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Abstract— We examine transient responses of velocity fluc-
tuations in inertialess channel flows of viscoelastic fluids. Such
fluids have broad applications in modern technology including
the design and control of polymer processing operations and
the development of strategies to efficiently mix fluids in mi-
crofluidic devices. For streamwise-constant three-dimensional
fluctuations, we demonstrate analytically the existence of initial
conditions that lead to quadratic scaling of the kinetic energy
density with the Weissenberg number, We. This illustrates that
in strongly elastic channel flows of viscoelastic fluids, velocity
fluctuations can exhibit significant transient growth even in the
absence of inertia. Furthermore, we show that the fluctuations
in streamwise velocity achieve O(We) growth over a time scale
O(We) before eventual asymptotic decay. We also demonstrate
that the large transient responses originate from the stretching
of polymer stress fluctuations by a background shear and
draw parallels between streamwise-constant inertial flows of
Newtonian fluids and streamwise-constant inertialess flows of
viscoelastic fluids.

Index Terms— Elastic turbulence, inertialess flows, microflu-
idic mixing, polymers, transient response, viscoelastic fluids.

I. INTRODUCTION

In contrast to Newtonian fluids (e.g. air and water) which
transition to turbulence under the influence of inertia, vis-
coelastic fluids may become turbulent even at low Reynolds
numbers (Re) due to additional dynamics associated with the
polymeric contribution to the stress tensor [1]–[4]. Transition
to turbulence in these fluids is not only of fundamental
scientific importance, but is also relevant to applications. Ex-
amples include the design and control of polymer processing
operations and the development of strategies to efficiently
mix fluids in microfluidic devices [5]–[8].

By now it is well understood that standard linear sta-
bility analysis is misleading when it comes to predicting
the early stages of transition in wall-bounded shear flows
of Newtonian fluids [9]. The non-normal nature of the
dynamical generator in the linear stability problem allows for
disturbances to the linearized Navier-Stokes (NS) equations
to be significantly amplified, indicating that these equations
have high sensitivity (i.e., they are exceedingly sensitive to
external disturbances) and small robustness margins (i.e.,
they are exceedingly sensitive to small changes in the under-
lying model) [10]–[13]. Thus, background disturbances and
imperfections in the laboratory represent particular examples
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of modeling uncertainty that may conspire to yield exper-
imental observations which are at odds with results from
standard linear stability analysis.

For wall-bounded shear flows of viscoelastic fluids, the
dynamical generator in the linear stability problem is also
non-normal. This has led a number of researchers to apply
the tools of nonmodal stability theory in order to better
understand transition in these flows. These analyses have
primarily used the Oldroyd-B constitutive equation, the sim-
plest model for a dilute solution of polymer molecules [6].
Both analytical and numerical studies of transient growth
in viscoelastic fluids have been carried out [14]–[18], and
these show that initial conditions exist which can grow
significantly at short times before decaying at long times. The
transient growth can occur when fluid inertia is much weaker
than fluid elasticity, and even when inertia is completely
absent. Except for Ref. [18], the disturbances considered are
two-dimensional (2D) and in the plane of the base flow. In
Ref. [18], three-dimensional (3D) disturbances are studied
using the upper convected Maxwell model (a special case of
the Oldroyd-B model), but these involve perturbations only
to the stresses and not to the velocity field.

In this paper we analyze transient responses of velocity
fluctuation in channel flows of viscoelastic fluids. In our
analysis we set the Reynolds number to zero, which yields
a static-in-time relationship between velocity and polymer
stress fields (i.e., inertialess flow of a polymeric fluid). The
motivation for considering inertialess flow comes from the
observation that polymeric fluids can become turbulent even
at very small Re [1], [2]. The dynamics of the polymer
stress tensor are represented using the Oldroyd-B constitutive
equation. Although velocity and polymer stress fluctuations
are fully 3D in general, we focus here on the case where
the fluctuations are 3D but streamwise-constant (i.e., the
streamwise wavenumber kx is set to zero); our prior work on
stochastically driven flows shows that such perturbations are
most amplified by the linearized dynamics [19], [20]. Addi-
tionally, considerably more analytical progress can be made
for this case compared to the case of 2D (streamwise-varying
but spanwise-constant) fluctuations. In particular, several
explicit scaling relationships are developed and numerically
stable results are obtained even at large Weissenberg number,
We, which is the ratio of the fluid relaxation time to the
characteristic flow time.

