us enumerate
the remaining N — 1 nodes according to the path-length (i.e.,
the number of edges in the path) between the root and the
node; for an illustration, see Fig. 1.

The Laplacian of a rooted tree with N nodes is a lower
triangular matrix L € RY*N_ Since the first row of L
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Fig. 1: Examples of directed trees with the corresponding
Laplacian matrices. Node 1 corresponds to the root.

corresponds to the root, it is identically equal to zero. On
the other hand, the nonzero elements of the ith row of L are
determined by

Lu‘ = ki» Lij = —ki7 for i:2,...,N (1)

where k; is the weight of the edge pointing from node j to
node i; e.g., see Figs. la and 1b.

Let L be the reduced Laplacian obtained by removing
the first row and the first column from L. Since L is a
lower triangular matrix with nonzero entries on its diagonal,
its inverse exists and it is also a lower triangular matrix.
The inverse of the reduced Laplacian arises in several appli-
cations, including the leader-follower network described in
Example 1.

Example 1: In the leader-follower network, the objective
for all nodes is to follow a desired constant trajectory. Let
the root be the leader whose state does not deviate from the
desired trajectory. Thus, in coordinates that determine the
deviation from the desired trajectory, we have

.leo.

We also assume that the remaining nodes of the directed
are followers and that they update their states using relative
information from its neighbor

i’i 7£Cj)+di for 222,,]\7

Here, node j is a neighbor of node ¢ if there is an edge
pointing from j to ¢. Therefore, the network dynamics are
Mo
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where 25 = [z2 --- any]|T € RN~ is the state of the
follower nodes, d € RN ~1 is the white stochastic disturbance
with zero-mean and unit-variance, and 1 € RY¥~1 is the
vector of all ones. Since x; = 0, the transfer function from

d to x¢ is determined by
H(s)

0
L1

0

—L

0
d

= (sI + L)~% 2)

As we show in Section III, each component of H (jw)
achieves its largest magnitude at zero temporal frequency,
w 0. Consequently, the power spectral density of the
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transfer function from d to xy,

1H (jw) |7 = trace (H* (jw) H (jw)) = Z | Hij(jw)?

peaks at w = 0. It is thus of interest to examine properties
of H(0), which is determined by the inverse of the reduced
Laplacian _

H(O) = L™

A. Inverse of reduced Laplacian matrices

We next show that the sparsity structure of the inverse of
reduced Laplacian L of directed trees is characterized by the
existence of directed paths between follower nodes. We also
demonstrate that the transfer function from the disturbance
entering node j to the state of node ¢ is determined by a
cascade connection of first-order transfer functions whose
cutoff frequencies are given by the edge weights along the
path from j to i. _

Let us augment L with a zero row and a zero column
8 /391 } e RVXN, (3)
As shown below, for ¢ > 7 > 2, the ¢jth entry of the matrix
M is nonzero if and only if there is a directed path from node
J to node 4. Note that working with M instead of working
directly with L~! has proved useful in the computation of
effective resistance in undirected networks [22].

For the path graph shown in Fig. 1a, we have

|

0o 0 0 0

o Yk 0 0

M=10 1k 1/ks 0
0 1/ks 1/ks 1/ky

Note that the jth column of M for j > 2 only consists of
{0,1/k;}. In fact, we next show that this result holds for
any directed tree.

Proposition 1: The matrix M in (3) is a lower tri-
angular matrix with its main diagonal determined by
{0,1/ks,...,1/kn}. Furthermore, the jth column of M for
j > 2 only consists of {0,1/k;}.

Proof: See Appendix A. [ ]

Since M;; is either 0 or 1 / kj, we next examine under
what conditions we have M;; =1 / k;. For example, for the
tree shown in Fig. 1b, it is readily verified that

0 0 0 0

o 1k, 0 0

M=10 "0 1/ks 0
0 0 1/ky 1/ky

Note that M3 = 1/k3 and that there exists a directed path
from 3 to 4. On the other hand, there is no directed path
from 2 to either 3 or 4, and M3, = My = 0.

