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Abstract— A class of distributed systems with a cyclic in-
terconnection structure is considered. These systems arise in
several biochemical applications and they can undergo diffusion
driven instability which leads to a formation of spatially
heterogeneous patterns. In this paper, a class of cyclic systems in
which addition of diffusion does not have a destabilizing effect
is identified. For these systems global stability results hold if
the “secant” criterion is satisfied. In the linear case, it is shown
that the secant condition is necessary and sufficient for the
existence of a decoupled quadratic Lyapunov function, which
extends a recent diagonal stability result to partial differential
equations. For reaction-diffusion equations with nondecreasing
coupling nonlinearities global asymptotic stability of the origin
is established. All of the derived results remain true for both
linear and nonlinear positive diffusion terms. Similar results
are shown for compartmental systems.

Index Terms— Biochemical reactions; cyclic interconnections;
passivity; secant criterion; spatially distributed systems.

I. INTRODUCTION AND PROBLEM FORMULATION

It has long been observed in metabolic and gene regulation
networks that negative feedback inhibitions can potentially
cause instabilities and limit cycles (see e.g. [1], [2], and the
references therein). A special case of particular interest is
a cyclic network in which the end product of a sequence
of reactions inhibits the rate of the first reaction [3]. To
evaluate local stability properties of such networks [4] and
[5] analyzed the Jacobian linearization at the equilibrium,
which is of the form

A =



−a1 0 · · · 0 −bn
b1 −a2

. . . 0

0 b2 −a3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 bn−1 −an


(1)

ai > 0, bi > 0, i = 1, · · · , n, and showed that it is Hurwitz
if the following “secant criterion” holds:

b1 · · · bn
a1 · · · an

< sec(π/n)n. (2)

Following a passivity interpretation of this criterion re-
cently given in [6], the authors of [7] studied the nonlinear
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model
ẋ1 = −f1(x1) − gn(xn)
ẋ2 = −f2(x2) + g1(x1)

...
ẋn = −fn(xn) + gn−1(xn−1)

(3)

and proved global asymptotic stability of the origin1 under
the conditions

σfi(σ) > 0, σgi(σ) > 0, ∀σ ∈ R \ {0}, (C1)

gi(σ)
fi(σ)

≤ γi, ∀σ ∈ R \ {0}, (C2)

γ1 · · · γn < sec(π/n)n, (C3)

lim
|xi|→∞

∫ xi

0

gi(σ) dσ = ∞. (C4)

The conditions (C1)-(C4) encompass the linear system (1)-
(2) in which fi(xi) = aixi, gi(xi) = bixi, and γi = bi/ai.

A crucial ingredient in the global asymptotic stability
proof of [7] is the observation that the secant criterion (2) is
necessary and sufficient for diagonal stability of (1), that is
for the existence of a diagonal matrix D > 0 such that

ATD + DA < 0. (4)

Using this diagonal stability property [7] constructs a Lya-
punov function for (3) which consists of a weighted sum of
decoupled functions of the form Vi(xi) =

∫ xi

0
gi(σ) dσ. In

the linear case this construction coincides with the quadratic
Lyapunov function V = xTDx.

In this paper we extend the linear and nonlinear results of
[4], [5], [7] to spatially distributed models that consist of a
cyclic interconnection of n reaction-diffusion equations

ψ1t = ∇ · (h1(ψ1)∇ψ1) − f1(ψ1) − gn(ψn)
ψ2t = ∇ · (h2(ψ2)∇ψ2) − f2(ψ2) + g1(ψ1)

...
ψnt = ∇ · (hn(ψn)∇ψn) − fn(ψn) + gn−1(ψn−1)

(RD)
where ψi denotes the state of the ith subsystem which
depends on spatial coordinate ξ and time t, ψi(ξ, t), and fi,
gi, hi denote static nonlinear functions of their arguments.
We consider a situation in which the spatial coordinate
ξ := (ξ1, . . . , ξr) belongs to a bounded domain Ω in Rr,
r = 1, 2 or 3, with a smooth boundary ∂Ω and outward unit

