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Abstract— We assess the efficacy of a zero-net-mass-flux
blowing and suction in the form of streamwise traveling
waves for controlling the onset of turbulence in a channel
flow. For small amplitude actuation along the walls, we uti-
lize perturbation analysis to determine modifications in the
base flow and to examine the resulting net power balance.
Sensitivity of the velocity fluctuations around this base flow
is then employed as a basis for selection of traveling wave
parameters. Our simulation-free approach reveals that, relative
to the uncontrolled flow, the velocity fluctuations around the
upstream traveling waves at best exhibit similar sensitivity
to background disturbances. In contrast, the downstream
traveling waves with properly designed speed and frequency
can significantly reduce sensitivity which makes them well-
suited for preventing transition. These theoretical predictions
are facilitated by perturbation analysis (in the wave amplitude)
of the linearized Navier-Stokes equations, and they are verified
using full-scale simulations of the nonlinear flow dynamics in
companion paper, [1].

Index Terms— Flow control; spatially-periodic systems; trav-
eling waves; turbulence suppression; variance amplification.

I. INTRODUCTION

Fluid motion is usually classified as either laminar or
turbulent; flows that are smooth and ordered (laminar) may
become complex and disordered (turbulent) as the flow
strength increases. This process is commonly referred to as
transition (to turbulence). A laminar flow is characterized by
smaller viscous shear stresses and velocity gradients than a
turbulent flow, leading to a lower skin-friction drag force on
a vehicle moving through a fluid in the laminar regime.

Sensorless flow control represents a viable and effective
alternative to strategies with wall-mounted arrays of sensors
and actuators. In [2], direct numerical simulations (DNS) of
the Navier-Stokes (NS) equations were used to show that
a surface blowing and suction in the form of an upstream
traveling wave (UTW) results in a sustained sublaminar
drag. A fundamental limitation on the balance of power in
transpiration-based techniques was recently examined in [3];
this study showed that, relative to the uncontrolled laminar
flow, any strategy that results in sublaminar drag necessarily
has negative net efficiency.

In this paper, we show that a positive net efficiency can be
achieved in a channel flow subject to streamwise traveling
waves if the uncontrolled flow becomes turbulent but the
controlled flow stays laminar. Starting from this observation,
we develop a framework for selection of control parameters
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that are capable of (i) improving dynamical properties of
the flow; and (ii) achieving positive net efficiency. Our
main analytical tool is input-output analysis of stochastically
forced linearized NS equations with spatially periodic coef-
ficients. Periodicity in the problem arises from the base flow
induced by the traveling waves and it introduces significant
design challenges. Motivated by our desire to have low
cost of control we confine our study to flows subject to
small amplitude traveling waves. This also facilitates use of
efficient perturbation-analysis-based techniques that provide
an explicit formula for variance amplification of velocity
fluctuations. Our approach shows that the UTWs are poor
candidates for preventing transition; conversely, perturbation
analysis reveals that properly designed downstream traveling
waves (DTWs) can substantially reduce amplification of the
most energetic flow structures. This indicates that the DTWs
can be used as an effective means for preventing transition.
Moreover, we show the existence of DTW parameters that re-
sult in a positive net efficiency compared to the uncontrolled
flow that becomes turbulent. Our theoretical predictions are
confirmed in [1], where we exhibit the predictive power of
the proposed method by conducting high fidelity simulations
of the nonlinear flow equations.

Our presentation is organized as follows: in § II, we for-
mulate the governing equations in the presence of traveling
waves; the influence of blowing and suction along the walls
on the nominal skin-friction drag coefficient and the nominal
net efficiency is also discussed in this section. A frequency
representation of the NS equations linearized around velocity
induced by traveling waves is presented in § III. We further
discuss a notion of variance amplification (i.e., the H2 norm)
for spatially-periodic systems and present an analytical ap-
proach to determining the H2 norm in flows subject to small
amplitude traveling waves. In § IV, we employ perturbation
analysis to identify the values of wave frequency and speed
that reduce variance amplification relative to the uncontrolled
flow; we show that all amplification trends are captured by
perturbation analysis up to a second order in wave amplitude.
A brief summary of the main results is provided in § V.

