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Abstract— We model and analyze the influence of small
amplitude transverse wall oscillations on the evolution of
velocity perturbations in channel flows. The amplitude and
frequency of periodic oscillations enter as coefficients, and
spatially distributed and temporally varying body force fields
enter as stochastic external excitations to our models. We
quantify the effect of these excitations on velocity perturbation
energy and develop a system theoretic paradigm for the optimal
selection of transverse oscillation parameters for turbulence
suppression. We use a perturbation analysis to demonstrate
that depending on the wall oscillation frequency the energy of
velocity perturbations can be increased or decreased compared
to the uncontrolled flow. Our results provide a first compelling
theoretical explanation as to why properly designed transverse
wall oscillations can suppress turbulence in the wall-bounded
shear flows.

I. INTRODUCTION

Turbulence suppression by sensorless mechanisms is a
promising technology for implementation, as it represents a
much simpler alternative to feedback flow control with wall-
mounted arrays of sensors and actuators. Examples of sensor-
less strategies include: transverse wall oscillations, control of
conductive fluids using the Lorentz force, and wall geometry
deformation such as riblets. Although several numerical and
experimental investigations indicate that properly designed
sensorless strategies can lead to a significant drag reduction,
an obstacle to fully utilizing these approaches is the absence
of a theoretical framework for their design, optimization, and
evaluation. This lack of analytical tools greatly impedes the
design and optimization of sensorless schemes as well as
their extension to different flow regimes.

Skin-friction drag reduction by means of transverse os-
cillations was first explored in [1]. The direct numerical
simulations of a turbulent channel flow subject to either a
spanwise oscillatory wall motion or an oscillatory spanwise
body force showed that a substantial drag reduction (up
to 40 %) can be achieved for certain values of oscillation
frequency. The attenuation of velocity fluctuations (up to
30 %) was also reported. These observations served as a
motivation for further numerical and experimental studies in
channel [2]–[4], pipe [5]–[7], and boundary layer [8]–[10]
flows.

In this paper, we model and analyze the influence of
transverse wall oscillations on the evolution of velocity
perturbations in transitional channel flows. Our results com-
plement previously reported numerical and experimental
studies [1]–[10], and furnish a theoretical framework for
design of efficient turbulence suppression strategies. Since
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the transition in channel flows is not appropriately described
by the eigenvalue analysis [11]–[17], we perform an input-
output analysis of stochastically excited linearized Navier-
Stokes (NS) equations. Our analysis quantifies the effect
of body force fields on velocity perturbations and provides
a system theoretic paradigm for the optimal selection of
transverse oscillation parameters for turbulence suppression.

Our presentation is organized as follows: in section II we
determine nominal velocity of the channel flow subject to
transverse wall oscillations, and give dynamical description
of the flow fluctuations evolving around this velocity profile.
In § III, we introduce a notion of the frequency response of
linear time-periodic (LTP) systems and present a computa-
tionally efficient method for determination of the H2 norm
in the presence of small amplitude oscillations. In § IV,
we employ perturbation analysis to identify the oscillation
frequency that leads to the largest H2 norm reduction for
streamwise constant perturbations. We also derive an explicit
dependence of the H2 norm on the Reynolds number R. In
§ V, we summarize the major contributions.

II. DYNAMICS OF VELOCITY FLUCTUATIONS

A. Nominal velocity

Consider a flow between two parallel infinite plates with
geometry illustrated in Fig. 1. Incompressible flow of a
viscous Newtonian fluid satisfies the NS equations and the
continuity equation given in their non-dimensional forms by

ut = −∇uu − ∇P + (1/R)Δu + F,

0 = ∇·u,
(1)

where u is the velocity vector, P is the pressure, F is the
body force, ∇ is the gradient, Δ := ∇2 is the Laplacian,
and operator ∇u is defined as ∇u := u·∇. The Reynolds
number is defined in terms of centerline velocity Ū and
channel half-width δ, R := Ūδ/ν, where ν denotes the
kinematic viscosity.

