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Abstract— We consider a class of linear time-periodic systems
in which dynamical generator A(t) represents a sum of a stable
time-invariant operator A0 and a small amplitude zero-mean
T -periodic operator εAp(t). We employ a perturbation analysis
to develop a computationally efficient method for determination
of the H2 norm. Up to a second order in perturbation
parameter ε we show that: a) the H2 norm can be obtained from
a conveniently coupled system of readily solvable Lyapunov and
Sylvester equations; b) there is no coupling between different
harmonics of Ap(t) in the expression for the H2 norm. These
two properties do not hold for arbitrary values of ε, and their
derivation would not be possible if we tried to determine the H2

norm directly without resorting to perturbation analysis. Our
method is well suited for identification of the values of period
T that lead to the largest increase/reduction of the H2 norm.
Two examples are provided to motivate the developments and
illustrate the procedure.

I. INTRODUCTION

Time-periodic systems arise in many important physical
and engineering problems [1]. The examples of finite dimen-
sional systems are given by the Hill and Mathieu equations,
and the examples of infinite dimensional systems are given
by the equations describing the periodic excitations of fluids,
beams, plates, strings, and membranes. The Floquet analysis
provides a theoretical framework for investigation of local
stability properties of these systems [2]. On the other hand,
the so-called lifting technique [3] and the harmonic balance
approach [4] are most suitable for analysis of input-output
properties of the linearized versions of these systems.

The utility of input-output analysis for linear time-
invariant (LTI) systems is well documented [5]; we refer the
reader to [6]–[8] for an example of how this analysis can
be used to understand one of the oldest problems in fluid
mechanics−transition to turbulence in wall-bounded shear
flows. The H2 norm is an appealing measure of input-output
amplification, as it quantifies the variance amplification of
stochastically driven linear systems. For LTI systems, the H2

norm is determined by traces of controllability or observabil-
ity Gramians which represent solutions to standard Lyapunov
equations. On the other hand, the H2 norm of linear time-
periodic (LTP) systems can be expressed in terms of a
solution to the so-called harmonic Lyapunov equation [9].
Since the entries into this equation are bi-infinite matrices
with, in general, operator valued elements, the computation
of the H2 norm of LTP systems is a non-trivial exercise. Fur-
thermore, the state-transition matrix of most LTP systems is
difficult to obtain (either numerically or analytically) which
additionally hinders analysis. The recent article [9] addressed
these problems by: a) approximation of A(t) in the state-
equation by piecewise constant functions; b) truncation of bi-
infinite matrices in harmonic Lyapunov equation. However,
for systems described by partial integro-differential equations
(PIDEs) even this approach would require solving a large-
scale Lyapunov equation; for an accurate computation of the
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H2 norm of PIDEs with one spatial variable, the entries
into this equation are typically matrices with at least several
hundreds rows and columns.

In this paper, we study LTP systems in which A(t) is
given by a sum of a stable time-invariant operator A0 and a
small amplitude zero-mean T -periodic operator εAp(t). For
example, these systems can be obtained by linearization of
time-invariant nonlinear systems around small amplitude T -
periodic trajectories. We employ a perturbation analysis to
develop a computationally efficient method for determining
the H2 norm. Up to a second order in perturbation parameter
ε we show that: a) the H2 norm can be obtained from a
conveniently coupled system of readily solvable Lyapunov
and Sylvester equations; b) there is no coupling between
different harmonics of Ap(t) in the expression for the H2

norm. These two properties do not hold for arbitrary values
of ε, and their derivation would not be possible if we
tried to determine the H2 norm directly without resorting
to perturbation analysis. Our method is well suited for
identification of the values of period T that lead to the
largest increase/reduction of the H2 norm. An immediate
application domain is in fluid mechanics where temporally
periodic excitations can be introduced either to suppress
turbulence [10] or to enhance mixing.