II. PROBLEM FORMULATION

A. Governing equations

Consider a channel flow (cf. Fig. 1 for illustration) gov-
erned by the non-dimensional incompressible NS equations

ut̄ = − (u ·∇)u − ∇P + (1/Rc)∆u + F, 0 = ∇·u,
(1)

with the Reynolds number defined in terms of the centerline
velocity of the parabolic laminar profile Uc and channel half-
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Fig. 1. A channel flow with blowing and suction along the walls.

height δ, Rc = Uc δ/ν. The kinematic viscosity is denoted
by ν, the velocity vector is given by u, P is the pressure, F
is the body force, ∇ is the gradient, and ∆ = ∇ ·∇ is the
Laplacian. The spatial coordinates and time are represented
by (x̄, ȳ, z̄) and t̄, respectively.

In addition to a constant pressure gradient, Px̄, the flow is
exposed to a zero-net-mass-flux surface blowing and suction
in the form of a streamwise traveling wave. In the absence
of the nominal body force, F̄ ≡ 0, base velocity ub =
(U, V, W ) represents the steady-state solution to (1) subject
to

V (ȳ = ±1) = ∓2 α cos (ωx(x̄ − c t̄)), F̄ ≡ 0,

U(±1) = Vȳ(±1) = W (±1) = 0, Px̄ = − 2/Rc,
(2)

where ωx, c, and α, respectively, identify frequency, speed,
and amplitude of the streamwise traveling wave. Positive
values of c define a DTW, whereas negative values of c define
a UTW. The time dependence in V (±1) can be eliminated
by the transformation, (x = x̄ − ct̄, y = ȳ, z = z̄, t = t̄).
This change of coordinates does not influence the spatial
differential operators, but it transforms the time derivative to
∂t̄ = ∂t − c ∂x, which adds an additional convective term to
the NS equations

ut = cux − (u ·∇)u − ∇P + (1/Rc)∆u + F,

0 = ∇·u.
(3)

In new coordinates, the wall-actuation (2) induces a two-
dimensional base velocity, ub = (U(x, y), V (x, y), 0),
which represents the steady-state solution to (3).

The equations describing dynamics (up to a first order) of
velocity fluctuations v = (u, v, w) around base velocity, ub,
are obtained by decomposing each field in (3) into the sum
of base and fluctuating parts, i.e., {u = ub + v, P = P + p,
F = 0 + d}, and by neglecting the quadratic term in v

vt = cvx − (ub ·∇)v − (v ·∇)ub − ∇p +
(1/Rc)∆v + d, 0 = ∇·v.

(4)

Note that the boundary conditions (2) are satisfied by base
velocity and, thus, velocity fluctuations assume homogeneous
Dirichlet boundary conditions.

B. Base flow

We consider the situation in which a surface blowing and
suction has a small amplitude α. In this case, a perturbation
analysis can be employed to efficiently solve (3) subject
to (2) and determine the corrections to the base parabolic
profile. Up to a second order in α, U(x, y) and V (x, y) can

(a) (b)

Fig. 2. (a) The nominal flux, UB(α); and (b) the nominal skin-friction
drag coefficient, Cf (α), for a UTW and a DTW in channel flow with
Rc = 2000. The results are obtained by solving (3) subject to (2), at
the steady-state, using Newton iterations; UB and Cf of the laminar and
turbulent uncontrolled flows are also shown for comparison.

be represented as

U(x, y) = U0(y) + α U1(x, y) + α2 U2(x, y) +O(α3),
V (x, y) = α V1(x, y) + α2 V2(x, y) +O(α3),

where U0(y) = 1−y2 denotes base velocity in flow with no
control. Owing to the spatially periodic boundary conditions,
the corrections to the base velocity in flow subject to travel-
ing waves inherit periodicity in the streamwise direction

U1(x, y) = U1,−1(y) e−iωxx + U1,1(y) eiωxx,

V1(x, y) = V1,−1(y) e−iωxx + V1,1(y) eiωxx,

U2(x, y) = U2,0(y) + U2,−2(y) e−2iωxx + U2,2(y) e2iωxx,

V2(x, y) = V2,−2(y) e−2iωxx + V2,2(y) e2iωxx.