Let the flow be subject to a transverse oscillation of the
lower-wall, and let the nominal body force be equal to zero,
F̄ ≡ 0. Due to no-slip, the wall oscillation imposes an
oscillatory boundary condition on the spanwise component

of nominal velocity ū :=
[

U V W
]T

. If the upper wall
is fixed, and if the lower wall oscillates with frequency ωo :=
2π/T , the nominal velocity can be determined from (1)
subject to

W (−1) := 2α sin ωot, P̄x = − 2/R, F̄ ≡ 0,

U(±1) = 0, V (±1) = Vy(±1) = W (1) = 0,
(2)

where positive parameters α and T , respectively, denote the
non-dimensional amplitude and period of wall oscillations.
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If Ww and Tw are the wall oscillation amplitude and period
in physical units, then α := Ww/Ū = Rw/R and T :=
Tw/Tc, where Rw := Wwδ/ν is the Reynolds number
defined in terms of Ww, and Tc := δ/Ū is the convective
time-scale. The amplitude of wall oscillations is multiplied
by two for a convenience of later algebraic manipulations.

In the steady-state (1) simplifies to the x and z-direction
momentum equations

0 = − P̄x + (1/R)Uyy, (3a)

Wt = (1/R)Wyy. (3b)

The steady-state solution to (3,2) is given by ū :=[
U(y) 0 W (y, t)

]T
, where U(y) = 1−y2 denotes the

Poiseuille flow, and

W (y, t) = 2α (Wc(y) cos ωot + Ws(y) sin ωot) .

Functions Wc(y) and Ws(y) represent solutions to the fol-
lowing two point boundary value problem (TPBVP):

W ′′
s (y) = −ΩWc(y), W ′′

c (y) = ΩWs(y),
Ws(1) = Wc(±1) = 0, Ws(−1) = 1,

where W ′′
r (y) denotes a second derivative of Wr(y), that is

W ′′
r (y) := d2Wr(y)/dy2, r = s or r = c. Note that Ω :=

ωoR = ωwδ2/ν, with ωw := 2π/Tw, represents the Stokes
number. It is a standard fact that the Stokes number quantifies
a ratio between: a) diffusive time-scale Td := δ2/ν and wall
oscillation period Tw; b) channel half-width δ and Stokes
layer thickness (ν/ωw)1/2. Clearly, the solution to the above
TPBVP depends only on y and Ω; this dependence can be
readily determined symbolically using MATHEMATICA.
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Fig. 1. Three dimensional channel flow.

B. Linearized Navier-Stokes equations
The dynamics of fluctuations around a nominal flow

condition (ū, P̄ ) are derived by expressing the flow and the
forcing fields as the sum of nominal and fluctuation terms
{u := ū + v, P := P̄ + p, F := F̄ + d = d}. If ū

represents a steady-state solution of the NS equations subject
to (P̄ , F̄) the linearization of (1) yields

vt = −∇ūv − ∇vū − ∇p +
1
R

Δv + d, (4a)

0 = ∇·v. (4b)

These equations govern the dynamics (up to first order)

of velocity and pressure fluctuations v :=
[

u v w
]T

and p in the presence of a body force fluctuation d :=[
d1 d2 d3

]T
. This force represents an external exci-

tation to the linearized NS equations (4). On the other hand,
nominal velocity ū enters as a coefficient into these equa-
tions. Each field in (4) is assumed to vary both temporally
and spatially, e.g. d = d(x, y, z, t).

Since the nominal velocity determines coefficients of the
linearized NS equations, system (4) inherits the constant
coefficients in x and z, and the periodic coefficients in time.
Thus, the Fourier transform in x and z can be used to convert
the linearized NS equations into a family of PDEs in y
with temporally periodic coefficients. This family of PDEs
is parameterized by the horizontal wave-numbers kx and kz ,
the Reynolds numbers R and Rw, and the Stokes number
Ω. By applying a standard conversion to the wall-normal
velocity (v)/wall-normal vorticity (η) formulation [14], we

transform (4) with ū :=
[

U(y) 0 W (y, t)
]T

to

ψt(kx, y, kz, t) = A(kx, kz, t) ψ(kx, y, kz, t) +
B(kx, kz)d(kx, y, kz, t),

v(kx, y, kz, t) = C(kx, kz) ψ(kx, y, kz, t),
(5)