We note that perturbation analysis used here has strong
parallels with the approach of [11] for the H2 analysis of
linear spatially-periodic systems. However, there are some
important differences in the structure of frequency response
operators for temporally and spatially periodic systems which
necessitates separate treatments. For example, in spatially-
periodic systems one often encounters cascades of spatially
invariant differential and spatially periodic multiplication
operators which somewhat complicates their analysis [12].
On the other hand, the state-space models of LTP systems
do not contain cascades of differential and periodic operators,
which imposes some additional structure that can be utilized
in analysis (see, for example, Lemma 1).

Our presentation is organized as follows: in section II
we formulate the problem and provide two examples that
serve as a motivation for our analysis. In § III, we give a
brief overview of a notion of the frequency response for
exponentially stable LTP systems. In § IV, we define the H2

norm for LTP systems and employ a perturbation analysis to
develop an efficient procedure for computing the H2 norm
of these systems subject to small amplitude oscillations. In
§ V, we use the developed method to determine the second
order corrections to the H2 norms of systems described in
§ II-A.1 and § II-A.2. In § VI, we end our presentation with
some concluding remarks.

II. PROBLEM FORMULATION

Let a linear dynamical system be given by its state-space
representation

∂tψ = A(t)ψ + Bd, (1a)

φ = Cψ, (1b)
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where ψ, φ, and d, respectively, denote the state, output, and
input vector valued fields. We assume that A(t) represents a
time-periodic operator with a period T = 2π/ωo, A(t) =
A(t + T ), that generates an exponentially stable strongly-
continuous (Co) semigroup on a Hilbert space H. Input and
output operators B and C are assumed to be time-invariant.

In this paper, we consider a class of LTP systems in which
operator A(t) can be represented as

A(t) = A0 + εAp(t),

where ε is a small parameter, A0 is an exponentially stable
time-invariant operator, and Ap(t) is a zero-mean T -periodic
operator. In other words, we assume that Ap(t) can be ex-
panded to its Fourier series, Ap(t) =

∑
n∈Z\0 Anejnωot. Our

objective is to derive a computationally efficient procedure
for determination of the H2 norm of system (1) using a
perturbation analysis.

We are particularly interested in distributed systems with
one spatial variable y ∈ [−1, 1]. To highlight this, we
rewrite (1) as

∂tψ(y, t) = A(t)ψ(y, t) + Bd(y, t), (2a)

φ(y, t) = Cψ(y, t), (2b)

where for each t, ψ(·, t), φ(·, t), and d(·, t) denote vector
valued fields in L2[−1, 1]. On the other hand, A(t), B,
and C are linear (integro-differential) operators in y, with
A(t) = A(t + T ). The example presented in § II-A.2
illustrates structure of these operators for a system describing
the evolution of velocity perturbations in a two-dimensional
oscillating channel flow. We note that with a careful choice
of notation all of our results hold for both finite dimensional
LTP systems and LTP systems described by (2).

Let H denote the mapping from input d to output φ, φ =
Hd. We assume that H has a kernel representation given by

φ(t) =
∫ t

0

H(t, τ)d(τ) dτ,

for finite dimensional systems of the form (1), and

φ(y, t) =
∫ t

0

∫ 1

−1

H(y, η; t, τ)d(η, τ) dη dτ,

for infinite dimensional systems of the form (2). Here, with
an abuse of notation, we use the same symbol for an operator
and its kernel function. It is not difficult to show that the
kernel function representing H is a doubly-periodic function
in t and τ , i.e. H(y, η; t, τ) = H(y, η; t + nT, τ + nT ),
n ∈ N0 [3]. We will consider a class of LTP systems whose
kernel functions are bounded on bounded subsets of R

2 (for
finite dimensional systems) and R

2 × [−1, 1] × [−1, 1]
(for system (2)), respectively. It is a standard fact that under
these conditions the H2 norm of an L2-stable system is well
defined.