The nominal bulk flux is determined by UB =
(1/2)

∫ 1

−1
U(y) dy where the overline denotes average over

horizontal directions. The nominal flux in the uncontrolled
flow is UB,0 = (1/2)

∫ 1

−1
U0(y) dy = 2/3. Even in the

absence of driving pressure gradient, it was recently shown
that blowing and suction along the walls induces ‘pumping’
in a direction opposite to that of the traveling wave [4].

Fig. 2 is obtained by solving (3) subject to (2), at the
steady-state, using Newton’s method. The nominal flux and
associated drag coefficient for a UTW with c = −2 and
ωx = 0.5 and a DTW with c = 5 and ωx = 2 are
shown. The flux and drag coefficient of both laminar and
turbulent uncontrolled flows are also given for comparison.
The nominal skin-friction drag coefficient is defined as

Cf = 2 τw/U2
B = −2 Px/U2

B ,

where τw is the nondimensional average wall-shear stress.
For the fixed pressure gradient, Px = −2/Rc, the nominal
skin-friction drag coefficient is inversely proportional to
square of the nominal flux and, in uncontrolled laminar flow
with Rc = 2000, we have Cf = 4.5 × 10−3. The UTWs
produce larger nominal flux (and, consequently, smaller
nominal drag coefficient) compared to both laminar and
turbulent uncontrolled flows. On the other hand, the DTWs
yield smaller nominal flux (and, consequently, larger nominal
drag coefficient) compared to uncontrolled laminar flow.
In situations where uncontrolled flow becomes turbulent,
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Fig. 3. The steady-state net efficiency, Πnet, as a function of control
amplitude α for a UTW with (c = −2, ωx = 0.5) and a DTW with
(c = 5, ωx = 2) at Rc = 2000. The results are obtained by assuming two
different scenarios: (i) both the uncontrolled and controlled flows remain
laminar (dashed); and (ii) the uncontrolled flow becomes turbulent while
the controlled flow stays laminar (solid).

however, the DTWs with amplitudes smaller than a certain
threshold value may have lower nominal drag coefficient than
the uncontrolled (turbulent) flow.

C. Net efficiency
For the fixed pressure gradient, the difference between the

fluxes of the controlled and the uncontrolled flows results in
production of a driving power (per unit horizontal area of
the channel)

Πprod = −2Px (UB,c − UB,u),

where UB,c and UB,u are the nominal flux of the controlled
and uncontrolled flows, respectively. On the other hand,
the required control power exerted at the walls (per unit
horizontal area of the channel) is given by [5]

Πreq = V P
∣∣
y =−1

− V P
∣∣
y = 1

. (5)

The control net efficiency is determined by the difference of
the produced and required powers [6]

%Πnet = Πnet/Πu, Πnet = Πprod − Πreq,

where %Πnet signifies the net power gained (positive Πnet)
or lost (negative Πnet), in the presence of wall-control, in
fraction of the power required to drive the uncontrolled flow,
Πu = −2Px UB,u.

D. Nominal efficiency of laminar controlled flows
Broadly speaking, for the fixed value of the Reynolds

number, three cases can be distinguished depending on the
energy of background disturbances: (i) both the uncontrolled
and the properly designed controlled flows remain laminar
(small disturbance energy); (ii) the uncontrolled flow be-
comes turbulent, while the controlled flow stays laminar for
the appropriate choice of traveling wave parameters (mod-
erate disturbance energy); and (iii) both the uncontrolled
and controlled flows become turbulent for all traveling wave
parameters (large disturbance energy). We note, however,
that poorly designed traveling waves can promote turbulence
even for background disturbances for which the uncontrolled
flow stays laminar (see [1]). Fig. 3 shows how much control
net efficiency can be achieved at the steady-state for two
sets of UTWs and DTWs; the dashed lines are obtained by

assuming that case (i) holds, and the solid lines are obtained
by assuming that case (ii) holds. If the uncontrolled flow
stays laminar (case (i)), the net efficiency is negative for
both UTWs and DTWs. Thus, the uncontrolled laminar flow
is more efficient than either a UTW or a DTW laminar
flow; this is in agreement with a recent study of [3] where
it was shown that any transpiration-based control strategy
that results in a sublaminar drag necessarily has negative net
efficiency relative to the uncontrolled laminar flow.