where ψ :=
[

v η
]T

, and A, B, and C are given by

A :=
[

A11 0
A21 A22

]
, C :=

1
k2

⎡⎢⎣ jkx∂y − jkz

k2 0
jkz∂y jkx

⎤⎥⎦ ,

B :=
[ − jkxΔ−1∂y − k2Δ−1 − jkzΔ−1∂y

jkz 0 − jkx

]
,

A11 := Δ−1
(

1
RΔ2 + jkx

(
U ′′(y) − U(y)Δ

))
+

jkzΔ−1
(
W ′′(y, t) − W (y, t)Δ

)
,

A21 := − jkzU
′(y) + jkxW ′(y, t),

A22 := (1/R)Δ − jkxU(y) − jkzW (y, t),

W :=
2Rw

R

(
Wc(y) cos

Ωt

R
+ Ws(y) sin

Ωt

R

)
,

with j :=
√−1 and k2 := k2

x + k2
z . System (5) is subject

to the following boundary conditions {v(kx,±1, kz, t) =
vy(kx,±1, kz, t) = η(kx,±1, kz, t) = 0, ∀ kx, kz ∈ R,
∀ t ≥ 0}, which are derived from the original no-slip
boundary conditions on (u, v, w).

III. FREQUENCY RESPONSE OF LTP SYSTEMS

We next introduce a notion of the frequency response for
stable LTP systems with period T = 2π/ωo. We refer the
reader to [18]–[22] for additional information.

It is a standard fact that a frequency response of a stable
linear time-invariant (LTI) system describes how a persistent
harmonic input of a certain frequency propagates through
the system in the steady-state. In other words, the steady-
state response of a stable LTI system to an input signal of
frequency ω, is a periodic signal of the same frequency, but
with a modified amplitude and phase. The amplitude and
phase of the output signal are precisely determined by the
value of the frequency response at the input frequency ω.

On the other hand, a steady-state response of a stable LTP
system to a harmonic input of frequency θ contains an infinite
number of harmonics separated by integer multiplies of ωo,
that is θ+nωo. Using this fact and the analogy with the LTI
systems, the frequency response of an LTP system can be
defined in terms of exponentially modulated periodic (EMP)
signals [18]. Namely, the steady-state response of (5) to an
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EMP signal

d(kx, y, kz, t) =
∞∑

n =−∞
dn(kx, y, kz)ej(nωo + θ)t,

is also an EMP signal

v(kx, y, kz, t) =
∞∑

n =−∞
vn(kx, y, kz)ej(nωo + θ)t,

where dn(kx, y, kz) and vn(kx, y, kz) are the functions
of y parameterized by kx and kz , and θ ∈ [0, ωo) is
the angular frequency. The frequency response of (5) is
an operator Hθ(kx, kz) that maps a bi-infinite input vec-
tor col {dn(kx, y, kz)}n∈Z to a bi-infinite output vector
col {vn(kx, y, kz)}n∈Z.

It can be shown that Hθ(kx, kz) can be expressed as

Hθ(kx, kz) = C(kx, kz)(E(θ) − A(kx, kz))−1B(kx, kz),

where E(θ) is a block-diagonal operator given by E(θ) :=
diag {j(θ+nωo)I}n∈Z, and I is the identity operator. On the
other hand, A, B, and C represent block-Toeplitz operators,
e.g.

A := toep {· · · , A2, A1, A0 , A−1, A−2, · · · },
where the box denotes the element on the main diag-
onal of A. For notational convenience, we suppress the
dependence on kx and kz here. This bi-infinite matrix
representation is obtained by expanding operators A, B,
and C in (5) into their Fourier series, e.g. A(kx, kz, t) =∑∞

n =−∞ An(kx, kz)ejnωot. Clearly, since B and C are
time-invariant operators their block-Toeplitz representations
simplify to block-diagonal representations, i.e. B(kx, kz) =
diag {B(kx, kz)} and C(kx, kz) = diag {C(kx, kz)}.