For streamwise-constant 3D fluctuations, we show that
velocity fluctuations can exhibit significant transient growth
even in inertialess flows. In particular, we analytically es-
tablish that the fluctuations in streamwise velocity achieve
O(We) growth over a time scale O(We) before eventual
asymptotic decay. Furthermore, we identify the stretching
of polymer stress fluctuations by a background shear as the
culprit behind this large transient growth and provide a com-
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parison of streamwise-constant inertial flows of Newtonian
fluids and inertialess flows of Oldroyd-B fluids.

II. PROBLEM SETUP

A. Governing equations and base state

We consider an incompressible flow of a polymeric fluid
in a straight 3D channel (Fig. 1). The fluid density is
given by ρ, λ is the polymer relaxation time, and ηs, ηp
are the solvent and polymeric contributions to the shear
viscosity, respectively. By scaling length with the channel
half height L, velocity with the largest base velocity Uo, time
with λ, pressure with (ηs + ηp)Uo/L, and polymer stresses
with ηpUo/L, the equations of motion, continuity, and the
polymeric contribution to the stress tensor can be written as

ReV̇ = We (β∆V + (1− β)∇·T−∇P −ReV·∇V) ,
(1a)

0 = ∇·V, (1b)

Ṫ = We
(
T·∇V + (T·∇V)T −V·∇T

)
+

∇V + (∇V)T −T. (1c)

Here, a dot identifies a partial derivative with respect to time
t, V is the velocity vector, P is the pressure, T is the
polymer stress tensor, ∇ is the gradient, and ∆ = ∇·∇
is the Laplacian. Eqs. (1) contain three parameters: the
Reynolds number, Re = ρUoL/(ηs + ηp), characterizes the
ratio of inertial to viscous forces; the Weissenberg number,
We = λUo/L, captures the product of the polymer relaxation
time λ and the typical velocity gradient Uo/L; and the
viscosity ratio, β = ηs/(ηs + ηp), quantifies the contribution
of the solvent to the total viscosity. The constitutive equation
(Eq. (1c)) is given for an Oldroyd-B fluid. This equation de-
scribes history-dependent elastic deformation and is obtained
from kinetic theory by representing each polymer molecule
by an infinitely extensible Hookean spring connecting two
spherical beads [6].

Fig. 1. Schematic of a three-dimensional channel flow.

In shear-driven (Couette) and pressure-driven (Poiseuille)
channel flows, Eqs. (1) exhibit the following steady-state
solutions for base velocity, v, and base polymer stress, τ ,

v =

[
U(y)

0
0

]
, τ =

 2We (U ′(y))2 U ′(y) 0
U ′(y) 0 0

0 0 0

 ,
where y denotes the wall-normal coordinate, U(y) = y in
Couette flow, U(y) = 1−y2 in Poiseuille flow, and U ′(y) =
dU(y)/dy.

In the limit of vanishing inertial forces, i.e. for Re = 0,
one obtains inertialess flow of an Oldroyd-B fluid for which
Eq. (1a) simplifies to the following static-in-time equation

0 = β∆V + (1− β)∇·T − ∇P. (2)

Clearly, for β = 1 Eq. (2) decouples from Eq. (1c) and
inertialess flow of a Newtonian fluid is recovered.