On the other hand, in case (ii), the positive net efficiency
can be achieved for control amplitudes smaller than a certain
threshold value (cf. Fig. 3). For the uncontrolled flow that be-
comes turbulent, we have UB,u = 0.4066 which corresponds
to the skin-friction drag coefficient Cf = 0.0121 of the
uncontrolled turbulent flow (see DNS results of [1]). Owing
to the difference between UB,u and UB,0, it is possible to
obtain a positive net efficiency for sufficiently small value
of α. In a nutshell, the control amplitude needs to be large
enough to maintain the laminar flow but increasing the
control amplitude beyond certain value brings the efficiency
down and eventually leads to negative efficiency. If the effi-
ciency is negative, the reduced drag obtained by preventing
transition does not lead to any net benefit in the presence of
control. However, such controls may be advantageous when
the primal interest is in maintaining a laminar flow.

The solid curves in Fig. 3 are computed under the assump-
tion that the uncontrolled flow becomes turbulent while the
controlled flow stays laminar. Whether or not the controlled
flow can stay laminar depends on the dynamics of velocity
fluctuations around streamwise traveling waves.

III. DYNAMICS OF VELOCITY FLUCTUATIONS

A. Evolution model with forcing
A standard conversion of (4) to the wall-normal velocity

(v)/vorticity (η) formulation removes the pressure from the
equations and yields the following evolution model

Eψt(x, y, z, t) = F ψ(x, y, z, t) + Gd(x, y, z, t),
v(x, y, z, t) = C ψ(x, y, z, t).

(6)
This model is driven by the body force fluctuation vector
d = (d1, d2, d3), which can account for flow disturbances.
The internal state of (6) is determined by ψ = (v, η),
with Dirichlet and Neumann boundary conditions on v and
Dirichlet boundary conditions on η. All operators in (6)
are matrices of differential operators in three coordinate
directions x, y, and z. While operators E, G, and C do
not depend on the base velocity, operator F is base velocity
dependent and, hence, it determines changes in the dynamics
owing to changes in ub. Moreover, for base velocity of § II-
B, F inherits spatial periodicity in x from ub and it can be
represented as

F = F0 +
∞∑

l = 1

αl
l∑

r
2
=−l

eirωxxFl,r,

where F0 and Fl,r are spatially invariant operators in the
streamwise and spanwise directions and

∑l

r
2
=−l

signifies
that r takes the values {−l,−l + 2, . . . , l − 2, l}. This
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expansion effectively isolates spatially invariant and spatially
periodic parts of operator F , which is particularly well-suited
for representation of (6) in the frequency domain.

B. Frequency representation of the linearized model

Owing to the structure of the linearized NS equation,
the differential operators E, G, and C are invariant with
respect to translations in horizontal directions. On the other
hand, operator F is invariant in z and periodic in x. Thus,
the Fourier transform in z can be applied to algebraize the
spanwise differential operators. In other words, the normal
modes in z are the spanwise waves eikzz , where kz denotes
the spanwise wavenumber. On the other hand, the appro-
priate normal modes in x are given by the so-called Bloch
waves [7], which are determined by a product of eiθx and
the 2π/ωx periodic function in x, with θ ∈ [0, ωx). Based
on the above, each signal in (6) (for example, d) can be
expressed as

d(x, y, z, t) = eikzzeiθx d̄(x, y, kz, t),
d̄(x, y, kz, t) = d̄(x + 2π/ωx, y, kz, t),

where kz ∈ R, θ ∈ [0, ωx), and only real parts are to be
used for representation of physical quantities. Expressing
d̄(x, y, kz, t) in Fourier series yields

d(x, y, z, t) =
∞∑

n =−∞
d̄n(y, kz, t) ei(θnx + kzz), (7)

where θn = θ + nωx, and {d̄n(y, kz, t)}n∈Z are the
coefficients in the Fourier series expansions of d̄(x, y, kz, t).