1Throughout the paper we assume that an equilibrium exists and is unique
(see [7] for conditions that guarantee this) and that this equilibrium has been
shifted to the origin with a change of variables.
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normal ν. The state of each subsystem satisfies the Neumann
boundary conditions, ∂ψi/∂ν := ψiν = 0 on ∂Ω, ∇ψi is the
gradient of ψi, ∇ · v is the divergence of a vector v, and the
domain of the r-dimensional Laplacian ∆ := ∇ ·∇ is given
by [8], [9]

D(∆) := {ψi ∈ H2(Ω), ψiν = 0 on ∂Ω} . (DM)

Here, H2(Ω) denotes a Sobolev space of square integrable
functions with square integrable second distributional deriv-
atives. The standard Ln2 (Ω) inner product is given by

〈ψ, φ〉 :=
∫

Ω

ψT (ξ)φ(ξ) dξ

where dξ := dξ1 · · ·dξr and ψ :=
[
ψ1 · · · ψn

]T
.

The study of stability properties for distributed system
(RD) is important in many biological applications. Our first
result, presented in Section II, studies the linearization of
(RD) and shows that the secant condition (2) is sufficient
for the exponential stability despite the presence of diffusion
terms. It further shows that the secant condition is necessary
and sufficient for the existence of a decoupled Lyapunov
function, thus extending the diagonal stability result of [7]
to partial differential equations. The next result of the paper,
presented in Section III, studies the nonlinear reaction-
diffusion equation (RD) and proves global asymptotic sta-
bility of ψ = 0 under assumptions that mimic the conditions
(C1)-(C3) of [7], and under the additional assumptions that
the functions gi(·) and hi(·), i = 1, · · · , n, be nondecreasing
and positive, respectively. This additional assumption on
the g-functions ensures convexity of the Lyapunov function
which is a crucial property for our stability proof. Indeed,
a similar convexity assumption has been employed in [10]
to preserve stability in the presence of linear diffusion
terms. Finally, Section IV studies a compartmental ordinary
differential equation model instead of the partial differential
equation (RD), and proves global asymptotic stability using
the same nondecreasing assumption for gi’s.

II. CYCLIC INTERCONNECTION OF LINEAR
REACTION-DIFFUSION EQUATIONS

We start our analysis by considering an interconnection of
spatially distributed systems (RD) with

fi(ψi) := aiψi, gi(ψi) := biψi,

hi(ψi) := ci, i = 1, . . . , n,
(5)

where each ai, bi, and ci represents a positive parameter.
In this case, system (RD) simplifies to a cascade connection
of linear reaction-diffusion equations where the output of
the last subsystem is brought to the input of the first
subsystem through a negative unity feedback. Abstractly, the
dynamics of system (RD)-(DM) with fi(·), gi(·), and hi(·)
satisfying (5) are given by

ψt = Aψ := C∆ψ + A0ψ, (LRD)

where ∆ψ denotes the vector Laplacian, that is ∆ψ :=[
∆ψ1 · · · ∆ψn

]T
, C := diag{

[
c1 · · · cn

]
} >

0, and

A0 :=



− a1 0 · · · 0 − bn
b1 − a2

. . . 0

0 b2 − a3
. . .

...
...

. . . . . . . . . 0
0 · · · 0 bn−1 − an


,

ai > 0, bi > 0, i = 1, . . . , n.

A. Exponential stability and the secant criterion in one
spatial dimension

In this section, we focus on systems with one spatial
dimension ξ ∈ Ω := (0, 1). We show that operator A
with (DM) generates an exponentially stable strongly contin-
uous (Co) semigroup T (t) on Ln2 (0, 1) if the secant criterion
(2) is satisfied. We note that the exponential stability of T (t)
in Theorem 1 can be also established using a Lyapunov based
approach that we develop for systems with two or three
spatial coordinates. However, the proof of Theorem 1 is of in-
dependent interest because of the explicit construction of the
Co-semigroup and block-diagonalization of operator (LRD)-
(DM) (which is well suited for a modal interpretation of
stability results in one spatial coordinate).

It is well known (see, for example [9]) that the operator
∂ξξ with Neumann boundary conditions is self-adjoint with
the following set of eigenfunctions {ϕk} and corresponding
eigenvalues {νk}:

ϕ0(ξ) = 1, ϕl(ξ) =
√

2 cos lπξ, l ∈ N,
ν0 = 0, νl = −(lπ)2, l ∈ N.