A. Motivating examples
We next provide two examples that serve as a motivation

for our analysis. The first example represents a dissipative
version of the well-known Mathieu equation, and the second
example describes the dynamics of flow fluctuations in a two-
dimensional channel flow subject to a streamwise pressure
gradient and an oscillatory motion of the lower wall.

1) The dissipative Mathieu equation: The forced dissipa-
tive Mathieu equation is given by

ẍ + 2bẋ + (a − 2ε cos ωot)x = d,

Fig. 1. A two-dimensional channel flow subject to a streamwise pressure
gradient and an oscillatory motion of the lower wall.

where a and b denote positive parameters. By selecting

ψ(t) := [ x(t) ẋ(t) ]T , φ(t) := x(t),

this equation can be represented by (1) with

A(t) :=
[

0 1
− (a − 2ε cos ωot) − 2b

]
,

B := [ 0 1 ]T , C := [ 1 0 ] .

Clearly, in this example H := R
2, and

A(t) := A0 + εAp(t)
= A0 + ε

(
A−1e− jωot + A1ejωot

)
,

where

A0 :=
[

0 1
− a − 2b

]
, A±1 :=

[
0 0
1 0

]
.

In § V-A, we consider the small amplitude oscillations and
use perturbation analysis of § IV to determine how the H2

norm changes with forcing frequency ωo.
2) An example from fluid mechanics: Consider a two-

dimensional channel flow with geometry illustrated in Fig. 1.
Let the flow be subject to a streamwise pressure gradient,
Px = − 2/R, and an oscillatory motion of the lower
wall, U(y = −1, t) = 2α sin ωot. Here, t denotes the
non-dimensional time, α and ωo are, respectively, the non-
dimensional amplitude and frequency of the wall oscillations,
and R is the Reynolds number defined in terms of the
centerline velocity and the channel half-width.

With the appropriate scaling of the Navier-Stokes (NS)
equations, α and ωo can be expressed as {α = Ru/R, ωo =
Ω/R}, where Ru is the Reynolds number defined in terms
of the wall oscillation amplitude (in physical units) and the
channel half-width, and Ω is the Stokes number. Under these
conditions, it is readily shown that the steady-state solution
of the NS equations is given by

U(y, t) = U0(y) + 2(Ru/R)U1(y, t), U0(y) = 1 − y2,

U1(y, t) = Uc(y) cos (Ω/R)t + Us(y) sin (Ω/R)t,

where Uc(y) and Us(y) represent solutions to

U ′′
s (y) = −ΩUc(y), U ′′

c (y) = ΩUs(y),
Uc(±1) = Us(1) = 0, Us(−1) = 1.

Here, U ′′
r (y) denotes a second derivative of Ur(y), that is

U ′′
r (y) := d2Ur(y)/dy2, r = s or r = c.
The linearization of the NS equations around U(y, t) in

combination with the Fourier transform in x yields a one-
dimensional PIDE (in y) parameterized by a wave-number
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kx ∈ R. This PIDE has a state-space representation (2), with
the state of the system determined by a scalar field ψ(kx, y, t)
denoting the stream function. On the other hand, input and
output fields d and φ are, respectively, defined as

d(kx, y, t) := [ d1(kx, y, t) d2(kx, y, t) ]T ,

φ(kx, y, t) := [ u(kx, y, t) v(kx, y, t) ]T ,

where d1 and d2 (u and v) denote body force (velocity)
fluctuations in x and y. With this choice of the state, input,
and output fields, operators A, B, and C are given by

A(t) := Δ−1
(

1
RΔ2 + jkx

(
U ′′(y, t) − U(y, t)Δ

))
,

B := Δ−1 [ ∂y − jkx ] , C := [ ∂y − jkx ]T ,

where Δ := ∂yy − k2
x, with homogenous Dirichlet bound-

ary conditions, and Δ2 := ∂yyyy − 2k2
x∂yy + k4

x, with
homogenous Dirichlet and Neumann boundary conditions.

