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Low-rank and sparse dynamic mode
decomposition

By M. R. Jovanovié, P. J. Schmid AND J. W. Nichols

1. Motivation and objectives

Even though fluid flows possess an exceedingly high number of degrees of freedom,
their dynamics often can be approximated reliably by models of low complexity. This
observation has given rise to the notion of coherent structures — organized fluid elements
that, together with dynamic processes, are responsible for the bulk of momentum and
energy transfer in the flow. Recent decades have seen great advances in the extraction of
coherent structures from experiments and numerical simulations. Proper orthogonal de-
composition (POD) modes (Lumley 2007; Sirovich 1987), global eigenmodes, frequential
modes (Sipp et al. 2010), and balanced modes (Moore 1981; Rowley 2005) have provided
useful insight into the dynamics of fluid flows. Recently, dynamic mode decomposition
(DMD) (Rowley et al. 2009; Schmid 2010) has joined the group of feature extraction
techniques. Both POD and DMD are snapshot-based post-processing algorithms which
may be applied equally well to data from simulations or experiments. By enforcing or-
thogonality, POD modes possess multi-frequential temporal content; on the other hand,
DMD modes are characterized by a single temporal frequency. DMD modes may poten-
tially be non-normal, but this non-normality may be essential to capturing certain types
of dynamical effects. For an in-depth discussion of the connection between DMD and
other data decomposition methods, please refer to Schmid (2010).

By projecting the full system onto the extracted modes, the governing equations may be
replaced by a dynamical system with fewer degrees of freedom. This facilitates computa-
tionally tractable investigations of stability or receptivity as well as a model-based control
design. In many situations, however, it is not trivial to identify a subset of modes that
have the strongest impact on the flow dynamics. For example, spatial non-orthogonality
of the DMD modes may introduce a poor quality of approximation of experimentally or
numerically generated snapshots when only a subset of modes with the largest amplitude
is retained. Recent attempts at extracting only a subset of desired frequencies and basis
vectors (Chen et al. 2012) rely on a non-convex optimization problem whose solution in
general requires an intractable combinatorial search.

In order to strike a balance between the quality of approximation (in the least-squares
sense) and the number of modes that are used to approximate the given fields, this
brief develops low-rank and sparsity-promoting versions of the standard DMD algorithm.
To achieve this objective, we combine tools and ideas from linear algebra and convex
optimization with the emerging area of compressive sensing (Candes & Tao 2006; Candes
et al. 2006; Donoho 2006). We demonstrate that both low-rank and sparsity-promoting
formulations yield convex optimization problems, for which efficient algorithms for finding
a globally optimal solution can be developed, even for large-scale problems.

Our presentation is organized as follows. In Section 2, we formulate the problem and
provide a brief overview of the dynamic mode decomposition and of the optimal selec-
tion of amplitudes of extracted DMD modes. In Section 3, we introduce a low-rank DMD
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algorithm to identify an a priori specified number of modes that provide optimal approx-
imation of experimental or numerical snapshots at a certain time interval. In Section 4,
we use a sparsity-promoting framework to select a subset of DMD modes which strikes a
balance between the approximation error (with respect to the full data sequence) and the
number of extracted modes. In Section 5, we use the database resulting from the unstruc-
tured large-eddy simulation of a supersonic jet to illustrate the utility of the developed
methods. We conclude our presentation in Section 6.

2. Problem formulation
2.1. Dynamic mode decomposition

The dynamic mode decomposition (DMD) is a data processing algorithm that extracts
coherent structures with a single frequency from a (numerical or experimental) data-
sequence. In what follows, we briefly outline the key steps of DMD.

We begin by collecting a sequence of snapshots from numerical simulations or physical
experiments and form a data matrix whose columns represent the individual data sam-
ples. Even though we confine our attention to temporal evolution processes, note that
the DMD-framework can accommodate a variety of “evolution coordinates” (e.g., spatial
directions, or curved base-flow streamlines). Furthermore, we assume that the data are
equispaced in time, with a time step At,

{¢0a¢1a"'a¢N}7

where each 1; is, in general, a complex vector with M components (measurement points),
ie, Y; € CcM,

Next, we postulate that the snapshots have been generated by a discrete-time linear
time-invariant system which maps a given snapshot to the subsequent snapshot

¢t+1 = Awt, t = {OaaNf]-} (21)

For fluid systems, the matrix A typically contains a large number of entries (which are
in general complex numbers). DMD furnishes a procedure for determining a low-order
representation of the matrix A € CM*M that captures the dynamics inherent in the data
sequence. The next computational step consists in forming two data matrices from the
snapshot sequence according to