Since the eigenfunctions {ϕk} represent an orthonormal
basis of L2(0, 1) each ψi(ξ, t) can be represented as

ψi(ξ, t) =
∞∑
k= 0

xi,k(t)ϕk(ξ),

where xi,k(t) denote the spectral coefficients given by

xi,k(t) = 〈ϕk, ψi〉 :=
∫ 1

0

ϕk(ξ)ψi(ξ, t) dξ.

Thus, a spectral decomposition of operator ∂ξξ in (LRD)
yields the following infinite-dimensional system on ln2 of
decoupled nth order equations:

ẋk = Akxk, k = 0, 1, . . . , (6)

with xk(t) :=
[
x1,k(t) · · · xn,k(t)

]T
,

Ak :=



−α1,k 0 · · · 0 − bn
b1 −α2,k

. . . 0

0 b2 −α3,k
. . .

...
...

. . . . . . . . . 0
0 · · · 0 bn−1 −αn,k


,

and αi,k := ai − ciνk = ai + ci(kπ)2 > 0. Based
on [4], [5] we conclude that each Ak is Hurwitz if (2) holds.
Therefore, each subsystem in (6) is exponentially stable and
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there exist Pk = PTk > 0 such that

ATk Pk + PkAk = −I, k = 0, 1, . . . .

Now, since A is the infinitesimal generator of the following
Co-semigroup:

T (t)ψ(0) := T (t)ψ(ξ, 0) =
∞∑
k= 0

eAktxk(0)ϕk(ξ),

we have ∫ ∞

0

‖T (t)ψ(0)‖2 dt :=∫ ∞

0

〈T (t)ψ(0), T (t)ψ(0)〉 dt =
∞∑
k= 0

xTk (0)
(∫ ∞

0

eA
T
k teAkt dt

)
xk(0) =

∞∑
k= 0

xTk (0)Pkxk(0).

We will show the exponential stability of the Co-
semigroup T (t) on Ln2 (0, 1) by establishing conver-
gence of the infinite sum

∑∞
k= 0 x

T
k (0)Pkxk(0) for each

{xk(0)}k∈N0 ∈ ln2 [9, Lemma 5.1.2]. Let sm denote the
mth partial sum, i.e.

sm :=
m∑
k= 0

xTk (0)Pkxk(0). (7)

For l < m we have

|sm − sl| =
m∑

k= l+ 1

xTk (0)Pkxk(0)

≤
m∑

k= l+ 1

‖Pk‖‖xk(0)‖2.

(8)

Now, we represent Ak, for k 6= 0, as

Ak = k2
(
F0 + (1/k2)A0

)
F0 := −π2diag{

[
c1 · · · cn

]
} < 0,

and use perturbation analysis to express Pk as

Pk =
1
k2

(
V0 +

1
k2
V1 +

1
k4
V2 + . . .

)
=

1
k2

∞∑
j= 0

1
k2j

Vj ,

where
F0V0 + V0F0 = − I
F0Vj + VjF0 = −(AT0 Vj−1 + Vj−1A0),

(9)

with j ∈ N. Solution to (9) is determined by

V0 = −(1/2)F−1
0

Vj =
∫ ∞

0

eF0t(AT0 Vj−1 + Vj−1A0)eF0t dt,

which can be used to obtain
‖V0‖ = 1/(2π2cmin)

‖Vj‖ ≤ ‖V0‖ (2 ‖A0‖ ‖V0‖)j , j ∈ N

‖Pk‖ ≤ ‖V0‖
k2

∞∑
j= 0

(
2 ‖A0‖ ‖V0‖/k2

)j
.

Clearly, for k2 > 2 ‖A0‖ ‖V0‖ the geometric series in the last
inequality converges. This immediately gives the following
upper bound for ‖Pk‖:

‖Pk‖ ≤ ‖V0‖
k2 − 2 ‖A0‖ ‖V0‖

,

and inequality in (8) simplifies to

|sm − sl| ≤
‖V0‖

(l + 1)2 − 2 ‖A0‖ ‖V0‖

m∑
k= l+ 1

‖xk(0)‖2.

Hence, for each {xk(0)}k∈N0 ∈ ln2 partial sum (7) repre-
sents a Cauchy sequence which guarantees convergence of∑∞
k= 0 x

T
k (0)Pkxk(0) and consequently∫ ∞

0

‖T (t)ψ(0)‖2 dt < ∞, ∀ψ(0) ∈ D(A).