The frequency representation of the linearized NS equation
is obtained by substituting (7) into (6)

∂tψθ(y, kz, t) = Aθ(kz)ψθ(y, kz, t) + Bθ(kz)dθ(y, kz, t),
vθ(y, kz, t) = Cθ(kz)ψθ(y, kz, t).

(8)
This representation is parameterized by kz and θ
and ψθ(y, kz, t) denotes a bi-infinite column vector,
ψθ(y, kz, t) = col {ψ(θn, y, kz, t)}n∈Z. The same defini-
tion applies to dθ(y, kz, t) and vθ(y, kz, t). On the other
hand, for each kz and θ, Aθ(kz), Bθ(kz), and Cθ(kz)
are bi-infinite matrices whose elements are one-dimensional
integro-differential operators in y. The structure of these
operators depends on frequency representation of E, F , G,
and C in (6). In short, Bθ(kz) and Cθ(kz) are block-diagonal
operators and Aθ = A0θ +

∑∞
l = 1 αlAlθ, where A0θ and

Alθ are structured operators. The particular structure of A0θ

and Alθ is exploited in perturbation analysis of the H2 norm
for small α in § III-D.

C. H2 norm of the linearized model

The frequency representation (8) contains a large amount
of information about linearized dynamics. For example, it
can be used to assess stability properties of the underlying
base flow. However, since the early stages of transition in
wall-bounded shear flows are not appropriately described
by the stability properties of the linearized equations [8],
we perform an input-output analysis of stochastically forced
model (8) to assess the effectiveness of the proposed control

strategy. Namely, we set the initial conditions in (8) to
zero and study the responses of the linearized dynamics to
uncertain body forces. When the body forces are absent, the
response of stable flows eventually decays to zero. However,
in the presence of stochastic body forces, the linearized
NS equations are capable of maintaining high levels of the
steady-state variance [9]–[11]. Our analysis quantifies the
effect of streamwise traveling waves on the asymptotic levels
of variance and describes how sensitivity to background
disturbances changes in the presence of control.

Let us assume that a stable system (8) is subject to a zero-
mean white stochastic process (in y and t) dθ(y, kz, t). Then,
for each kz and θ, the H2 norm is determined by

Ē(θ, kz) = trace (limt→∞ E {vθ(·, kz, t)⊗ vθ(·, kz, t)}) ,

where E is the expectation operator and vθ⊗vθ is the tensor
product of vθ with itself. We note that Ē(θ, kz) determines
the asymptotic level of variance maintained by a stochastic
forcing in (8). Typically, this quantity is computed by running
DNS of the NS equations until the statistical steady-state is
reached. However, for linearized system (8), Ē(θ, kz) can
be determined using the solution to the following operator
Lyapunov equation [12]

Aθ(kz)Xθ(kz) + Xθ(kz)A∗θ(kz) = −Bθ(kz)B∗θ(kz), (9)

as
Ē(θ, kz) = trace (Xθ(kz) C∗θ (kz) Cθ(kz)) .

Here, Xθ(kz) denotes the autocorrelation operator of ψθ, i.e.,
Xθ(kz) = limt→∞ E {ψθ(·, kz, t)⊗ψθ(·, kz, t)} . Since
C∗θ (kz) Cθ(kz) is an identity operator, we have

Ē(θ, kz) = trace (Xθ(kz)) =
∞∑

n =−∞
trace (Xd(θn, kz)) ,

(10)
where Xd(θn, kz) denotes the elements on the main diagonal
of operator Xθ.