Uy = [0 ¥ 0 Unog | € CMXN
Y = [¢1 Y2 - Yy ] € CMXN

where the subscript and the superscript identify the first and the last elements of the
sequence, respectively. In most fluid problems, the number of components (measurement
points) in each snapshot 1; is typically much larger than the number of snapshots,
M > N, thereby implying that \Ilév ~Land U are tall rectangular matrices. The two data
matrices \I/é\Pl and WY are linked via the matrix A, and using the linear relation (2.1)
between the snapshots at two consecutive time steps, we can express U1V as

Y o= [ e o YN |
[ Avo A¢pyr -+ Ay | (2.2)
= AUl

For sufficiently large data sequences, it is reasonable to postulate a linear dependence
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of recent snapshots on previous ones (Schmid 2010). This assumption concurs with the
supposition that the dynamical process that generated the snapshot sequence is indeed
low dimensional and that it can be expressed by a projection onto a substantially smaller
set of basis vectors. Consequently, the final snapshot 1 in our sequence can be expressed

as a linear combination of {¢g,41,...,¥n_1}, which yields
YN = —agy — a1 — ... — an—1¥N_1 + T,
where 7 denotes the residual vector. This relation can be used to write U} as
OV = vt A, 4 rek, (2.3)

where ey is the Nth unit-vector in RY, and A, is a companion matrix determined by
"o Cap T

1 0 —ay

A, = : € CN*N,

1 0 —aN-—-2

1 —an—1

Using (2.2) and (2.3), we obtain the expression
oV = Ap)?

N1 (2.4)

= U A, + rek e CMXN

which is reminiscent of an Arnoldi decomposition. The above expression implies that we
can think of A, as a representation of the matrix A on an N-dimensional subspace of CM
that is spanned by the columns of \I/(I)V ~! In contrast to the classical Arnoldi method, this
subspace is not spanned by a set of orthonormal basis vectors; this apparent disadvantage,
however, allows the processing of data sequences without access to the matrix A.

The companion matrix A. can be determined from the matrices of snapshots \II(I)V -1
and ¥Y by minimizing the Frobenius norm of the residual in (2.4)

minimize |[UY — UM A|%. (2.5)
We recall that the Frobenius norm of the matrix @) is determined by

Q% = trace (Q* Q) = trace (Q Q).

For improved convergence and algorithmic robustness, we employ an economy-sized sin-

gular value decomposition of \Il(]]v e cMxN
vt = Uunvr, (2.6)
where ¥ is an N x N diagonal matrix with non-zero singular values {o1,...,0n5} on its

main diagonal, and the matrices U and V are unitary, i.e.,
Uec CMXN with U*U = I,
Ve CNN  with V*V = VV* = L

Upon substitution of (2.6) into (2.4) we arrive at

AUSV* = USV* A, + rek,
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and multiplying the resulting expression with U* (from the left) and with V 7! (from
the right), we obtain a representation of A in the basis spanned by the POD modes of
gyt

U*AU = SV*AVET 4 Urel Ve

From this last expression we can determine the transformed version of the companion
matrix A,

F = SV*A, VYt e VXN,

In anticipation of modifications to treat the low-rank and sparse version of the above
algorithm, we reformulate the DMD problem in terms of an optimization problem. A
modest amount of straightforward algebraic manipulation brings the optimization prob-
lem (2.5) into the following form

C N y-1 2
minimize [ (U*eYVE F)X|3, (2.7)

which implies that the optimal rank-N solution to (2.7) is determined by
Fama = U UV V2L

This expression is identical to the expression given by Schmid (2010) and it concludes the
robust implementation of the DMD algorithm starting from matrices of data snapshots
TNt and w).

2.2. Optimal amplitudes of DMD modes

The matrix Fymg € CV*Y is a low-dimensional representation of the inter-snapshot
mapping A € CM*M and it contains information about the spectrum and associated
coherent structures. In addition to these quantities, amplitudes of the extracted dynamic
modes can be computed. To this end, an eigenvalue decomposition of Fynq

M1
Fama[ v - ynv ] =[wm - un]

Y Y UN

can be used to determine the matrix of DMD modes (Schmid 2010)
®=[¢ - ¢y ] =UY e CMN

With this expression, we can represent experimental or numerical snapshots as a linear
combination of DMD modes according to