B. Streamwise-constant linearized model
We confine our study to streamwise-constant 3D fluctua-

tions in inertialess flows of an Oldroyd-B fluid. This signifies
that the dynamics evolve in the (y, z)-plane, and that the
flow fluctuations in all three spatial directions are considered;
for example, v = v(y, z, t) = [u v w ]T , where u, v,
and w, respectively, denote the streamwise, wall-normal,
and spanwise velocity fluctuations. This particular model
lends itself to an explicit characterization of the transient
growth dependence on the Weissenberg number, as we will
show below. We will utilize this explicit We-scaling to
draw parallels between streamwise-constant inertial flows of
Newtonian fluids and inertialess flows of Oldroyd-B fluids.

The linearized dynamics can be obtained by decomposing
each field in Eqs. (2), (1b), and (1c) into the sum of
base and fluctuating parts (e.g., T = τ + τ ), and by
neglecting quadratic terms in flow fluctuations in Eq. (1c)
(see Appendix A). For streamwise-constant flows, the (y, z)-
plane streamfunction ψ can be introduced to rewrite v and
w as {v = ∂zψ, w = −∂yψ}, which implies that velocity
fluctuations automatically satisfy the continuity equation.
Furthermore, the pressure can be eliminated from Eq. (2)
to express ψ and u in terms of the polymer stress fluctuation
tensor τ . For purely harmonic fluctuations in the z-direction,
application of this procedure yields

β∆2ψ = −(1− β)
(
ikz∂yτ22 − (∂yy + k2

z)τ23 − ikz∂yτ33
)
,

β∆u = −(1− β) (∂yτ12 + ikzτ13) ,

where the same notation is used to represent the field
(e.g., ψ(y, z, t)) and its spanwise Fourier transform (e.g.,
ψ(y, kz, t)). Here, τij with i, j = {1, 2, 3} denotes the
ijth component of the polymer stress fluctuation tensor
τ , kz is the spanwise wavenumber, i is the imaginary
unit, ∆ = ∂yy − k2

z with homogeneous Dirichlet boundary
conditions, and ∆2 = ∂yyyy−2k2

z∂yy+k4
z with homogeneous

Cauchy (both Dirichlet and Neumann) boundary conditions.
Thus, the streamfunction (and consequently v and w) at
each time instant depends only on the current value of
τ 1 = [ τ22 τ23 τ33 ]T ; similarly, the streamwise velocity u
is instantaneously equilibrated with the gradient of τ 2 =
[ τ12 τ13 ]T . To highlight this dependence, we write

ψ = Cψτ 1, u = Cuτ 2, (3)

where operators Cψ and Cu are given by

Cψ = −1− β
β

∆−2
[

ikz∂y −(∂yy + k2
z) −ikz∂y

]
,

Cu = −1− β
β

∆−1 [ ∂y ikz ] .

(4)
We further rearrange the six independent components of the
polymer stress tensor τ into the vector

[
τT1 τT2 τ3

]T
, τ3 =

τ11, and bring the linearization of Eq. (1c) to the following
form

τ̇ 1 = −τ 1 + F1ψψ, (5a)
τ̇ 2 = We (F21τ 1 + F2ψψ) + (−τ 2 + F2uu) , (5b)
τ̇3 = We2 F3ψψ + We (F32τ 2 + F3uu) − τ3, (5c)
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where the F-operators are given by Eq. (13) in Appendix A.
A careful examination of the linearized version of consti-
tutive equation (1c) shows that, from a physical point of
view, F1ψ and F2u produce gradients of velocity fluctuations
(i.e., ∇v), F2ψ captures both transport and stretching of
base polymer stress by velocity fluctuations (i.e., v·∇τ and
τ ·∇v), and F21 and F32 represent stretching of polymer
stress fluctuations by base shear (i.e., τ ·∇v). Furthermore,
operators F3ψ and F3u in Eq. (5c) quantify transport and
stretching of a base polymer stress by velocity fluctuations
(i.e., v·∇τ and τ ·∇v), respectively.