The following Proposition establishes relation between
M;; (with ¢ > j > 2) and the existence of a directed path
from j to 4.

Proposition 2: For ¢ > j > 2, the ijth entry of M in (3)
is equal to 1/k; if and only if there is a directed path from
node j to node i.

Proof: See Appendix B. [ ]

We next augment the transfer function from the distur-
bance d to the state of the followers x; with a zero row and



a zero column

0 0
0 H(s)

- (3 4]

and provide the formula for the ijth entry of T'(s) for ¢ >
Jj=>2.

Proposition 3: Let 1 > j > 2 be two follower nodes in
a directed tree and let {j,v1,...,v,,7} be a directed path
from j to ¢ with j < wv; < --- < w, < 4. Then the transfer

function T;;(s) from the disturbance entering node j to the
state of node ¢ is given by

k; 0k 1
T — ? I I vl . > 9
.7(8) S+kzx<l_15+kvl)xs+kj7 Z>.7_
) =
Ti(s) = ——, —j>2
(5) =7 5 | i=]
Proof: See Appendix C. [ ]

Note that T;;(s) depends on the edge weights of the path
from j to ¢. For example, the transfer function from ds to
x4 in the path graph in Fig. la is given by
k4 ks 1
X X .
s+kys s+ks stk
III. PERFORMANCE OF LEADER-FOLLOWER NETWORKS
IN DIRECTED TREES

T42 (S) =

In this section, we study the performance of leader-
follower networks in directed trees. We show that the mag-
nitude of each component of the transfer function H(s)
from d to xy achieves its largest value at zero temporal
frequency. We then consider the problem of minimizing the
power spectral density at w = 0 subject to a fixed budget
on the edge weights. For this strictly convex problem, we
provide analytical expression for the optimal edge weights.
We also examine how the largest value of power spectral
density scales with the size of the network for path and star
graphs.

A. Maximum value of power spectral density

As shown in Proposition 3, for i > j > 2, T;;(s) is a
cascade connection of first-order transfer functions with the
cutoff frequencies equal to the edge weights along the path
from node j to node ¢. Since

X<H )x
=1

K
w? + k?

is a strictly decreasing function of w?, we conclude that the

largest magnitude of T;;(jw) is achieved at w = 0,

max [Tj;(jw)| = [T3;(0)] = 1/k;.

n

kﬁl
w? + k2

vl

1
w2+kj2

T35 (jw)* =

A similar argument shows that for ¢ > 2,

max |Tj;(jw)| = [Ti(0)| = 1/k;.
Thus, the componentwise worst-case amplification is a con-
vex function of positive edge weights k;’s.

Recall that the power spectral density of the transfer
function from d to x; is given by

(jw) := trace (H*(jw)H (jw)) = Z | Hyj ().
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Since the maximum value of each component |H;;(jw)| is
attained at w = 0, it follows that the maximum value of
II(jw) is also attained at w = 0

Mnax == max H(jw) = S OH ) = > (L
] 2%

-1
ij

).
From Proposition 2, it follows that

Zq
Hmax = 7.2
[

1=2

where k; is the weight on the edge pointing to node ¢ and
z; is the number of directed paths that contain this edge. For
example, for the path graph in Fig. 1a, we have

3.2 1
e e

Therefore, the problem of minimizing the maximum value
of the power spectral density with the total edge weights
equal to 1 can be formulated as

Hmax =

N
Zi
inimi Hmax = 7o
m1n1km1ze Z; kf
N = 4)
subject to Zkzi =1, k; > 0.
i=2

Note that Il .« is a strictly convex function of positive
k;’s and that the constraints in (4) are strictly feasible (e.g.,
k; 1/(N —1) for i = 2,...,N). It follows that the
unique solution to (4) can be determined by solving the KKT
conditions [23, Section 5.5.3] associated with problem (4).
Thus, the optimal edge weights are given by

()"
v = ( 3 (2zi)1/3>3

and the optimal value of (4) is determined by

1=2
N 3
T - ()
=2

- (2

V*

where

&)

B. Examples

We next examine how the largest value of power spectral
density scales with the size of networks. In particular, we
consider two simple examples, namely, path and star graphs.