N
wt = Zazluigéza t e {OaaN_1}7

i=1



Low-rank and sparse DMD 143

or, equivalently, in matrix form,

et
[ Yo ¢1 -+ Yno1 | =
. U e
N-1
[ ¢1 d2 - on | e 1 /{2 NQ.
® aN 1 oy - pit
D, = diag{a} e

The temporal evolution of the dynamic modes in discrete time is governed by the Van-
dermonde matrix V,y,q; this matrix is determined by the N complex eigenvalues p; which
contain information about underlying frequencies and growth/decay rates. Determination
of the unknown vector of amplitudes a = [ ap - an ]T then amounts to finding
the solution to the following optimization problem

minimize || — ® Dy, Vana||%-
(0%

Using the singular value decomposition (2.6) of \I/év ~! and the definition of ®, we bring
this problem into the following form

miniamize J(a) = |ZV* — Y Dy Vanal%, (2.8)

which is a convex optimization problem that can be solved using standard methods (Boyd
& Vandenberghe 2004; Grant & Boyd 2012).

A superposition of all DMD modes, properly weighted by their amplitudes and ad-
vanced in time according to their complex frequency, optimally approximates the entire
data sequence. The key challenge that this brief addresses is identification of a truncated
representation in order to capture the most important dynamic structures (by eliminating
features that contribute weakly to the data sequence).

3. Low-rank dynamic mode decomposition

As described above, the dynamic mode decomposition algorithm of Schmid (2010)
provides the optimal rank-N solution to the optimization problem (2.7). In what follows,
we provide a solution to (2.7) that has an a priori specified rank r with » < N. Under this
constraint, we reduce the number of modes that influence the quality of approximation
of experimental or numerical snapshots at non-zero times to r.

A simple change of variables,

H =U"vYV, Fy = FY,
transforms (2.7) into the following optimization problem
. . . _ 2
minimize |H — Fg||%. (3.1)
It is well known that the singular value decomposition of the matrix H,

N
% *
H = Uh Z}L V}L = g Ohi Uhi Upss

i=1
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provides the optimal rank r solution F to the optimization problem (3.1). The rank-r
approximation to Fynq is thus determined by

FT = (Z ahiuhivzi> 2_1. (32)

i=1

Following the procedure of the full-rank dynamic mode decomposition, the eigenvalue
decomposition of F.,

F.Y, = A’r th
can now be used to determine the matrix © of low-rank DMD modes
62[91 QN]ZUYTE(CMXN.

Analogous to the full-rank case, the original data sequence can be approximated using
a linear combination of dynamic modes, properly weighted by their amplitude and their
time-dependence

N
=Y BiM6;, t €{0,....N-1}. (3.3)

i=1
Since only r eigenvalues (e.g., {A1, ..., A+ }) in (3.3) are non-zero, the quality of approx-
imation for ¢t € {1,..., N — 1} is determined by the amplitudes {f, ..., (.} associated

with the r non-zero eigenvalues of the matrix F,. The problem of determining optimal
amplitudes can now be approached in a similar manner as in Section 2.2, namely by
solving the following optimization problem

miniﬁmize [V — Y, Dg Vg%, (3.4)

where § = [ 61 - BN ]T € CV is the vector of the unknown amplitudes, Ds =
diag {8}, and Va/}ld is the N x N Vandermonde matrix corresponding to the eigenvalues
{A\1, ..., An} of F,.. Alternatively, the amplitudes {3, ..., §,} associated with the non-
zero eigenvalues of the matrix F,. can be determined to optimally approximate {1, ...,
¥n_1}, and the remaining amplitudes {5,41, ..., On} can be determined to provide an
optimal approximation of the initial condition g.

The low-rank DMD modes and the associated eigenvalues do not represent a subset of

their standard DMD counterparts; in fact, they could be very different from each other.

4. Sparse dynamic mode decomposition

In this section, we direct our attention to the problem of selecting the subset of DMD
modes that has the most profound influence on the quality of approximation of snapshot
sequence. In this sense, we are interested in a hierarchical description of the data sequence
in terms of a set of dynamic modes. Our approach consists of two steps. In the first
step, a sparsity structure is sought which strikes a user-defined balance between the
approximation error with respect to the full data sequence and the number of extracted
modes; see (4.2) below. In the second step, the sparsity structure for the amplitudes
(identified in the first step) is fixed and the optimal values of the non-zero amplitudes
are determined; see (4.3) below.