Substitution of Eq. (3) into Eqs. (5) suggests a one-way
coupling from Eq. (5a) to Eq. (5b) and from Eqs. (5a)
and (5b) to Eq. (5c),

τ̇ 1 = A11τ 1, (6a)
τ̇ 2 = WeA21τ 1 + A22τ 2, (6b)
τ̇3 = We2 A31τ 1 + WeA32τ 2 − τ3, (6c)

where the We-independent operators A are given by Eq. (14)
in Appendix A. Thus, for streamwise-constant fluctuations,
we conclude that: (i) the dynamics of τ 1 is not influenced by
the other polymer stress fluctuations; (ii) the evolution of τ 2

depends on the evolution of τ 1; and (iii) there is no coupling
from τ3 = τ11 to the other polymer stress components in
Eqs. (6). In particular, this demonstrates that in streamwise-
constant inertialess flows of Oldroyd-B fluids, evolution of
τ11 does not influence evolution of τ 1 and τ 2. Since the
velocity fluctuation vector v only depends on τ 1 and τ 2,
it follows that evolution of τ11 is inconsequential to the
dynamics of u, v, and w.

III. TRANSIENT RESPONSE OF VELOCITY FLUCTUATIONS

The main objective of this paper is to show that velocity
fluctuations in viscoelastic fluids can experience significant
transient growth even in the absence of inertia. This neces-
sitates study of the temporal evolution of the fluctuations’
kinetic energy density. In this section, we examine transient
growth of this measure of the size of velocity fluctuations
as a function of the Weissenberg number. We establish that
the presence of initial conditions in τ 1 leads to O(We)
responses of the streamwise velocity fluctuation. In contrast,
the responses from all other initial conditions to all other
velocity components are We-independent. Since the L2 norm
of velocity fluctuations determines kinetic energy, this shows
that initial conditions leading to quadratic scaling of the
energy density of the streamwise velocity fluctuation with
We can be configured. Therefore, in strongly elastic flows
of Oldroyd-B fluids the streamwise velocity can achieve
significant transient growth even in the absence of inertia if
the initial configuration of the polymers is such that τ 1(0) 6=
0. We also demonstrate that large transient responses arise
from stretching of polymers by background shear and pro-
vide a comparison of streamwise-constant inertial flows of
Newtonian fluids and inertialess flows of Oldroyd-B fluids.
In particular, we show that, at the level of velocity fluctuation
dynamics, polymer stretching and the Weissenberg number
in elasticity-dominated flows of viscoelastic fluids effectively
assume the role of vortex tilting and the Reynolds number
in inertia-dominated flows of Newtonian fluids.

A. Kinetic energy density

At any spanwise wavenumber kz and time t, the kinetic
energy density of velocity fluctuations is captured by

E(kz, t) = 〈v,v〉 = Eu(kz, t) + Eψ(kz, t),

where Eu(kz, t) = 〈u, u〉 and Eψ(kz, t) = 〈v, v〉 +
〈w,w〉 = −〈ψ,∆ψ〉 . The angular brackets denote the stan-
dard L2[−1, 1] inner product, which induces the L2[−1, 1]
norm

‖v‖22 = 〈v,v〉 =
∫ 1

−1

v∗(y, kz, t)v(y, kz, t) dy,

and the asterisk denotes the complex-conjugate transpose of
vector v. In view of the observation that v does not depend
on τ3, we neglect Eq. (6c) in further analysis, yielding the
following evolution model[

τ̇ 1

τ̇ 2

]
=
[

A11 0
WeA21 A22

] [
τ 1

τ 2

]
, (7a)[

u
v
w

]
=

[ 0 Cu

Cv 0
Cw 0

] [
τ 1

τ 2

]
. (7b)

The A-operators determine the dynamical properties of sys-
tem (7), and the C-operators specify the static-in-time rela-
tions between velocity fluctuation components u, v, and w
and polymer stress components τ 1 and τ 2. These operators
are We-independent and they are given by Eqs. (14) and (15)
in Appendix A. The system of equations (7) is in a form
suitable for the analysis carried out in Sec. III-B, where we
provide an explicit characterization of the We-dependence
for the transient growth of the velocity fluctuations.