1) Path: Since the number of directed paths that contain
the edge pointing to node ¢ is z; = N + 1 —¢, it follows that

N-1 3

=1
Note that the optimal feedback gain k; is monotonically de-
creasing as one moves away from the root. By approximating
the summation in II} using integral formula for large N,

it can be shown that IT* __ scales asymptotically as a 4th
order polynomial of N, i.e, I}, ~ O(N?%).

(2(N +1—14)¥/3

l]V:_ll (2l)1/3

*
.=

*
’ Hmax -

max
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Fig. 2: A directed path with its root being assigned as a
leader (red).

2) Star: Since for the star graph z; = 1 for¢: =2, ...
we have

Note that IT%,, . scales as a cubic polynomial O(N?) of the
number of nodes N, as opposed to the 4th order polynomial

O(N*) for the path graph.

*
Hmax

= (N —-1)3.

IV. VARIANCE DISTRIBUTION IN DIRECTED LATTICES

Undirected lattices play an important role in understanding
the fundamental performance limitations of local feedback
design in several distributed control and estimation prob-
lems [3], [4], [10], [11]. On the other hand, several authors
have shown that departing from undirected networks results
in significant improvement for achievable performance in
large directed networks [6]—[8], [11].

Motivated by these results, we next examine performance
of leader-follower networks in directed lattices. Follow-
ing [3], [4], [8], [10], we use the steady-state variance
of the network as a performance measure. However, in
contrast to these studies [3], [4], [8], [10] that focused on
the total variance of undirected lattices, we investigate how
the variance distributed in directed lattices. In particular, we
place leaders on the boundary of lattices and study how the
variance of followers scales as one moves away from the
leaders.

In the simplest scenario, namely, a path graph with the root
being a leader as illustrated in Fig. 2, it was shown in [11]
that as one moves downstream, the variance of followers
scales asymptotically as a square-root function of distance
from the leader at the root. This result was established
by exploiting the Toeplitz lower triangular structure of the
corresponding modified Laplacian matrix given by (6).

For a 2D lattice with leaders placed on the first row and the
first column as illustrated in Fig. 3, the modified Laplacian
given by (8) has block Toeplitz lower triangular structure.
Exploiting this result we determine an analytical expression
for the variance of each individual node in the 2D lattice.
Furthermore, we show that the variance of the followers
grows as a logarithmic function of node indices along the
diagonal of the lattice.

A. ID lattice

A node is called a noise-corrupted leader if, in addition
to relative information from its neighbors, it also has access
to its own state

i’i = — Z (;vi—xj)
JEN;
where «; is a positive number. We consider the directed path

in which the root is assigned as a noise-corrupted leader with
a1 = 1 and all edge weights are equal to 1. The dynamics

— oz + d;
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Fig. 3: A directed 2D lattice with nodes on the first row and
the first column being assigned as leaders (red).

of the leader-follower network are governed by
it =—-Lx+d

where © = [21 -+ =y }T € RY and, with a slight abuse of
notation, the disturbance d is a vector of length V.

Note that L is the matrix obtained by modifying the
Laplacian of the path graph with L;; = a; = 1. Therefore, L
is a Toeplitz matrix with 1 on the main diagonal, —1 on the
first sub-diagonal, and zero everywhere else. For example,
for N = 4, we have

1 0 00

7 11 0 0

L=1 9 - 10 (6)
0 0 -1 1

Let P be the steady-state covariance of x

o0 T 7T
/ e Ite Lt g
0

By exploiting the Toeplitz lower triangular structure of L
in (6), it can be shown that [11]

P := trace (tgnéog(x(t)xT(t)))

n (2n)!
Pan = 22n pln!

and the total variance normalized by the number of nodes is

1 2N +1 N (2N)!
V(N) = Ntrace (P) = 3N 52N NT NI
Furthermore,
P, 1 . V(N) 2
lim — = — lim ——F = ——. 7
n3 8o Vn NG N VN 3T @

Remark 1: Equation (7) implies that nodes farther away
from the leader have larger steady-state variance; in partic-
ular, the variance at the nth node asymptotically scales as
a square-root function of n. Furthermore, the total variance
normalized by the number of nodes N scales as a square-root
function of N.