We approach this problem by augmenting the objective function J(«) in (2.8) with an
additional term, card («), that penalizes the number of non-zero elements in the vector
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of unknown amplitudes «,

miniamize J(a) 4+ ~ycard (). (4.1)
In the modified optimization problem (4.1), v is a positive parameter that reflects our
emphasis on sparsity of the vector a. Larger values of v place stronger emphasis on the
number of non-zero elements in the vector « (relative to the quality of the least-squares
approximation, J(«)), thereby encouraging sparser solutions to (4.1).

In general, finding solutions to the problem (4.1) amounts to a combinatorial search
that quickly becomes intractable for any problem of interest. To circumvent this predica-
ment we will consider a relaxed version of (4.1) that is obtained by replacing the cardinal-
ity function by the ¢1-norm of the vector . We thus obtain the substitute optimization
problem

N
minimize J(a) + ’yizl |ev;]. (4.2)
Note that the sparsity-promoting DMD problem (4.2) is a convex optimization problem
whose global solution, for small and medium sizes, can be found using standard optimiza-
tion solvers (Boyd & Vandenberghe 2004; Grant & Boyd 2012). We have also developed
efficient iterative algorithms to solve (4.2) for large-scale problems. The details of our
algorithms will be reported elsewhere.

After a specified balance between the quality of approximation of our experimental or
numerical snapshots and the number of DMD modes is achieved, we fix the sparsity struc-
ture of the unknown vector of amplitudes and determine only the non-zero amplitudes
as a solution to the following constrained convex optimization problem:

minimize [|[ZV* — Y D, Vanall%
«

(4.3)
subject to ET a = 0.

In this expression, the matrix E € RV*™ encodes information about the sparsity struc-
ture of the vector a.. The columns of E are the unit vectors in R whose non-zero elements
correspond to zero components of . For example, for o € C* with

a:[al 0 Qa3 O}T,

the matrix F is given as

OO = O
= O O O

5. Example: a screeching supersonic jet

In this section, we apply low-rank and sparse DMD to a database of snapshots ob-
tained from a large eddy simulation of a screeching supersonic rectangular jet. Screech is
a component of supersonic jet noise that is connected to the presence of a train of shock
cells within the jet column (Tam 1995). For a turbulent jet, the unsteady shear layers
interact with the shocks to create sound. While this process is generally broadbanded,
screech is a special case of shock-noise that arises from creation of a feedback loop be-
tween the upstream-propagating part of the acoustic field and the generation of new
disturbances at the nozzle lip. This self-sustaining feedback loop leads to an extremely
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FiGURE 1. Temperature contours on a centerplane cross section taken from a snapshot of the
screeching jet. Time histories of pressure were recorded at probe locations indicated by circles
1 and 2.
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FIGURE 2. (a) Power spectra of pressure corresponding to the measurement locations indicated
in Figure 1. Both spectra peak at St ~ 0.3, although the spectrum at location 2 (circles) is
more broadbanded than at location 1 (crosses). Subfigures (b) and (c) show the corresponding
time-dependence of pressure at locations 1 and 2, respectively.

loud (narrow-banded) screech tone at a specific fundamental frequency. The presence of a
tonal process embedded in an otherwise broadbanded turbulent flow makes the screech-
ing jet an excellent test case for the low-rank and sparse DMD methods. The objective of
both methods is to extract the entire coherent screech feedback loop from the turbulent
data and to describe the screech mechanism with as few modes as possible.

The supersonic jet used in this example was produced by a convergent rectangular noz-
zle of aspect ratio 4, precisely matching the geometry of an experimental nozzle (Frate
& Bridges 2011). The entire flow inside, outside, and downstream of the nozzle was sim-
ulated using the low-dissipation low-dispersion LES solver charles on an unstructured
mesh with about 45 million control volumes. This simulation was one of a sequence
involving different mesh resolutions, and was validated against the experimental mea-
surements (Nichols et al. 2011).

The stagnation pressure and temperature inside the nozzle were set so that the jet
Mach number M; = 1.4 and the fully expanded jet temperature matched the ambient
temperature. Since the nozzle was purely convergent, however, the jet emerged from the
nozzle in an underexpanded state, leading to a train of diamond-shaped shock cells as
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shown in Figure 1. The figure shows contours of temperature on a centerplane cross
section taken through the narrow dimension of the nozzle. From an animation of the jet
(not shown), the first two shock cells are almost stationary, but the third and fourth
shock cells undergo transverse oscillations along the narrow dimension of the jet (vertical
in the figure). The transverse oscillation of the shock cells occurs precisely at the screech
frequency of the jet, and is connected to a strong upstream-oriented acoustic tone.