The underlying Hilbert space for A is given by [13]

H :=
{
g ∈ L2[−1, 1]; g′′ ∈ L2[−1, 1], g(±1) = 0

}
.

This operator is unbounded, and it is defined on a domain

D(A) :=
{

g ∈ H; g(4) ∈ L2[−1, 1], g′(±1) = 0
}

.

We endow H with the inner product

〈ψ1, ψ2〉e := − 〈ψ1, Δψ2〉 = −
∫ 1

−1

ψ∗
1Δψ2 dy,

and note that, for any kx and t, 〈ψ, ψ〉e determines the kinetic
energy of velocity perturbations. Here, 〈 · , · 〉 denotes the
standard L2[−1, 1] inner product. Based on this, the adjoints
of operators A, B, and C can be determined from [8]

〈ψ1, Aψ2〉e = 〈A∗ψ1, ψ2〉e ,

〈ψ, Bd〉e = 〈B∗ψ, d〉 ,

〈φ,Cψ〉 = 〈C∗φ, ψ〉e ,

which yields BB∗ = C∗C = I , and

A∗(t) = (1/R)Δ−1Δ2 + jkx(U(y, t) − Δ−1U ′′(y, t)).

Finally, we represent A(t) in a form suitable for the H2 norm
analysis

A(t) = A0 + (Ru/R)(A−1e− j(Ω/R)t + A1ej(Ω/R)t),

where

A0 := Δ−1
(

1
RΔ2 + jkx

(
U ′′

0 (y) − U0(y)Δ
))

,

A±1 := Ac ∓ jAs,

Ar := jkxΔ−1
(
U ′′

r (y) − Ur(y)Δ
)
, r = s, c.

In § V-B, we consider wall oscillations of a small ampli-
tude (Ru � R), and determine the H2 norm dependence
on kx and Ω at R = 2000 using a perturbation analysis of
§ IV.

III. FREQUENCY RESPONSE OF LTP SYSTEMS

We next provide a brief overview of a notion of the
frequency response for exponentially stable LTP systems
with period T = 2π/ωo. We refer the reader to [4], [9],
[14]–[16] for additional information. In particular, the details
about rigorous conditions for the existence of frequency
response operators of the LTP systems can be found in [14].

It is a standard fact that a frequency response of a stable
LTI system describes how a persistent harmonic input of

a certain frequency propagates through the system in the
steady-state. In other words, the steady-state response of a
stable LTI system to an input signal of frequency ω, is a
periodic signal of the same frequency, but with a modified
amplitude and phase. The amplitude and phase of the output
signal are precisely determined by the value of the frequency
response at the input frequency ω.

On the other hand, a steady-state response of a stable
LTP system to a harmonic input of frequency ω contains an
infinite number of harmonics separated by integer multiplies
of ωo, that is ω + nωo, n ∈ Z. Using this fact and the
analogy with the LTI systems, the frequency response of
an LTP system can be defined by introducing a notion of
exponentially modulated periodic (EMP) signals. As shown
in [4], the EMP signals are more suitable for the analysis of
the LTP systems than the persistent complex exponentials.
Namely, the steady-state response of (1) to an EMP signal

d(t) =
∞∑

n =−∞
dnej(nωo + θ)t, θ ∈ [0, ωo),

is also an EMP signal

φ(t) =
∞∑

n =−∞
φnej(nωo + θ)t, θ ∈ [0, ωo).

The frequency response of (1) is an operator that maps a
bi-infinite vector d := col {dn}n∈Z

to a bi-infinite vector
φ := col {φn}n∈Z

, that is φ = Hθd.
For system (1), operator Hθ can be expressed as

Hθ = C(E(θ) − A)−1B,

where E(θ) is a block-diagonal operator given by E(θ) :=
diag {j(θ + nωo)I}n∈Z, and I is the identity operator.
On the other hand, A, B, and C represent block-Toeplitz
operators, e.g.