D. Perturbation analysis of H2 norm
Solving (9) is computationally expensive; a discretization

of the operators (in y) and truncation of the bi-infinite matri-
ces convert (9) into a large-scale matrix Lyapunov equation.
Instead, we employ an efficient perturbation-analysis-based
approach [13] for solving equation (9). This method is well-
suited for systems with small amplitude spatially periodic
terms and it converts (9) into a set of conveniently coupled
system of operator-valued Lyapunov and Sylvester equations.
A finite dimensional approximation of these equations yields
a set of algebraic matrix equations whose order is determined
by the number of fields in the evolution model (here 2,
the wall-normal velocity and vorticity) times the size of
discretization in y.

It can be shown that for 0 < α � 1, the H2 norm of
system (6) can be represented as

Ē(θ, kz;Rc, α, c, ωx) = Ē0(θ, kz;Rc, ωx) +
α2 Ē2(θ, kz;Rc, c, ωx) + O(α4).

(11)

Thus, only terms with even powers in α contribute to Ē,
which in controlled flow depends on six parameters. Since
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(a) Ẽ0(kx, kz) (b) Ē0(θ, kz ; ωx)

Fig. 4. (a) The H2 norm, Ẽ0(kx, kz), of the uncontrolled channel flow
with Rc = 2000. The plot is given in the log-log-log scale; and (b)
For fixed ωx and θ, Ē0(θ, kz ; ωx) represents H2 norm of fluctuations
composed of all wavenumbers θn = {θ + nωx}n∈ Z; Ē0(θ, kz ; ωx) =P∞

n =−∞ Ẽ0(θ + nωx, kz).

our objective is to identify trends in the H2 norm, we confine
our attention to a perturbation analysis up to a second order
in α. In § IV-C, we show that the essential trends are correctly
predicted by the second order of correction.

IV. H2 NORM IN CHANNEL FLOW WITH Rc = 2000
In this section, we study the H2 norm of stochastically

forced linearized NS equations in channel flows subject
to streamwise traveling waves. Equation (11) reveals the
dependence of the H2 norm on traveling wave amplitude α,
for 0 < α � 1. However, since the operators in (8) depend
on the spatial wavenumbers (θ and kz), Rc, ωx, and c, the
H2 norm is also a function of these parameters. Finding
the optimal triple (α, c, ωx) that minimizes the H2 norm is
outside the scope of the current study; however, we identify
the values of c and ωx that are capable of reducing the H2

norm in flows subject to small amplitude traveling waves,
thereby providing guidelines for the selection of wave speed
and frequency for controlling the onset of turbulence.

A. H2 norm of uncontrolled flow

We briefly comment on the H2 norm of the uncontrolled
channel flow with Rc = 2000; for an in-depth treatment
of this problem see [11]. The appropriate normal modes in
the uncontrolled flow are purely harmonic streamwise and
spanwise waves eikxx eikzz , where kx denotes the streamwise
wavenumber. Fig. 4(a) illustrates the H2 norm of the uncon-
trolled flow as a function of kx and kz , which we denote by
Ẽ0(kx, kz). The streamwise constant fluctuations with O(1)
spanwise wavenumbers carry most energy in the uncontrolled
flow. Namely, the largest value of Ẽ0(kx, kz) occurs at
(kx = 0, kz ≈ 1.78). We note that these input-output
resonances do not correspond to the least-stable modes of
the linearized NS equation. Rather, they arise because of the
coupling from the wall-normal velocity v to the wall-normal
vorticity η. Physically, this coupling is a product of the vortex
tilting (or lift-up) mechanism. On the other hand, the least-
stable modes of uncontrolled flow create a local peak in
Ẽ0(kx, kz) around (kz = 0, kx ≈ 1.2), with a magnitude
significantly lower compared to the magnitude achieved by
the streamwise constant modes. Finally, the H2 norm of the
uncontrolled flow Ē0(θ, kz;ωx) as appeared in (11) can be

obtained from Ē0(θ, kz;ωx) =
∑∞

n =−∞ Ẽ0(θ + nωx, kz).
In other words, for fixed ωx and θ, Ē0(θ, kz;ωx) represents
the H2 norm of velocity fluctuations that are composed
of all wavenumbers kx = {θ + nωx}n∈Z. In comparison,
Ẽ0(kx, kz) is the H2 norm of velocity fluctuations composed
of a single wavenumber kx (for illustration, see Fig. 4(b)).