B. Transient growth of kinetic energy density

By making use of basic results from linear systems theory,
the lower block-triangular structure of the operator on the
right-hand-side of Eq. (7a) can be exploited to formally
determine the temporal evolution of τ 1 and τ 2[

τ 1(t)
τ 2(t)

]
=
[

S11(t) 0
WeS21(t) S22(t)

] [
τ 1(0)
τ 2(0)

]
. (8)

Here, τ i(0) denotes the initial condition in τ i, i.e. τ i(0) =
τ i(y, kz, t = 0), i = 1, 2. The operator Sii(t) represents the
solution to the following equation [21]

Ṡii(t) = AiiSii(t), Sii(0) = I,

where I is the identity operator, and,

S21(t) =
∫ t

0

S22(t− ξ)A21S11(ξ) dξ.

For notational convenience the dependence on y, kz , and
β is suppressed in the above expressions. More precisely,
at any fixed (We, β, kz, t), the S-symbols in Eq. (8) denote
operators that map initial values of τ 1 and τ 2 (as a function
of y) to the values of τ 1 and τ 2 (as a function of y) at time
t, i.e.

τ 1(y, kz, t) = [S11(kz, t) τ 1(·, kz, 0)] (y),

τ 2(y, kz, t) = We [S21(kz, t) τ 1(·, kz, 0)] (y) +

[S22(kz, t) τ 2(·, kz, 0)] (y).
(9)
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It should be also noted that operators Sij are parameterized
by β and that all of them are We-independent. By substitut-
ing these expressions for τ 1(t) and τ 2(t) into Eq. (7b) we
finally arrive at

u(y, kz, t) = We [Cu(kz)S21(kz, t) τ 1(·, kz, 0)] (y) +

[Cu(kz)S22(kz, t) τ 2(·, kz, 0)] (y),

v(y, kz, t) = [Cv(kz)S11(kz, t) τ 1(·, kz, 0)] (y),

w(y, kz, t) = [Cw(kz)S11(kz, t) τ 1(·, kz, 0)] (y).

Several conclusions can now be drawn about dynamics of
velocity fluctuations in streamwise-constant inertialess flows
of Oldroyd-B fluids without doing any detailed computations.
First, the responses of wall-normal and spanwise velocity
fluctuations are We-independent and they are caused by
τ 1(0). Second, the streamwise velocity depends on both
τ 1(0) and τ 2(0); the contribution of τ 2(0) to u(t) is We-
independent and the contribution of τ 1(0) to u(t) scales
linearly with the Weissenberg number. Third, operator A21

in Eq. (7a) is essential to providing affine dependence of
u(t) on We; this operator couples τ 1 to τ 2 and if it was
zero the responses of all velocity components would be We-
independent since We would be gone from Eqs. (7).

Since the presence of initial conditions in τ 1 introduces
O(We) responses of the streamwise velocity fluctuation, we
next examine the maximal transient growth of u(t) (as a
function of kz , t, and β) arising from τ 1(0). For any fixed
(We, β; kz, t), this quantity is determined by

Gu1(We, β; kz, t) = sup
τ 1(0) 6= 0, τ 2(0)≡ 0

‖u(·, kz, t)‖22
‖τ 1(·, kz, 0)‖22

= sup
‖τ 1(0)‖2 = 1, τ 2(0)≡ 0

‖u(·, kz, t)‖22

= We2 σmax (Cu(kz)S21(β; kz, t))

= We2 Ḡu1(β; kz, t),
(10)

where σmax(·) denotes the largest singular value of a given
operator, and Ḡu1(β; kz, t) = σmax(Cu(kz)S21(β; kz, t)) is
a We-independent function. We will also pay attention to
the contribution of different components of τ 1(0) to the
transient growth of u(t). For example, Ḡu22(β; kz, t) will
denote the maximal transient growth of u(t) arising from
the initial condition in τ22 (with all other initial conditions
being set to zero) at We = 1; similar notation will be used to
quantify the influence of the other two components of τ 1(0)
on u(t).