For each value of (kx, kz, θ), Hθ(kx, kz) is a bi-infinite
matrix whose elements are one-dimensional operators in
the wall-normal direction. This infinite dimensional object
contains a large amount of information about the dynam-
ical properties of system (5). In [16], [17], the frequency
responses of the NS equations in channel flows linearized
around U(y) were analyzed as the functions of R, kx, and
kz . The temporal and wall-normal dynamics were aggregated
by computing the H2 norm [23]. At any kx and kz the H2

norm quantifies the variance (energy) amplification of sto-
chastic excitations [17]. Since we are interested in comparing
the input-output gains for channel flows with and without
spanwise wall oscillations we next define the H2 norm for
LTP system (5): [‖H‖2

2

]
(kx, kz) :=

1
2π

∫ ωo

0

trace (H∗
θ(kx, kz)Hθ(kx, kz)) dθ.

(6)

We note that integration over θ in (6) can be avoided; namely,
the H2 norm of system (5) can be expressed in terms of a
solution to the following harmonic Lyapunov equation [20]

F(kx, kz)V(kx, kz) + V(kx, kz)F∗(kx, kz) =
− B(kx, kz)B∗(kx, kz),

as[‖H‖2
2

]
(kx, kz) = trace(V(kx, kz)c∗(kx, kz)c(kx, kz)),

where F(kx, kz) := A(kx, kz) − E(0), and

c(kx, kz) :=
[ · · · 0 C(kx, kz) 0 · · · ]

.

A. Perturbation analysis of the H2 norm
At any pair of the spatial wave-numbers, the entries into

the harmonic Lyapunov equation are bi-infinite operator-
valued (in the wall-normal direction) matrices. Thus, a dis-
cretization of the linearized NS equations in y in combination
with a truncation of bi-infinite matrices would require solving
a large-scale Lyapunov equation; for an accurate computation
of the H2 norm the entries into this equation are typically
matrices with at least several hundred rows and columns.
This is arguably a computationally intensive undertaking.
In view of this, we consider a problem of the small wall
oscillation amplitudes in this paper. For this special case, we
employ a perturbation analysis developed in a companion
paper [22]; this analysis provides a computationally efficient
method for determining the H2 norm. Namely, the H2 norm
is obtained by solving a conveniently coupled system of
Lyapunov and Sylvester equations. The order of each of these
equations is determined by the size of discretization in y.

Proposition 1: The H2 norm of system (5) with

A(t) = A0 + α
(
A−1e− jωot + A1ejωot

)
,

0 < α = Rw/R � 1, ωo = Ω/R,

is given by

‖H‖2
2 =

∑∞
n = 0α

2n trace (V2n,0 C∗C) ,

where

A0V0,0 + V0,0A
∗
0 = −BB∗,

A0V2n,0 + V2n,0A
∗
0 = − (A1V2n−1,1 + V ∗

2n−1,1A
∗
1 +

A−1V
∗
2n−1,1 + V2n−1,1A

∗
−1),

(A0 + jlωoI)Vl,l + Vl,lA
∗
0 = − (A−1Vl−1,l−1 +

Vl−1,l−1A
∗
1), l ∈ N,

(A0 + jmωoI)Vl,m + Vl,mA∗
0 = − (A−1Vl−1,m−1 +

Vl−1,m−1A
∗
1 + A1Vl−1,m+1 + Vl−1,m+1A

∗
−1),

m =
{

2, 4, . . . , l − 2 l – even,

1, 3, . . . , l − 2 l – odd.

Proposition 1 clarifies the dependence of the energy am-
plification on wall oscillation amplitude α, 0 < α � 1.
Since the operators appearing in the expression for the
H2 norm depend on the wave-numbers kx and kz , the
Reynolds number R, and the Stokes number Ω, the energy
amplification is also a function of these parameters. In § IV,
we derive an explicit scaling of the H2 norm with R for
system (5) at kx = 0, and analyze the changes in energy
amplification with kz and Ω. All numerical computations are
performed using a Matlab Differentiation Matrix Suite [24]
with 50 collocation points in y.

IV. ENERGY AMPLIFICATION AT kx = 0
In this section, we study system (5) in the important

special case of streamwise constant three-dimensional per-
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turbations. The motivation for a thorough analysis of this
model stems from the fact that the streamwise constant
perturbations in channel flows experience largest stochastic
amplification rates [15]–[17]. Our objective is to quantify the
influence of small-amplitude transverse wall oscillations on
these amplification rates. We employ a perturbation analysis
to derive an explicit dependence of the H2 norm on the
Reynolds number. We also study the H2 norm as a function
of kz and Ω, and identify the values of the Stokes number
that lead to the H2 norm reduction.