Since D(A) is dense in Ln2 (0, 1), by an argument as in [8,
p. 51] this inequality can be extended to all ψ(0) ∈ Ln2 (0, 1)
which implies exponential stability of T (t) [9, Lemma 5.1.2].

Theorem 1: The Co-semigroup T (t) generated by opera-
tor (LRD)-(DM) on Ln2 (0, 1) is exponentially stable if the
secant criterion (2) is satisfied.

B. The existence of a decoupled quadratic Lyapunov function

The following theorem extends the diagonal stability result
of [7] to PDEs with r spatial coordinates:

Theorem 2: For system (LRD)-(DM) there exist a decou-
pled quadratic Lyapunov function

V (ψ) := 〈ψ,Dψ〉 =
n∑

i= 1

di 〈ψi, ψi〉 , di > 0, (10)

that establishes exponential stability on Ln2 (Ω) if and only
if (2) holds.

Proof: We prove the theorem for a system given by

ψt = Āψ := C∆ψ + Ā0ψ, (11)

where C := diag{
[
c1 · · · cn

]
} > 0, and

Ā0 :=



− 1 0 · · · 0 − γ1

γ2 − 1
. . . 0

0 γ3 − 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 γn − 1


. (12)

This is because all operators of the form (LRD) can be
obtained by acting on Ā0 from the left with a diagonal
matrix which does not change the existence of a decoupled
quadratic Lyapunov function. We will prove that the secant
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criterion (C3) is both necessary and sufficient for the exis-
tence of a decoupled quadratic Lyapunov function.

Necessity: Suppose that there exist a Lyapunov function
of the form (10) that establishes exponential stability of (11).
The derivative of (10) along the solutions of (11) is given by

dV (ψ)
dt

= 〈ψt, Dψ〉 + 〈ψ,Dψt〉
=
〈
C∆ψ + Ā0ψ,Dψ

〉
+〈

ψ,DC∆ψ +DĀ0ψ
〉

= −2
n∑

i= 1

cidi 〈∇ψi,∇ψi〉+
〈
ψ, (ĀT0 D +DĀ0)ψ

〉
≤
〈
ψ, (ĀT0 D + DĀ0)ψ

〉
where we have used Green’s integral identity [11] with ψ
satisfying the Neumann boundary conditions on ∂Ω, and the
fact that C and D commute. The exponential stability of (11)
and the above expression for dV (ψ)/dt imply that Ā0 is
Hurwitz. But (C3) is a necessary condition for a matrix Ā0

with equal diagonal entries to be Hurwitz [4].
Sufficiency: Suppose that (C3) holds. Following [7] we

define:

r := (γ1 · · · γn)1/n > 0

Γ := diag
{

1, −γ2

r
,
γ2γ3

r2
, · · · , (−1)n+1 γ2 · · · γn

rn−1

}
D := Γ−2,

and differentiate (10) along the solutions of (11) to obtain

dV (ψ)
dt

≤
〈
ψ, (ĀT0 D + DĀ0)ψ

〉
=: −〈ψ,Qψ〉 .

If (C3) holds then Q = QT is a positive definite matrix [7]

Q := −(ĀT0 D + DĀ0)
= −Γ−1(ΓĀT0 Γ−1 + Γ−1Ā0Γ)Γ−1 > 0,

and hence
dV (ψ)

dt
≤ −λmin(Q)‖ψ‖2,

where λmin(Q) > 0 denotes the smallest eigenvalue of Q.
Upon integration, we get

0 ≤ 〈ψ(t), Dψ(t)〉

≤ 〈ψ(0), Dψ(0)〉 − λmin(Q)
∫ t

0

‖T̄ (t)ψ(0)‖2 dτ,

which yields∫ t

0

‖T̄ (t)ψ(0)‖2 dτ ≤ 1
λmin(Q)

〈ψ(0), Dψ(0)〉 ,

∀ t ≥ 0, ∀ψ(0) ∈ D(Ā).