The function characterizing maximal transient growth
of streamwise velocity fluctuations arising from the initial
conditions in τ 1 (cf. Eq. (10)) in flows with β = 0.1,
Ḡu1(0.1; kz, t), is shown in Fig. 2; results for other values
of β look similar and are not reported here for brevity.
The finite-dimensional approximations of the wall-normal
operators are obtained using the pseudospectral method [22].
All computations are performed in MATLAB with 50 Gauss-
Lobatto points in the wall-normal direction; additional com-
putations with a much larger number of grid points in y
were used to confirm convergence. We observe similar trends
in both Couette and Poiseuille flows with peak values of
Ḡu1(0.1; kz, t) occurring at kz = 0 and t ≈ 0.25. From
the above discussion, it immediately follows that the largest
contribution to the transient growth of u comes from the

(a) Ḡu1(0.1; kz , t) (b) Ḡu1(0.1; kz , t)

Fig. 2. Maximal transient growth of streamwise velocity fluctuations in
(a) Couette and (b) Poiseuille flows with β = 0.1 arising from the initial
condition in τ1. All other initial conditions have been set to zero.

initial conditions in τ22; this is because the maximal transient
growth happens at kz = 0 and only τ22(0) contributes
to Ḡu1(β; kz = 0, t). This is further illustrated in Fig. 3,
where maximal transient growth of streamwise velocity
fluctuations caused by the different components of τ 1(0)
in Couette flow with β = 0.1 is shown. The peak values in
Fig. 3(a) are about three times larger than the peak values
in Fig. 3(b), and about sixty times larger than the peak
values in Fig. 3(c). This suggests that the initial conditions
in τ22 create the largest transient growth of the streamwise
velocity fluctuations, followed by the initial conditions in
τ23, followed by the initial conditions in τ33. It is also
noteworthy that the peaks of functions Ḡu23(0.1; kz, t) and
Ḡu33(0.1; kz, t) occur at non-zero values of kz; on the other
hand, similar to Ḡu1(0.1; kz, t), function Ḡu22(0.1; kz, t)
achieves its maximum at kz = 0.

Motivated by the observation that the largest transient
growth of energy density for streamwise-constant velocity
fluctuations takes place at kz = 0, we next examine the
linearized model with both kx = 0 and kz = 0. From
the analysis of this model (not reported here) it follows
that the streamwise velocity, u(y, t), can be represented
as {u(y, t) = Weu22(y, t) + e−t/β u(y, 0); u22(y, t) =
−
(
e−t − e−t/β

) [
∂−1
yy (U ′′(y) + U ′(y)∂y) τ22(· , 0)

]
(y)}.

This indicates that the initial conditions in the streamwise
velocity (or, equivalently, in τ12; at kx = kz = 0,
u(y, t) = −(1/β − 1)

[
∂−1
yy ∂yτ12(·, t)

]
(y)) create

monotonically decaying We-independent responses of
u(y, t), with a rate of decay inversely proportional to
the viscosity ratio β. On the other hand, even though
τ22(y, 0) 6= 0 yields zero initial kinetic energy, the presence
of initial conditions in τ22 generates streamwise velocity
fluctuations, Weu22(y, t), that scale linearly with the
Weissenberg number and also exhibit temporal transient
growth. We note that this feature arises solely from
viscoelastic nature of the underlying fluid, and that the
approach that allows for fluctuations in polymer stresses but
not in velocities fails to identify it [18].