B. Variance amplification of controlled flow

We next consider the H2 norm of channel flow with
Rc = 2000 in the presence of UTWs and DTWs. In flows
subject to small amplitude blowing and suction along the
walls, the perturbation analysis can be used to obtain an
explicit formula for variance amplification (cf. (11))

Ē(θ, kz;α, c, ωx)
Ē0(θ, kz;ωx)

≈ 1 + α2 g2(θ, kz; c, ωx). (12)

Thus, influence of control can be assessed by evaluating
function g2 = Ē2/Ē0 that quantifies variance amplification
up to a second order in α. While the H2 norm of the
uncontrolled flow Ē0 is always positive, the corrections to
it (e.g., Ē2) can assume both positive and negative values
with vastly different magnitudes. It is thus advantageous
to visualize function g2 using a sign-preserving logarithmic
scale

ĝ2 = sign(g2) log10(1 + |g2|).

For example, ĝ2 = 5 or ĝ2 = −3, respectively, signify Ē2 =
105 Ē0 or Ē2 = −103 Ē0.

Since most amplification in the uncontrolled flow occurs
for fluctuations with (kx = 0, kz = 1.78), it is relevant
to study the influence of controls on these most energetic
modes. In the controlled flow, the streamwise-constant modes
are imbedded in the fundamental mode, i.e. fluctuations
with θ = 0 (cf. § III-B). As the plots of ĝ2 in Figs. 5(a)
and 5(b) reveal, the values of c and ωx determine whether
these modes are amplified or attenuated by the traveling
waves. Up to a second order in α, the control parameters
associated with the blue regions in these two figures reduce
variance amplification of the uncontrolled flow. As evident
from Fig. 5(a), only a narrow range of UTWs with ωx . 0.1
is capable of reducing variance amplification. However, since
the required power for maintaining the nominal flow for such
low frequency controls is prohibitively large, the choice of
UTWs for transition control is not favorable from efficiency
point of view. On the other hand, a large range of DTW pa-
rameters is capable of making a controlled flow less sensitive
to stochastic excitations (cf. Fig. 5(b)). Moreover, our results
show that the ωx & 0.1 region contains the smallest required
power for sustaining the DTWs; this suggests the potential
of properly designed DTWs for maintaining a laminar flow
with positive net efficiency (as confirmed by high fidelity
simulations in [1]). It is noteworthy that traveling waves
with parameters considered in [2] (i.e., ωx = {0.5, 1, 1.5, 2}
and −4 < c < 0) increase amplification of the most
energetic modes of the uncontrolled flow (cf. Fig. 5(a)).
Simulations of [1] show that such UTWs promote turbulence
even for initial conditions for which the uncontrolled flow
stays laminar.
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(a) upstream (b) downstream

Fig. 5. Second order correction to variance amplification, ĝ2(c, ωx), of
the modes with (θ, kz) = (0, 1.78), in the presence of (a) UTWs; and
(b) DTWs in channel flow with Rc = 2000. The dot and the square,
respectively, denote (c = −2, ωx = 0.5) and (c = 5, ωx = 2). The color
plots are obtained using a sign-preserving logarithmic scale; e.g., ĝ2 = 5
and ĝ2 = −3 should be interpreted as Ē2 = 105 Ē0 and Ē2 = −103 Ē0.

(a) upstream (b) downstream

Fig. 6. The H2 norm, Ē(kz), of the fundamental mode θ = 0 in channel
flow with Rc = 2000 subject to: (a) a UTW with c = −2 and ωx = 0.5;
and (b) a DTW with c = 5 and ωx = 2.

C. Effect of control amplitude on the H2 norm

We next discuss influence of control amplitude on the
H2 norm. Our computations show that perturbation analysis
(up to a second order in α) correctly predicts all essential
trends. Fig. 6 compares the H2 norm of the fundamental
mode in uncontrolled channel flow with Rc = 2000 (blue
curves), and in the controlled flows subject to: (a) a UTW
with c = −2 and ωx = 0.5, Fig. 6(a); and (b) a DTW with
c = 5 and ωx = 2, Fig. 6(b). The controlled flow results
are obtained using large-scale truncation of the operators in
Lyapunov equation (9). Fig. 6(b) shows that the properly
designed DTWs with amplitudes equal to 5 %, 10 %, and
20 % of the base centerline velocity reduce the peak value
of the H2 norm of the uncontrolled flow by approximately
28 %, 60 %, and 80 %, respectively.