A := toep {· · · , A2, A1, A0 , A−1, A−2, · · · },
where the box denotes the element on the main diagonal
of A. This bi-infinite matrix representation is obtained by
expanding operators A, B, and C in (1) into their Fourier
series, e.g. A(t) =

∑∞
n =−∞ Anejnωot. Clearly, since B

and C are time-invariant operators their block-Toeplitz rep-
resentations simplify to block-diagonal representations, i.e.
B = diag {B} and C = diag {C}.

IV. H2 NORM OF LTP SYSTEMS

The H2 norm of a T -periodic system (1) with φ = Hd,
is defined as [17]

‖H‖2
2 :=

1
T

∫ T

0

∫ ∞

0

[‖H‖2
HS

]
(t, τ) dt dτ,

where ‖ · ‖HS denotes the Hilbert-Schmidt (HS) norm. For
finite dimensional systems with kernel functions H(t, τ), the
HS norm simplifies to the Frobenius norm for matrices[‖H‖2

HS

]
(t, τ) := trace (H∗(t, τ)H(t, τ)) ,

and for infinite dimensional systems with kernel function
H(y, η; t, τ), the HS norm is given by[‖H‖2

HS

]
(t, τ) :=∫ 1

−1

∫ 1

−1

trace (H∗(y, η; t, τ)H(y, η; t, τ)) dη dy.
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As shown in [17], the H2 norm of an LTP system can
be interpreted as the square-average of the L2 norms of
the impulse responses to a set of input forcing functions
applied over the entire interval [0, T ]. This interpretation
of the H2 norm of LTP systems represents the appropriate
generalization of a well known deterministic interpretation
of the H2 norm of LTI systems [5].

Equivalently, the H2 norm of an LTP system can be
expressed in terms of its frequency response Hθ as

‖H‖2
2 =

1
2π

∫ ωo

0

trace (H∗
θHθ) dθ. (4)

We note that integration over θ in (4) can be avoided in the
computation of the H2 norm. Namely, the H2 norm of (1)
can be expressed using a solution to either of the following
harmonic Lyapunov equations [9]

FV + VF∗ = −BB∗, (5a)

F∗W + WF = −C∗C, (5b)

as
‖H‖2

2 = trace (Vc∗c) = trace (Wbb∗),

where F := A − E(0) = A − diag {jnωoI}n∈Z, and

c := [ · · · C1 C0 C−1 · · · ]
= [ · · · 0 C 0 · · · ] ,

b :=
[ · · · BT

−1 BT
0 BT

1 · · · ]T

=
[ · · · 0 BT 0 · · · ]T

.

For the LTI systems, the above formulae simplify to the well-
known expressions that are commonly used for determination
of the H2 norm [5].

The following Lemma, whose proof is omitted due to page
constraints, shows that the solutions to harmonic Lyapunov
equations (5a) and (5b) are block-Toeplitz operators.

Lemma 1: Let a T -periodic operator A(t) with block-
Toeplitz representation A be exponentially stable. Then,
solutions V and W to harmonic Lyapunov equations (5a)
and (5b) are self-adjoint block-Toeplitz operators.

Since the entries into the harmonic Lyapunov equation
are bi-infinite matrices with, in general, operator valued
elements, determination of the H2 norm of the LTP systems
is arguably a computationally intensive undertaking. In view
of this, we will consider a problem where operator A(t) can
be represented as a sum of a time-invariant operator A0 and
a zero-mean time-periodic operator εAp(t), where ε denotes
a small parameter. For this special case, we will employ a
perturbation analysis to develop a computationally efficient
method for determination of the H2 norm. We will show
that the H2 norm can be obtained by solving a conveniently
coupled system of Lyapunov and Sylvester equations. The
entries into these equations are determined by the elements
of bi-infinite matrices in (5). For the oscillating channel flow
example, the underlying Lyapunov and Sylvester equations
are operator valued equations in the wall-normal direction
(y). A discretization in y can be used to obtain a set of matrix
valued equations that can be easily solved in e.g. MATLAB.
The order of these equations is determined by the size of
discretization in the wall-normal direction (typically around
50).