C. Comparison with inertial flows of Newtonian fluids

We next provide comparison of the above results with
those for inertial flows of Newtonian fluids. By scaling length
with the channel half height L, velocity with the largest base
velocity Uo, and time with the diffusive time ρL2/ηs, the lin-
earized evolution model for streamwise-constant fluctuations
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(a) Ḡu22(0.1; kz , t) (b) Ḡu23(0.1; kz , t) (c) Ḡu33(0.1; kz , t)

Fig. 3. Maximal transient growth of streamwise velocity fluctuations in Couette flow with β = 0.1 arising from the initial condition in: (a) τ22; (b) τ23;
and (c) τ33. All other initial conditions have been set to zero.

assumes the following form[
φ̇1

φ̇2

]
=
[

Ā11 0
Re Ā21 Ā22

] [
φ1

φ2

]
(11a)[

u
v
w

]
=

 0 C̄u

C̄v 0
C̄w 0

[ φ1

φ2

]
. (11b)

This model is obtained by eliminating pressure from the
linearized NS equations and by expressing flow fluctuations
in terms of the (y, z)-plane streamfunction φ1 = ψ (cf.
Sec. II-B) and the streamwise velocity φ2 = u. Here,
Re = ρUoL/ηs denotes the Reynolds number, and operators
Ā and C̄ are given by {Ā11 = ∆−1∆2, Ā22 = ∆, Ā21 =
−ikzU ′(y); C̄u = I, C̄v = ikz, C̄w = −∂y}, with Dirichlet
boundary conditions on ∆, and Cauchy boundary conditions
on ∆2. Note that Ā11, Ā22, and Ā21, respectively, denote
the Orr-Sommerfeld, Squire, and coupling operators in the
streamwise-constant linearized NS equations with Re = 1.

Direct comparison of Eqs. (7) and (11) reveals a striking
structural similarity between streamwise-constant inertialess
flows of Oldroyd-B fluids and inertial flows of Newtonian
fluids. In particular, these two equations can be represented
graphically by the corresponding block diagrams in Figs. 4(a)
and 4(b), respectively. The enabling mechanism for transient
growth in Newtonian fluids is vortex tilting, which is em-
bedded in operator Ā21 = −ikzU ′(y). In the absence of
vortex tilting, the responses of all velocity components are
Re-independent and the dynamical properties of streamwise-
constant flows of Newtonian fluids are governed by viscous
dissipation. On the other hand, the key physical mechanism
for transient growth in inertialess flows of Oldroyd-B flu-
ids is polymer stretching, which is embedded in operator
A21 = F21 + F2ψCψ (cf. Sec. II-B and Appendix A). We
also observe that the Weissenberg number in viscoelastic
fluids has a role similar to that of the Reynolds number in
Newtonian fluids.

The above comparison suggests remarkable similarities
between streamwise-constant inertialess flows of Oldroyd-B
fluids and streamwise-constant inertial flows of Newtonian
fluids. All these similarities are exhibited at the level of
velocity fluctuation dynamics. Namely, as far as kinetic
energy density is concerned, it is conceptually useful to think
of inertialess flows of Oldroyd-B fluids in terms of inertial
flows of Newtonian fluids. This analogy is made keeping in
mind that polymer stretching and the Weissenberg number
in elasticity-dominated flows of viscoelastic fluids effectively

take the role of vortex tilting and the Reynolds number in
inertia-dominated flows of Newtonian fluids.

IV. CONCLUDING REMARKS

We have studied transient responses of velocity fluctua-
tions in inertialess channel flows of viscoelastic fluids. By
focusing on the analysis of streamwise-constant fluctuations,
we are able to obtain a number of new analytical results.
In contrast, most prior work on this topic has focused on
the analysis of spanwise-constant fluctuations, which does
not yield analytical results as readily and is prone to numer-
ical difficulties in high-Weissenberg-number flows [16]. In
addition, both velocity and polymer stress fluctuations may
be non-zero in our work, which sets it apart from a recent
paper that considered only non-zero (but 3D) polymer stress
fluctuations in an upper convected Maxwell fluid [18].