B. 2D lattice

We next consider a directed 2D lattice of size N x N
with nodes on the first row and the first column being
assigned as noise-corrupted leaders; see Fig. 3. Let z; =
[2i1 -+ 2in T € RY be the state of the nodes at the ith



T
1

row of the 2D lattice and let x = [zT ... 2%]T € RN* be
the state of all nodes in the lattice.

Consider the 2D lattice with all edge weights being equal
to 1 and the absolute feedback gain for the leader at the (1,1)
node being «; = 2 and for all the other leaders being «; = 1.
Then the modified Laplacian L has the block Toeplitz lower

triangular structure. For example, for N = 4, we have

K 0 0 0
7o -1 K 0 0 N2x N2
L=11y¢9 21 g o|€¢Rk ®)
0 0 -1 K
where I € RV*¥ is the identity matrix and
2 0 0 0
21 2 o000 .
K = 0 —1 9 0| € R .
0 0 -1 2

We next provide the main result in Proposition 4 and omit
its proof due to space limitation.

Proposition 4: Let P,,, € RN*N be the nth diagonal
block of the matrix

P = /Oo e Lt o= LTt gy ¢ RN xN?
0

where L is given by (8). Then the mth diagonal entry of
P,,,, has the following explicit expression

Pl = : .
z2 DG — D)2
Furthermore, the nth diagonal entry of F,,,,, denoted by
scales asymptotically as a logarithmic function of n.
Remark 2: Let the nodes on the diagonal of the 2D
lattice be denoted by (1,1),...,(n,n),...,(N,N). Then
the steady-state variance of the nth diagonal node of the
2D lattice is determined by P].'. Therefore, Proposition 4
implies that nodes farther away from the leaders have larger
steady-state variance; in particular, the variance at the nth
diagonal node asymptotically scales as a logarithmic function
of n.

(2(i+
42(”3')’3((@‘ _

Pnn

nn?

V. CONCLUDING REMARKS

In this paper, we characterize the sparsity structure of the
inverse of reduced Laplacian matrices in directed trees in
terms of the existence of directed path between a pair of
nodes. Based on this characterization, we obtain explicit for-
mulae for the transfer function from disturbances to the state
of the leader-follower network. We show that the maximum
value of the power spectral density of this transfer function
is a convex function of the edge weights. Furthermore, we
study the steady-state variance distribution in directed lattices
with leaders being placed along the boundary of the lattice.
In 2D lattices, we show that the variance of followers along
the diagonal scales as a logarithmic function of node indices.

APPENDIX
A. Proof of Proposition 1

To compute the jth column of Lt forj=1,...,N —1,
we solve the linear equation

Lz = ¢

9)
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for 7 € RNV~1, where e; is the jth unit vector of RV~1.
Since L is a lower triangular matrix with nonzero diagonal
elements and since the ith entry of e; is zero for ¢
1,...,7 — 1, it follows that

i=1,...

t%i:(); = 7j_]-

and ~
Tj = 1/Lj; = /LGy = ki
Thus, the (j + 1)th row of equation (9) is given by
Ligs0i®j + LiangenZie = 0.
From the definition (1) of the Laplacian matrix of the rooted
tree, it follows that L1y, is equal to —L;11)(j41) if there

is an edge pointing from j to j + 1 or it is equal to 0
otherwise. Thus,

Firr = — (Lg% /Ligan g
_ { 0, Lgp; =0 (10
Tj, L1 = =L+

Similarly, the (j 4 2)th row of equation (9) is given by
Lij+2);5 + Li+2)G+nTi+1 + Lo Tt = 0.
We have

0, Lijs2); = Ligso4n) = 0
Tjpe = T;,  Lgt2); = —LG+2)G+2)
Tjp1, Lo+ = —Lg+2G+2)

which, in conjunction with (10), yields that
(Ej+2 =0 or fjJrQ = i’j.