A. Perturbation analysis
Using the structure of A(t), we represent operator F in (5)

as F = F0+ε
∑

m∈N
Fm, where F0 := diag {F (n)}n∈Z =

diag {A0 − jnωoI}n∈Z. On the other hand, for each m ∈ N,
Fm represents a block-Toeplitz operator with A−m and Am

on the mth upper and lower block sub-diagonals, respec-
tively. For example,

F1 := toep {· · · , 0, A1, 0 , A−1, 0, · · · },
F2 := toep {· · · , 0, A2, 0, 0 , 0, A−2, 0, · · · },

and similarly for the other Fm’s. In view of the above
decomposition of operator F , we rewrite harmonic Lyapunov
equation (5a)

(F0 + ε
∑

m∈N

Fm)V + V(F∗
0 + ε

∑
m∈N

F∗
m) = −BB∗,

and represent V as

V :=
∑

n∈N0

εnVn = V0 + εV1 + ε2V2 + · · · . (6)

The self-adjoint block-Toeplitz operators {Vn}n∈N0 satisfy
the following sequence of operator Lyapunov equations

F0V0 + V0F∗
0 = −BB∗, (7a)

F0Vi + ViF∗
0 = −

∑
m∈N

(FmVi−1 + Vi−1F∗
m), (7b)

for each i ∈ N. Since F0 and B are block-diagonal operators,
it follows from (7a) that V0 is also a block-diagonal operator,
V0 := diag {X}, with

A0X + XA∗
0 = −BB∗.

Using linearity of (7b) we express V1 as

V1 =
∑

m∈N

V(m)
1 ,

where

F0V(m)
1 + V(m)

1 F∗
0 = − (FmV0 + V0F∗

m). (8)

Here, for each m ∈ N, V(m)
1 denotes a self-adjoint

block-Toeplitz operator with non-zero elements on the mth

block sub-diagonals; this structure of V(m)
1 follows directly

from (8), Lemma 1, and a simple observation that a product
between a block-diagonal and a block-Toeplitz operator with
non-zero elements on the mth block sub-diagonals yields
an operator with non-zero elements on the mth block sub-

diagonals. Thus, V1 is a trace-less operator, and each V(m)
1

is a self-adjoint block-Toeplitz operator with Ym on the
mth upper block sub-diagonal. Furthermore, operator Ym

represents a solution to the following Sylvester equation

(A0 + jmωoI)Ym + YmA∗
0 = − (A−mX + XA∗

m) .

Based on linearity of (7b) and the above representation of
V1 it follows that V2 can be expressed as

V2 =
∑

m∈N

∑
k ∈N

V(m,k)
2 ,

where

F0V(m,k)
2 + V(m,k)

2 F∗
0 = − (FmV(k)

1 + V(k)
1 F∗

m). (9)

Now, since Fm and V(k)
1 are, respectively, block-Toeplitz

operators with non-zero elements on the mth and kth block
sub-diagonals, their product will have non-zero elements on
the main-diagonal if and only if m = k. Thus, we see
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from (9) that only operators V(m,m)
2 have a non-zero trace;

for m �= k, operators V(m,k)
2 are trace-less. In view of this,

we disjoin the block-diagonal part of V(m,m)
2 from the rest

of it
V(m,m)

2 = diag {Zm} + V̄(m,m)
2 ,

and derive the following Lyapunov equation for operator Zm

A0Zm + ZmA∗
0 = − (AmYm + Y ∗

mA∗
m +

A−mY ∗
m + YmA∗

−m).