Since D(Ā) is dense in Ln2 (Ω), the last inequality can be
extended to all ψ(0) ∈ Ln2 (Ω) [8], [9]. Thus, for every
ψ(0) ∈ Ln2 (Ω) there is µψ := 〈ψ(0), Dψ(0)〉 /λmin(Q) > 0
such that ∫ ∞

0

‖T̄ (t)ψ(0)‖2 dτ ≤ µψ,

which proves the exponential stability of T̄ (t) [9,
Lemma 5.1.2].

Remark 1: The exponential stability of T (t) in Theorem 1

can be also established using a Lyapunov based approach
with

V (ψ) = 〈ψ,Dψ〉 ,
D := Γ−2 diag{

[
1/a1 · · · 1/an

]
}.

However, the proof of Theorem 1 is of independent interest
because of the explicit construction of the Co-semigroup and
block-diagonalization of operator (LRD)-(DM).

III. EXTENSION TO NONLINEAR REACTION-DIFFUSION
EQUATIONS

We next show global asymptotic stability of the origin
of the nonlinear distributed system (RD)-(DM). This result
holds in the Ln2 (Ω) sense under the following assumption:

Assumption 1: The functions fi(·), gi(·), and hi(·)
in (RD) are continuously differentiable. Moreover, the func-
tions fi(·) and gi(·) satisfy (C1)-(C3), the functions hi(·) are
positive, and the functions gi(·) are nondecreasing, i.e.

hi > 0, giσ := ∂gi/∂σ ≥ 0, ∀σ ∈ R. (C5)
A new ingredient in Assumption 1 compared to the prop-

erties of fi(·) and gi(·) in (3) is a nondecreasing assumption
on the functions gi(·). This additional assumption provides
convexity of the Lyapunov function, which is essential for
establishing stability in the presence of linear diffusion terms.
For nonlinear diffusion terms we also assume that each hi(·)
is a positive function.

Theorem 3: Suppose that system (RD)-(DM) satisfies As-
sumption 1. Consider the Lyapunov function candidate

V (ψ) =
n∑

i= 1

diγi

∫
Ω

(∫ ψi(ξ)

0

gi(σ) dσ

)
dξ

where the di’s are defined as in Section II, and suppose that
there exists some function α(·) of class K∞ such that

V (ψ) ≥ α(‖ψ‖), ∀ψ ∈ Ln2 (Ω). (C6)

Then ψ = 0 is a globally asymptotically stable equilibrium
point of (RD)-(DM), in the Ln2 (Ω) sense.

Remark 2 (Well-posedness): Standard arguments (see, for
example, [12]–[14]) can be used to establish that (RD)-
(DM) has a unique solution on [0, tmax). The existence of
a unique solution on the time interval [0, ∞) follows from
the asymptotic stability of the origin of (RD)-(DM).

Proof: We represent the ith subsystem of (RD)-(DM)
by:

Hi :


ψit = ∇ · (hi(ψi)∇ψi) − fi(ψi) + ui

yi = gi(ψi)
ψiν = 0 on ∂Ω.

The derivative of

Vi(ψi) := γi

∫
Ω

(∫ ψi(ξ)

0

gi(σ) dσ

)
dξ (13)

along the solutions of Hi is determined by

V̇i = γi 〈gi(ψi), ψit〉

= γi 〈gi(ψi),∇ · (hi(ψi)∇ψi) − fi(ψi) + ui〉 .
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Green’s integral identity [11], in combination with the Neu-
mann boundary conditions on ψi, can be used to obtain

V̇i = − γi 〈giψi
∇ψi, hi∇ψi〉 − γi 〈gi, fi〉 + γi 〈gi, ui〉 .

Now, from (C5) we have higiσ ≥ 0. Using this property and
the fact that −γifi(σ)gi(σ) ≤ −g2

i (σ) (cf. (C1)-(C2)) we
arrive at

V̇i ≤ −〈gi, gi〉 + γi 〈gi, ui〉
= −〈yi, yi〉 + γi 〈yi, ui〉 .

This upper bound on V̇i and the following Lyapunov function
candidate:

V (ψ) :=
n∑

i= 1

diVi(ψi)

yield

V̇ ≤
〈
y, (ĀT0 D + DĀ0)y

〉
≤ −λmin(Q)‖y‖2 = −λmin(Q)

n∑
i= 1

‖gi‖2.
(14)

Since the di’s are defined as in Section II, we have used the
fact that Q = QT := −(ĀT0 D + DĀ0) represents a positive
definite matrix (see the proof of Theorem 2).