Figure 2 shows the time histories and spectra of the pressure recorded at the locations
indicated by the circles in Figure 1. Location 1 coincides with the center of the upstream-
directed acoustic beam associated with the screech tone. At this location, we observe
that the pressure spectrum is relatively narrow-banded. The pressure signal at location
2 contains a range of frequencies corresponding to the turbulence of the jet shear layers,
resulting in the broadbanded spectrum. Both spectra show a strong peak at a Strouhal
number of St = fD,/u; = 0.3, which is the screech tone frequency predicted for a Mach
1.4 jet from a 4:1 aspect ratio rectangular nozzle. Since the sample window included
about 4 periods of the screech tone, in both cases this peak coincides with the fourth
Fourier coefficient.

The database used for the DMD analysis consisted of 257 snapshots (so that N = 256)
of the full three-dimensional pressure and velocity fields associated with the jet. The
snapshots were equispaced in time with an interval of At = 0.0528D,/u;, where D, is
the nozzle equivalent diameter (the diameter of the circle of same area as the nozzle exit)
and wu; is the fully expanded jet velocity. Although the computational domain for the
LES extended ~ 32D, downstream of the nozzle exit, DMD was applied to a subdomain
focusing on the shock cells within the jet’s potential core and the surrounding acoustic
field (this domain extends to 10D,). This restriction reduced the number of cells from 45
million to 8 million. In spite of this reduction, each snapshot required 256 Mb of storage
in double precision format. To handle such large matrices, DMD was implemented in a
MapReduce framework so that the matrix could be stored and processed across several
storage discs. In particular, the algorithm relied upon a MapReduce QR-factorization of
tall-and-skinny matrices developed by Constantine & Gleich (2011).

Figure 3(a) illustrates the dependence of the absolute value of the amplitudes of the
DMD modes obtained by solving optimization problem (2.8) on the frequency of the
corresponding eigenvalues. This type of plot is similar to the power-spectral density
plots resulting from standard Fourier analysis.

It is not trivial to identify by mere inspection a subset of DMD modes that has the
strongest influence on the quality of the least-squares approximation. As shown in Fig-
ure 3(b), the largest amplitudes appear to originate from the eigenvalues that are rather
strongly damped. In what follows, we demonstrate that keeping only a subset of modes
with largest amplitudes can lead to poor quality of approximation of numerically gener-
ated snapshots.

The sparsity level card (o) and the Frobenius norm of the difference between W) ~* and
® D, Vanq for the optimal vector of amplitudes « resulting from the sparsity-promoting
DMD algorithm are shown in Figure 4 as a function of the user-specified parameter
v (a measure of preference between approximation quality and solution sparsity). As
expected, larger values of v encourage sparser solutions, at the expense of compromising
quality of the least-squares approximation. The values of v in Figure 4 are selected in
such a way that vy, induces a dense vector « (with 256 non-zero elements), and Ymax
induces a with a single non-zero element.

Eigenvalues resulting from the standard DMD algorithm (circles) along with the subset
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FIGURE 3. Dependence of the absolute value of the DMD amplitudes «; on (a) the frequency
and (b,c) the real part of the corresponding DMD eigenvalues y;. Subfigure (c) focuses on the
amplitudes that correspond to lightly damped eigenvalues; it represents a zoomed version of
subfigure (b).
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FIGURE 4. (a) The sparsity level card (a) and (b) the residual [|[W) ™" — ® D Vand||r of the
optimal vector of amplitudes a resulting from the sparsity-promoting DMD algorithm.

of N, eigenvalues selected by the sparsity-promoting DMD algorithm (crosses) are shown
in Figure 5. Eigenvalues in the interior of the unit circle correspond to strong damping
Re(log(u;)). Because a strongly damped mode influences only the initial portion of the
signal, its associated amplitude |o;| can be large, as shown in Figure 3(b). For decreasing
values of N, the sparsity-promoting DMD identifies eigenvalues that are responsible for
the bulk of the dynamics contained in the data sequence. The selection of the retained
eigenvalues is non-trivial, but increasingly concentrates on the low-frequency modes as
N, decreases. For N, = 3, only the mean flow and one dominant frequency pair (that
corresponds to the fundamental frequency of the screech tone) remain, while for N, =5
a second, lower frequency is identified. In this low-/N, limit we do see that the sparsity-
promoting DMD approximates the processed data sequence using the most prevalent
structures. The corresponding amplitudes for the various truncations N, are displayed
in Figure 6. Again, as N, decreases a concentration on low frequencies is observed. We
also note that the amplitudes of the original DMD do not provide sufficient guidance in
reducing the full set of DMD modes to a few relevant ones.