Hence, up to a second order in perturbation parameter ε,
the H2 norm can be expressed as

‖H‖2
2 =

∑
n∈N0

εntrace (Vnc∗c)

= trace
((

X + ε2
∑

m∈N

Zm

)
C∗C

)
+ O(ε3).

Based on the above, we state the following result.
Theorem 2: Up to a second order in perturbation parame-

ter ε, the H2 norm of system (1) with

A(t) = A0 + ε
∑

n∈Z\0
Anejnωot,

is given by

‖H‖2
2 = trace

((
X + ε2

∑
m∈N

Zm

)
C∗C

)
+ O(ε3),

where

A0X + XA∗
0 = −BB∗,

(A0 + jmωoI)Ym + YmA∗
0 = − (A−mX + XA∗

m) ,

A0Zm + ZmA∗
0 = − (AmYm + Y ∗

mA∗
m +

A−mY ∗
m + YmA∗

−m).

Thus, up to a second order in perturbation parameter ε,
there is no coupling between different harmonics of Ap(t)
in the expression for the H2 norm. This decoupling between
different harmonics does not hold for arbitrary values of ε,
and its derivation would not be possible if we tried to solve
the harmonic Lyapunov equation directly without resorting
to perturbation analysis.

When A(t) contains only the first harmonic ωo, i.e.

A(t) = A0 + ε
(
A−1e− jωot + A1ejωot

)
,

operator F can be represented as F = F0 + εF1, where
F0 and F1 are defined in the beginning of this section. Now,
using the structure of operators F0, F1, and Vi−1 in (7b) we
can establish that:

• For any n ∈ N0, V2n in (6) is a self-adjoint block-
Toeplitz operator with non-zero elements on block sub-
diagonals 2k, k = 0, . . . , n, that is

V2n = diag {V2n,0} +
∑n

k = 1 S2k diag {V2n,2k} +∑n
k = 1 diag {V ∗

2n,2k} S∗
2k,

where S2k denotes a bi-infinite block-Toeplitz operator
with identity operators on the upper block sub-diagonal
2k. Notation Vn,k indicates that Vn,k belongs to the kth
upper block sub-diagonal of Vn, and, for any {n ∈
N0, k = 0, . . . , n}, operators V2n,2k represent the
solutions to Lyapunov and Sylvester equations given in
Theorem 3.

• For any n ∈ N, V2n−1 in (6) is a self-adjoint block-
Toeplitz operator with non-zero elements on block sub-
diagonals 2k − 1, k = 1, . . . , n, that is

V2n−1 =
∑n

k = 1 S2k−1 diag {V2n−1,2k−1} +∑n
k = 1 diag {V ∗

2n−1,2k−1} S∗
2k−1,

where S2k−1 denotes a bi-infinite block-Toeplitz oper-
ator with identity operators on the upper block sub-
diagonal 2k − 1. Notation Vn,k indicates that Vn,k

belongs to the kth upper block sub-diagonal of Vn.
Thus, trace (V2n−1) ≡ 0, and, for any {n ∈ N,
k = 1, . . . , n}, operators V2n−1,2k−1 represent the
solutions to Lyapunov and Sylvester equations given in
Theorem 3.

The above observations for time-periodic operators A(t)
with a single harmonic ωo are summarized in Theorem 3.

Theorem 3: The H2 norm of system (1) with

A(t) = A0 + ε
(
A−1e− jωot + A1ejωot

)
, 0 < ε � 1,

is given by

‖H‖2
2 =

∞∑
n = 0

ε2n trace (V2n,0 C∗C) ,

where

A0V0,0 + V0,0A
∗
0 = −BB∗,

A0V2n,0 + V2n,0A
∗
0 = − (A1V2n−1,1 + V ∗

2n−1,1A
∗
1 +

A−1V
∗
2n−1,1 + V2n−1,1A

∗
−1),

(A0 + jlωoI)Vl,l + Vl,lA
∗
0 = − (A−1Vl−1,l−1 +

Vl−1,l−1A
∗
1), l ∈ N,

(A0 + jmωoI)Vl,m + Vl,mA∗
0 = − (A−1Vl−1,m−1 +

Vl−1,m−1A
∗
1 + A1Vl−1,m+1 + Vl−1,m+1A

∗
−1),

m =
{

2, 4, . . . , l − 2 l – even,

1, 3, . . . , l − 2 l – odd.