Now, since V (ψ) ≥ α(‖ψ‖) for each ψ ∈ Ln2 (Ω), with
α(·) ∈ K∞, for any ε > 0 there exist δ > 0 such that
‖ψ(0)‖ < δ implies ‖ψ(t)‖ < ε for all t ≥ 0. This
follows from positive invariance of the set Ωk := {ψ ∈
Ln2 (Ω), V (ψ) < k}, k > 0, and continuity of Lyapunov
function V [15]. Furthermore, V (ψ) is a nonincreasing
function of time bounded below by zero and, thus, there
exists a limit of V (ψ(t)) as time goes to infinity. If this
limit is positive then (C1), (C6), and (14) imply the existence
of m > 0 such that supt≥0 V̇ (ψ(t)) ≤ −m. But then
V (ψ(t)) ≤ V (ψ(0)) −mt and V (ψ(t)) will eventually be-
come negative which contradicts nonnegativity of V (ψ(t)),
for all t ≥ 0. Therefore, both V (ψ(t)) and ‖ψ(t)‖ converge
asymptotically to zero. From the radial unboundedness of
V (ψ) (cf. (C6)) and the above analysis we conclude global
asymptotic stability of the origin, in the Ln2 (Ω) sense.

Remark 3: The condition (C6) on V (ψ) can be weakened
by working on Ln1 (Ω), in which case Jensen’s inequality,
applied to (13), provides the desired estimate. This relaxation
allows for inclusion of many relevant nonlinearities arising
in biological applications. Using a similar argument to the
one presented in Theorem 3, the global asymptotic stability
of the origin in the Ln1 (Ω) sense can be established (with
keeping in mind that, in this case, 〈u, v〉 denotes a symbol
for
∫
Ω
uT (ξ) v(ξ) dξ).

IV. STABILITY ANALYSIS FOR A COMPARTMENTAL
MODEL

An alternative to the partial differential equation repre-
sentation (RD) is a compartmental model which divides the
reaction into compartments that are individually homoge-
neous and well-mixed, and represents them with ordinary
differential equations. Compartmental models are preferable
in situations where reactions are separated by physical bar-

riers such as cell and intracellular membranes which allow
limited flow between the compartments [16]. Instead of the
lumped model (3) we now consider m compartments, and
represent their interconnection structure with a graph in
which the vertices j = 1, · · · ,m represent the compartments.
The edges labeled l = 1, · · · , p indicate the presence of
diffusion between the compartments they connect. Although
the graph is undirected, for notational convenience we assign
an orientation to each edge and define the m× p incidence
matrix S as

sjl :=

+1 if vertex j is the sink of edge l
−1 if vertex j is the source of edge l

0 otherwise.
(15)

The particular choice of the orientation does not change the
derivations below.

We let xj,i be the concentration of species i in compart-
ment j, and for each edge l = 1, · · · , p, we denote by

µl,i(xsink(l),i − xsource(l),i) (16)

the diffusion term for the species i, flowing from com-
partment source(l) to sink(l). The functions µl,i(·), l =
1, · · · , p, i = 1, · · · , n, satisfy

σµl,i(σ) ≤ 0, ∀σ ∈ R. (C7)

To incorporate the diffusion terms (16), we denote the right-
hand side of (3) for compartment j by F (Xj), where

Xj := (xj,1, · · · , xj,n)T

is the state vector of concentrations xj,i in compartment j,
and obtain:

Ẋj = F (Xj) + (Sj,· ⊗ In)µ((ST ⊗ In)X) (CM)

where Sj,· is the jth row of the incidence matrix S, In is the
n×n identity matrix, “⊗” represents the Kronecker product,

X := [XT
1 · · ·XT

m]T (17)

and µ : Rnp → Rnp is defined as

µ(z) := (18)
[µ1,1(z1) · · ·µ1,n(zn) · · · · · · µp,1(z(p−1)n+1) · · ·µp,n(znp)]T.