We show that suppression (enhancement) of turbulence by
transverse wall oscillations is due to decreased (increased)
variance amplification compared to the uncontrolled flow. In
other words, the wall oscillation induced changes in nom-
inal velocity constrain velocity perturbations to experience
smaller (for suppression of turbulence) or larger (for en-
hancement of turbulence) stochastic amplification rates [25].
In the language of control theory, the influence of transverse
wall oscillations is quantified by the H2 norm of operator that
maps the external excitations to the velocity perturbations.
The turbulence suppression takes place if the H2 norm of
controlled system is reduced compared to the H2 norm of
the uncontrolled system. The system norms were previously
employed by Farrell & Ioannou [25] and Kim [26] for
evaluation of active flow control strategies. However, to the
best of the author’s knowledge this approach has not been
used for assessing effectiveness of sensorless flow control
strategies.

By setting kx = 0 in (5) we obtain

ψt(y, kz, t) = A(kz, t) ψ(y, kz, t) + B(kz)d(y, kz, t),
v(y, kz, t) = C(kz) ψ(y, kz, t),

(7)
where, for

W (y, t) = (2Rw/R)(Wc(y) cos Ωt
R + Ws(y) sin Ωt

R ),

we have

A(kz, t) = A0(kz) + Rw

R (A−1(kz)e− jΩt
R + A1(kz)ejΩt

R ),

with A±1(kz) := Ac(kz) ∓ jAs(kz), and

A0(kz) :=

[
1
RL0(kz) 0
Cp0(kz) 1

RS0(kz)

]
,

A±1(kz) :=
[

L±1(kz) 0
0 S±1(kz)

]
,

L±1(kz) := Lc(kz) ∓ jLs(kz),
S±1(kz) := Sc(kz) ∓ jSs(kz).

The underlying operators in A0(kz) and Ar(kz), for r = c
or r = s, are determined by

L0 := Δ−1Δ2, Cp0 := − jkzU
′(y),

S0 := Δ, Sr := − jkzWr(y),
Lr := jkzΔ−1

(
W ′′

r (y) − Wr(y)Δ
)
,

where Δ := ∂yy − k2
z , with homogenous Dirichlet bound-

ary conditions, and Δ2 := ∂yyyy − 2k2
z∂yy + k4

z , with
homogenous Dirichlet and Neumann boundary conditions.
It is a standard fact that, for any (kz, R), A0(kz) repre-
sents an exponentially stable operator [14]. We also note

that B(kz)B∗(kz) = I and C∗(kz)C(kz) = I , which
is important for the H2 norm computations (see [17] for
details).

We next state the result that quantifies energy amplification
of streamwise constant perturbations in parallel channel
flows subject to small amplitude transverse wall oscillations.
The proof of Theorem 2 is given in Appendix A.

Theorem 2: For any parallel channel flow U(y) subject to
small amplitude transverse wall oscillations

W (y = −1, t) = 2(Rw/R) sin (Ω/R)t, Rw � R,

the energy amplification of streamwise constant perturbations
is given by[‖H‖2

2

]
(kz) =

(
f0(kz) +

∑∞
n = 1R

2n
w f2n(kz, Ω)

)
R +(

g0(kz) +
∑∞

n = 1R
2n
w g2n(kz, Ω)

)
R3.

Theorem 2 establishes an explicit scaling of the energy
amplification with the Reynolds numbers R and Rw for
any streamwise constant parallel channel flow subject to
small amplitude transverse wall oscillations. As shown in
Appendix A, functions f and g in Theorem 2 represent traces
of the solutions to certain operator Lyapunov equations, and
the f functions do not depend on U(y). Thus, f0(kz) and
f2n(kz, Ω) are the same for all parallel channel flows U(y).
On the other hand, g0(kz) and g2n(kz, Ω) depend on the
underlying parallel flow through their dependence on the
nominal shear U ′(y). Since a contribution of g0 and g2n

to the H2 norm scales as R3, these two functions play a
dominant role in the amplification of stochastic excitations
for the large-Reynolds-number channel flows.