A different picture emerges when probing the low-rank dynamic mode decomposi-
tion. As mentioned earlier, the eigenvalue distribution and modal shapes can deviate
significantly from their standard counterparts. This is illustrated in Figure 7, where the
eigenvalues p,; are plotted in the complex plane (crosses) and compared with the eigen-
values resulting from full-rank DMD (circles). Except for the mean-flow eigenvalue, the
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set of N, eigenvalues selected by the sparsity-promoting DMD algorithm (crosses). In subfigures
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(c-f), the dashed curves identify the unit circle.

(a) N, =115 (b) N, =47
o o] o o
104 .0 o 10 o o
o ° 92 9 ° ) o e o o ° o
o ot ée *o o o 0‘ 993 ‘0 o
lail103 °o o SBBE o o ° lail10% °o o, YBBE o o °
%o 0d 99 3o 0° °o 0% §°°% 5o 0°
o Og:w?%?ﬁ 0B, 0839@,@*%%%0 d
eog'g,,@‘ godSpo o o %ol L Mo bag o
1028 %" 5 s 1028 :%”6@ A SN
Bl aps e a5,
@ ° e © 2 @ . e ©
- —7/2 0 /2 T - —7/2 /2 0
Im(log(u:)) Im(iog (i)
() N. =5 (d) N. =3
o o o o
4000 4000
3000 3000
o] o le] o
2000 o o 2000 o R
o o o o
1000 ° ° 2 1000 ° ° °
o o o o
° 090 o %o ) ° 00 o o©0%o °
2
0 =632 —o1 o 0.1 0.2 0 =53 =01 0 01 02
Im(log(u)) Im(iog (1))

FIGURE 6. Dependence of the absolute value of the amplitudes «; on the frequency (imaginary
part) of the corresponding eigenvalues u;. The results are obtained using the standard DMD
algorithm (circles) and the sparsity-promoting DMD algorithm (crosses) with N, DMD modes.
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FIGURE 7. Eigenvalues resulting from the standard DMD algorithm (circles) and the low-rank
DMD algorithm with r non-zero eigenvalues (crosses). In subfigures (c-f), the dashed curves
identify the unit circle.

low-rank eigenvalues deviate markedly from the standard ones, even though we observe
the same concentration on low-frequency structures as in the sparsity-promoting case.
This deviation of the low-rank eigenvalues is such that they are driven towards the unit
circle. Unlike a Fourier transform, the frequencies Im(log(u;)) selected by the low-rank
DMD are not uniform (see especially Figure 7(c)) and furthermore are not multiples
of 1/T where T is the sample window length. We also note that low-rank DMD elimi-
nates the high-amplitude, highly damped eigenvalues faster than sparse DMD as N, is
decreased.

Finally, Figure 8 juxtaposes the low-rank and sparsity-promoting DMD algorithms de-
veloped in this brief. The performance of each algorithm is quantified by the Frobenius
norm of the approximation error between a low-dimensional representation and the full
data sequence (in terms of the number of included structures). As expected, the per-
formance of both algorithms deteriorates as the number of modes is reduced; however,
Figure 8 demonstrates that the loss of performance for the low-rank DMD is far more
precipitous than that for the sparsity-promoting DMD.

6. Concluding remarks

We have introduced two extensions of the standard DMD algorithm that address the
reduction of the full rank-N decomposition to a low-dimensional one. The first algorithm
(low-rank DMD) is based on the representation of the approximation problem by a rank-
r solution (with < N). The second algorithm (sparse DMD) uses ¢1-norm of the vector
of the unknown amplitudes as a proxy for enforcing sparsity; a trade-off between the
quality of approximation of the snapshot sequence and the number of DMD modes is
achieved by augmenting the least-squares optimization problem by a term that penalizes
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FIGURE 8. The optimal residual of the sparsity-promoting (symbols) and low-rank (solid line)
DMD algorithms.

the f1-norm of the amplitude vector. This induces a sparse vector of amplitudes and
consequently selects DMD modes and frequencies that have strongest influence on the
quality of approximation on a given time interval.

Both algorithms have been tested on a data set of a screeching jet and have shown their
value in quantitative data analysis. Even though the reported results are preliminary, they
show a direction of research with great promise and a wealth of applications.
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