In the absence of the diffusion term µ, the dynamics of
the compartments in (CM) are decoupled, and coincide with
(3) which is shown in [7] to be globally asymptotically
stable under the conditions (C1)-(C4). The following theorem
makes an additional assumption that the function gi(·) be
nondecreasing and proves that global asymptotic stability is
preserved in the presence of diffusion terms:

Theorem 4: Consider the compartmental model (CM),
j = 1, . . . ,m, where F (·) denotes the vector field in (3). If
the functions fi(·) and gi(·) satisfy the conditions (C1)-(C4)
and if, further, gi(·) is a nondecreasing function and µl,i(·) is
as in (C7) then the origin X = 0 is globally asymptotically
stable.

Proof: In the absence of the diffusion terms in (CM),
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the reference [7] constructs a Lyapunov function of the form

V (Xj) =
n∑
i=1

diγi

∫ xj,i

0

gi(σ) dσ (19)

where di, i = 1, · · · , n, are the diagonal entries of a matrix
D obtained from (4) with A selected as in (12), and proves
that it satisfies the estimate

∇V (Xj)F (Xj) ≤ −ε‖(g1(xj,1), · · · , gn(xj,n))‖2 (20)

for some ε > 0. In the presence of the diffusion terms
in (CM), the time derivative of V (Xj) satisfies:

V̇ (Xj) ≤ − ε‖(g1(xj,1), · · · , gn(xj,n))‖2

+∇V (Xj)(Sj,· ⊗ In)µ((ST ⊗ In)X).
(21)

For the concatenated system (17) we employ the Lyapunov
function

V(X) =
m∑
j=1

V (Xj), (22)

and obtain from (21):

V̇(x) ≤ −ε
m∑
j=1

‖(g1(xj,1), · · · , gn(xj,n))‖2

+[∇V (X1) · · ·∇V (Xm)](S ⊗ In)µ((ST ⊗ In)X).
(23)

We next rewrite the second term in the right-hand side of
(23) as(ST ⊗ In)

 ∇V
T (X1)
...

∇V T (Xm)



T

µ((ST ⊗ In)X), (24)

and note from (15) that (24) equals

p∑
l=1

[∇V T (Xsink(l))−∇V T (Xsource(l))]

 µl,1...
µl,n

 (25)

where µl,i, i = 1, · · · , n, denotes the diffusion function (16),
and the argument is dropped for brevity. Finally, noting from
(19) that

∇V (Xj) =
[
d1γ1g1(xj,1) · · · dnγngn(xj,n)

]
, (26)

and substituting (26) in (25), we obtain:

=
p∑
l=1

n∑
i=1

diγi[gi(xsink(l),i)− gi(xsource(l),i)]µl,i. (27)

Because gi(·) is a nondecreasing function by assumption,
we note that [gi(xsink(l),i) − gi(xsource(l),i)] possesses the
same sign as (xsink(l),i−xsource(l),i). We next recall from the
sector property (C7) that the function µl,i in (16) possesses
the opposite sign of its argument (xsink(l),i − xsource(l),i).
This means that each term in the sum (27) is non-positive
and, hence, (23) becomes

V̇(x) ≤ −ε
m∑
j=1

‖(g1(xj,1), · · · , gn(xj,n))‖2. (28)

Because the Lyapunov function V(x) is proper from prop-
erty (C4) and because the right-hand side of (28) is negative
definite from property (C1), we conclude that the origin
x = 0 is globally asymptotically stable.

Remark 4: Theorems 3 and 4 both rely on the assumption
that gi(·) is nondecreasing, which translates to the convexity
of the Lyapunov functions (13) and (19). A similar convex
Lyapunov function assumption has been employed in [10]
to preserve asymptotic stability in the presence of diffusion
terms. Unlike the local result in [10], however, in this paper
we have established global asymptotic stability and allowed
nonlinear diffusion terms by exploiting the specific structure
of the system.

V. CONCLUDING REMARKS

We identify a class of systems with a cyclic interconnec-
tion structure in which addition of diffusion does not have
a destabilizing effect. For these systems, we demonstrate
global stability if the “secant” criterion is satisfied. In the
linear case, we show that the secant condition is necessary
and sufficient for the existence of a decoupled Lyapunov
function, which extends the diagonal stability result [7] to
spatially distributed systems. For reaction-diffusion equations
with nondecreasing coupling nonlinearities, we establish
global asymptotic stability of the origin. Under some fairly
mild assumptions, we also allow for nonlinear diffusion
terms by exploiting the specific structure of the system.
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