In contrast to DTWs, Fig. 6(a) demonstrates that the
UTWs with c = −2 and ωx = 0.5 increase variance
amplification. We note that all of these trends are correctly
captured by the second order correction (in α) to the H2

norm. Furthermore, the large H2 norm caused by UTWs can
be thought of as a precursor to flow instability; namely, it
turns out that the UTWs destabilize the flow for α > 0.03
which is a smaller value compared to the amplitudes chosen
in [2] (α = 0.05 and α = 0.125, respectively). Therefore,
the UTWs at best exhibit similar sensitivity to background
disturbances as the uncontrolled flow. For control amplitudes

shown in Fig. 6, we have verified stability of fluctuations
around base velocities in both UTWs and DTWs by comput-
ing the eigenvalues of the large-scale truncation of operator
Aθ(kz) in (8).

V. CONCLUDING REMARKS

We have used input-output analysis of the linearized NS
equation to examine the effect of traveling waves on the
dynamics of velocity fluctuations in a transitional chan-
nel flow. Our simulation-free design employs perturbation
analysis as a basis for identification of the traveling wave
frequencies and speeds that are capable of reducing variance
amplification in the presence of small amplitude actuation.
Contrary to current practice, this approach avoids the need
for extensive numerical simulations and experiments in the
early design stages.

Our results indicate that the UTWs are poor candidates
for preventing transition as they amplify the most energetic
modes of the uncontrolled flow. On the contrary, the properly
designed DTWs can significantly reduce the variance ampli-
fication of 3D fluctuations, which makes them well-suited
for controlling the onset of turbulence. In addition, we have
studied the net power balance of flows subject to traveling
waves. The predictive power of our approach is demonstrated
in a companion paper [1] where all theoretical findings
are confirmed by numerical simulations of the nonlinear
NS equations. In particular, the DTWs identified by our
analysis can maintain a laminar flow and achieve a positive
net efficiency relative to the uncontrolled flow that becomes
turbulent.
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to turbulence using streamwise traveling waves: direct numerical sim-
ulations,” in Proceedings of the 2010 American Control Conference,
Baltimore, MD, 2010, to appear.

[2] T. Min, S. M. Kang, J. L. Speyer, and J. Kim, “Sustained sub-laminar
drag in a fully developed channel flow,” J. Fluid Mech., vol. 558, pp.
309–318, 2006.

[3] T. R. Bewley, “A fundamental limit on the balance of power in a
transpiration-controlled channel flow,” J. Fluid Mech., vol. 632, pp.
443–446, 2009.

[4] J. Hœpffner and K. Fukagata, “Pumping or drag reduction?” J. Fluid
Mech., vol. 635, pp. 171–187, 2009.

[5] I. G. Currie, Fundamental Mechanics of Fluids. CRC Press, 2003.
[6] M. Quadrio and P. Ricco, “Critical assessment of turbulent drag

reduction through spanwise wall oscillations,” J. Fluid Mech., vol.
521, pp. 251–271, 2004.

[7] A. H. Nayfeh and D. T. Mook, Nonlinear oscillations. New York:
John Wiley & Sons, 1979.

[8] P. J. Schmid, “Nonmodal stability theory,” Annu. Rev. Fluid Mech.,
vol. 39, pp. 129–162, 2007.

[9] B. F. Farrell and P. J. Ioannou, “Stochastic forcing of the linearized
Navier-Stokes equations,” Phys. Fluids A, vol. 5, no. 11, pp. 2600–
2609, 1993.

[10] B. Bamieh and M. Dahleh, “Energy amplification in channel flows
with stochastic excitation,” Phys. Fluids, vol. 13, no. 11, pp. 3258–
3269, 2001.
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