In the absence of wall oscillations (that is, at Rw = 0), we
recover a formula for the H2 norm of the streamwise constant
NS equations linearized around U(y) [15]. Functions f0 and
g0 are thoroughly analyzed in [15]–[17]; for completeness,
they are also shown in the first row of Fig. 2. The peak in
the plot of g0 determines the most energetic structures in the
velocity field excited by a broad-band, stochastic input field
d. In Poiseuille flow this peak takes place at kz ≈ 1.78.
As the plot of g2 reveals, the Stokes number Ω determines
whether transverse oscillations amplify or attenuate the most
energetic components of the uncontrolled flow. We observe
that the largest attenuation occurs at Ω̄ ≈ 17.61. Since the
influence of f2 on the energy amplification at large Reynolds
numbers is negligible compared to the influence of g2 (R vs.
R3 scaling), Ω̄ represents the Stokes number that provides the
largest H2 norm reduction (up to a second order in parameter
Rw). Note that the largest negative contributions of g2 to
the energy amplification are located in the region of kz’s
where function g0 peaks; this indicates that the spanwise wall
oscillations introduce interactions with the most energetic
modes (streamwise vortices and streaks) of the uncontrolled
flow which leads to a parametric resonance.

The (kz, Ω)–dependence of functions g4, g6, g8, and g10

in Poiseuille flow is shown in Fig. 3. These plots indicate
a progressive decrease in the magnitude of higher order
corrections to the H2 norm. For the values of Ω where g2

provides the largest energy amplification reduction, there is
an alternating positive and negative contribution of the higher
order corrections to the H2 norm.
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f0(kz): g0(kz):

f2(kz, Ω): g2(kz, Ω):

Fig. 2. Plots of functions f0, g0, f2, and g2 in Theorem 2. The g-functions
are shown in Poiseuille flow.

g4(kz, Ω): g6(kz, Ω):

g8(kz, Ω): g10(kz, Ω):

Fig. 3. Plots of functions g4, g6, g8, and g10 in Poiseuille flow.

The plots of Fig. 4 suggest inherent limitations (i.e.,
the slow convergence and the lack of convergence) of the
perturbation analysis for large wall oscillation amplitudes.
Despite these limitations the perturbation analysis is capable
of identifying important trends in amplification of ambient
disturbances. In particular, our method provides a paradigm
for the optimal selection of transverse oscillation frequencies
for turbulence suppression. When the frequency is selected,
the large-scale computations can be used to determine the
energy amplification even for oscillation amplitudes at which
perturbation analysis fails to converge. This is illustrated
in Fig. 5 where the H2 norms of uncontrolled Poiseuille
with R = 2000 (blue), and controlled Poiseuille with {R =
2000, Rw = 20, Ω = 17.61} (green) and {R = 2000,
Rw = 50, Ω = 17.61} (red) are shown. The green curve
is obtained by approximating the infinite summations in
the expression for

[‖H‖2
2

]
(kz) by summations with five

terms, and it closely matches the results obtained using
large-scale computations. On the other hand, the red curve
is obtained using large-scale computations. Thus, properly
designed transverse wall oscillations with amplitudes equal
to 2 % and 5 % of the maximal nominal velocity (Rw/R =
0.01 and Rw/R = 0.025, respectively), reduce the largest
energy amplification of the uncontrolled Poiseuille flow by
approximately 14 % and 35 %. This demonstrates the ability
of transverse wall oscillations to significantly weaken the
most energetic structures in transitional channel flows.[‖H‖2

2

]
(kz):

[‖H‖2
2

]
(kz):

(a) (b)

Fig. 4. The H2 norms of Poiseuille flow with R = 2000, and: (a)
{Rw = 25, Ω = 17.61}; (b) {Rw = 35, Ω = 17.61}. The blue curves
denote the uncontrolled flow; the controlled flow plots are obtained using
Theorem 2 with the infinite sums approximated by the sums with: 1 (green),
2 (red), 3 (cyan), 4 (magenta), and 5 (black) terms. As shown in plot (b),
the perturbation analysis fails to converge for large values of Rw .

[‖H‖2
2

]
(kz):

Fig. 5. The energy amplification of uncontrolled Poiseuille flow with R =
2000 (blue), and controlled Poiseuille flow with {R = 2000, Rw = 20,
Ω = 17.61} (green) and {R = 2000, Rw = 50, Ω = 17.61} (red).