In particular, Z;,9 = Z; if there is an edge pointing directly
from 5 to j + 2 or if there is a path from j to j+ 1 to j + 2.

Using induction we conclude that forz = j+3,..., N—1,
Z; is either equal to O or equal to ;. In other words, the
vector & only consists of {0,1/k;11}; or equivalently, the
(4 + 1)th column of M only consists of {0,1/k;j41}.

B. Proof of Proposition 2

Suppose that a directed path exists from j to ¢ for i >
j > 2, i.e., there is a sequence of nodes {j,vi,...,vpn,i}
that are connected by edges {(j,v1), ..., (vn,i)}. Consider
the (j — 1)th column of L', which is determined by the
solution to the linear equation

(1)

Using the same argument in the proof of Proposition 1 in
Appendix A, it follows that

Lz = €5—-1.

Tjg = Tyy1 =+ = Typ,—1 = i1 = 1/k;.

Therefore, the existence of a directed path from j to i is a
sufficient condition for (L™1);_1)j—1) = Mij = 1/k;.

Now suppose that M;; = 1/k;, i.e., the (i — 1)th entry of
the solution Z to (11) is given by #;_; = 1/k;. Consider the
(¢ — 1)th row of (11)

E(i—l)(j—l)«ij—l+I~J(i—1)j fj+"'+1~?(i—1)(i—1)5fi—1 = 0.

Since [N/(i,l)(i,l)ﬁci,l = k;i/k; # 0 and since there is at



most one nonzero entry in the (i — 1)th row of L from the
definition (1) of Laplacian of rooted tree, it follows that one
of the entries {L(;_1)(,—1)} for v, = j,...,% — 1 must be
nonzero. Thus, there exists an edge pointing to node ¢ from
node v,, € {j,...,% — 1}. Consequently,

.’Evn,1 = {gi,1 = ]./k‘]

Note that v,, is strictly less than ¢. Using the same argument
for the (v, — 1)th row of equation (11), we conclude that
there exists an edge pointing to node v,, from node v,_; €
{4, .., v, —1}. Thus, induction argument implies that there
is a sequence of nodes {j,v1,...,vn_1,0p, 4} that form a
directed path from node j to node i.

C. Proof of Proposition 3

The proof is similar to the proof of Proposition 1. We
consider the (j — 1)th column of (sl + L)™', which is the
solution to the linear equation

(s + L)7 = e;_1. (12)

Since sI + L is a lower triangular matrix and its (j — 1)th
main diagonal entry is given by s + k;, it follows that

=0 for r<j—1 (13)

and

Fpo= (s + kj)~t for r=j -1 (14)
Thus, the jjth entry of T is given by
T (s + k)"
To compute Z, for » > j — 1, we write explicitly the rth
row of equation (12)

irl T1+ -+ ir(rfl) Tp—1 + (8 =+ IN’T"I') . = 0. (15)

(s) = 2y

For r = j, from (13), it follows that equation (15) becomes
ET(”'—U JNZ‘T_l + (S + irr) Ifr = 0.

Thus, we have
0,
- (5 + z7‘7")_1I’V/'r‘(r’71)i'r—l7 [’V/r(rfl) 7& 0.

In other words, if there is an edge pointing from j to 5 + 1
with the edge weight k; 1, then

IN’r(rfl) =0

T, =

kjt1
s+ ki
= 0. Therefore, if there is a directed path

Ty = Ty for r =73

otherwise, Z,

{j,v1,...,0p,i} from j to i, then
ki - kvl ~
Ti1 = —— X —L | z,. 16
Tio1 pa— 11;[15‘*‘]%1 z (16)
Substituting (14) into (16) yields the desired result
ki ~ ok 1
Ti’ = NZ‘, = = il .
J(S) Ti-1 s + kl % ll;Il s + kvl s + kj
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