The present work (i) makes clear that streamwise-constant
velocity fluctuations in channel flows of viscoelastic fluids
can undergo significant transient growth even in the absence
of inertia; and (ii) reveals remarkable similarities between
inertial flows of Newtonian fluids and inertialess flows of
Oldroyd-B fluids.

APPENDIX

A. Dynamics of the streamwise-constant flow fluctuations

In this appendix we describe the equations governing
evolution of infinitesimal streamwise-constant flow fluctu-
ations in inertialess flows of an Oldroyd-B fluid. We also
define the underlying operators in Eqs. (5), (6), and (7). By
decomposing the velocity, pressure, and polymer stress fields
into the sum of base and fluctuating parts (i.e., V = v + v,
P = P + p, T = τ + τ ), and by neglecting nonlinear terms,
Eqs. (2), (1b), and (1c) can be brought to the following form

0 = β∆v + (1− β)∇·τ −∇p, (12a)
0 = ∇·v, (12b)
τ̇ = L(τ ,v), (12c)

where L(τ ,v) denotes linear flow fluctuation terms, i.e.

L(τ ,v) = ∇v + (∇v)T − τ − We (v·∇τ + v·∇τ ) +
We
(
τ ·∇v + (τ ·∇v)T + τ ·∇v + (τ ·∇v)T

)
.

For purely harmonic fluctuations in z, e.g. v(y, z, t) =
<
(
v(y, kz, t)eikzz

)
, the linearized evolution model is given

by Eqs. (5). Here, < (·) denotes the real part of a given
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Fig. 4. The block diagrams of streamwise-constant (a) inertialess flows of Oldroyd-B fluids, cf. Eq. (7); and (b) inertial flows of Newtonian fluids, cf.
Eq. (11). In Newtonian fluids transient growth comes from vortex tilting, i.e. operator Ā21, and in viscoelastic fluids it comes from polymer stretching,
i.e. operator A21. Note that, the Weissenberg number in inertialess flows of viscoelastic fluids assumes the role of the Reynolds number in inertial flows
of Newtonian fluids.

quantity, and the F-operators in Eqs. (5) are given by:

F1ψ =
[

2ikz∂y −
(
∂yy + k2

z

)
−2ikz∂y

]T
,

F2ψ =
[

ikz(U ′(y)∂y − U ′′(y))
−U ′(y)∂yy

]
, F2u =

[
∂y
ikz

]
,

F21 =
[
U ′(y) 0 0

0 U ′(y) 0

]
, F3ψ = −4ikzU ′(y)U ′′(y),

F3u = 2U ′(y)∂y, F32 = [ 2U ′(y) 0 ] .
(13)

Substitution of Eq. (3) into Eqs. (5) leads to the set of
evolution equations (6) for the polymer stress components
with the A-operators given by

A11 = −I + F1ψCψ, A22 = −I + F2uCu,

A21 = F21 + F2ψCψ, A31 = F3ψCψ,

A32 = F32 + F3uCu.

(14)

The C-operators appearing in Eq. (7), which is convenient
for quantifying the scaling of the kinetic energy density with
the Weissenberg number, are given by

Cu = −(1/β − 1) ∆−1 [ ∂y ikz ] ,
Cv = ikzCψ, Cw = −∂yCψ,

(15)

where Cψ is defined in Eq. (4). The expressions for operators
Cv and Cw are obtained by substituting ψ = Cψτ 1 (cf.
Eq. (3)) into the equation relating the wall-normal and
spanwise velocity fluctuations with the streamfunction, {v =
ikzψ, w = −∂yψ}.
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