Our results show that the transverse wall oscillations of
appropriate frequency have a potential for reducing the en-
ergy amplification of streamwise constant perturbation which
consequently leads to a smaller turbulence production [13],
[25].

V. CONCLUDING REMARKS

This paper develops a system theoretic paradigm for
modeling, optimization, and evaluation of sensorless flow
control strategies in wall-bounded shear flows. The new
paradigm represents a spatio-temporal analog of the well-
known principle of vibrational control, where the system’s
dynamical properties are altered by introducing zero-mean
vibrations into the system’s coefficients [27]. Depending on
the relationship between the natural modes of the uncon-
trolled system and the forcing frequency, the vibrational
control may have a potential for providing stability of the
overall system and for changing its input-output norms.
For example, it is well known that the inverted pendulum
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can be stabilized by sensorless means using high frequency
oscillations of the suspension point [27]. We show that the
principle of vibrational control can be also utilized in systems
governing the dynamics of flow fluctuations in channel flows,
where coefficients multiplying system’s state have temporal
periodicity. The key observation is that there is a potential
for changing dynamical properties of the NS equations (in
favorable or unfavorable manner) whenever temporal (or
spatial) vibrations enter into the system’s coefficients.

We model and analyze the influence of small amplitude
transverse wall oscillations on energy amplification in chan-
nel flows. We develop models that govern the dynamics
of flow fluctuations; the transverse oscillation parameters
enter as coefficients, and the body force fields enter as
stochastic excitations into these models. We conduct a
robustness analysis for the derived models, which yields
optimal oscillation frequency (as a function of the Reynolds
number) for turbulence suppression. Our results provide a
first compelling theoretical explanation as to why properly
designed transverse wall oscillations can suppress turbulence
in channel flows.

APPENDIX

A. Proof of Theorem 2

We next use Proposition 1 to clarify the depen-
dence of the H2 norm of system (7) with {W (y, t) =
2α (Wc(y) cos ωot + Ws(y) sin ωot) ; α = Rw/R, ωo =
Ω/R} on R, Ω, and kz; our derivations are summarized
in Theorem 2.

Since Wc(y) and Ws(y) are parameterized by the Stokes
number, Ω := ωoR, we represent operator F (n) := A0 −
jn(Ω/R)I as

F (n) =
[

1
R (L0 − jnΩI) 0

Cp0
1
R (S0 − jnΩI)

]
.

By decomposing Vl,k into 2 × 2 operator-blocks

Vl,m := Rl

[
R Xl,m R2 Πl,m

R2 Yl,m R Zl,ma
+ R3 Zl,mb

]
,

m =
{

0, 2, . . . , l l – even,

1, 3, . . . , l l – odd,
X∗

2n,0 = X2n,0, Π2n,0 = Y ∗
2n,0,

Z∗
2n,0(·) = Z2n,0(·) , n ∈ N0,

we can use Proposition 1 to derive a system of conveniently
coupled Reynolds-number-independent equations for Xl,m,
Yl,m, Πl,m, Zl,ma , and Zl,mb

. Due to page constraints, these
equations are not reported here.

Now, we combine Proposition 1 and the above derivations
with C∗C = I to obtain

‖H‖2
2 = trace

(
R(X0,0 + Z0,0a) + R3Z0,0b

)
+∑∞

n = 1(αR)2n trace
(
R(X2n,0 + Z2n,0a

) + R3Z2n,0b

)
.

Furthermore, since {X0,0, Z0,0a
, Z0,0b

} and {X2n,0, Z2n,0a
,

Z2n,0b
; n ∈ N} depend on kz and (kz, Ω), respectively, the

expression for the H2 norm of (7) can be rewritten as[‖H‖2
2

]
(kz) = (f0(kz) +

∑∞
n = 1R

2n
w f2n(kz, Ω))R +

(g0(kz) +
∑∞

n = 1R
2n
w g2n(kz, Ω))R3,

where {f2n := trace (X2n,0) + trace (Z2n,0a
) , g2n :=

trace (Z2n,0b
) , n ∈ N0}. This proves Theorem 2.
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