Application of Theorem 3 is illustrated in § V on two
examples: the dissipative Mathieu equation of § II-A.1 and
the two-dimensional oscillating channel flow of § II-A.2.

V. EXAMPLES

In this section, we employ Theorem 3 to determine the
second order corrections to the H2 norms of systems de-
scribed in § II-A.1 and § II-A.2.

A. The dissipative Mathieu equation
The H2 norm of dissipative Mathieu equation subject to

small amplitude oscillations (see § II-A.1) is given by

‖H‖2
2 = f0 + ε2f2(ωo) + O(ε4),

where f0 = 1/(4ab), and

f2(ωo) =
64ab2 + 4

(
3a − 4b2

)
ω2

o − ω4
o

2a2b (4b2 + ω2
o) (16a2 − 8 (a − 2b2) ω2

o + ω4
o)

.

The formula for f2(ωo) is obtained from Theorem 3 with
the help of MATHEMATICA.

Plots of f2(ωo) and log10 |f2(ωo)| in the expression for the
H2 norm of dissipative Mathieu equation with a = 1 and
b = 0.2 are shown in Fig. 2. We observe two resonant peaks:
the positive at ωo ≈ 1.88, and the negative at ωo ≈ 4.23.
As can be seen from the plot of log10 |f2(ωo)|, the latter
resonant peak has a very small magnitude compared to the
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peak at ωo ≈ 1.88 and its contribution to the H2 norm is
not likely to be significant.

f2(ωo): log10 |f2(ωo)|:

Fig. 2. Plots of f2(ωo) and log10 |f2(ωo)| in the expression for the H2

norm of dissipative Mathieu equation with a = 1 and b = 0.2.

B. Two-dimensional oscillating channel flow
The H2 norm of a two-dimensional oscillating channel

flow is parameterized by the wave-number kx, the Stokes
number Ω, and the Reynolds numbers R and Ru (see § II-
A.2). For small amplitude oscillations of the lower wall
(Ru � R), we use Theorem 3 to obtain[‖H‖2

2

]
(kx) = f0(kx) + R2

uf2(kx, Ω) + O(R4
u),

where functions f0(kx) and f2(kx, Ω) also depend on the
Reynolds number R.

Fig. 3 illustrates plots of f0(kx) and f2(kx, Ω) in the two-
dimensional oscillating channel flow with R = 2000. These
two functions are determined numerically using a Matlab
Differentiation Matrix Suite [18] with 50 collocation points
in the wall-normal direction. We observe a peak in the plot
of f0(kx) which is caused by ‘poorly damped modes’ of
parallel channel flow U0(y). Clearly, depending on the value
of Stokes number Ω this peak can be attenuated or amplified
in the presence of wall oscillations. For small values of Ω
(approximately Ω < 20) ‘the periodic feedback’ leads to
a reduction in the H2 norm, whereas for large values of Ω
(approximately 20 < Ω < 250) it increases the H2 norm.
Thus, the perturbation analysis facilitates identification of the
Stokes numbers (i.e. the wall oscillation frequencies) that
lead to amplification or attenuation (relative to U0(y)) of
background disturbances. Once the wall oscillation frequency
is selected using perturbation analysis, the influence of the
wall oscillation amplitude on the H2 norm can be studied
using, for example, the truncation of bi-infinite operators in
the harmonic Lyapunov equation or so-called ‘approximate
modeling approach’ [9]. We note that our analysis provides
a computationally efficient method for determination of the
H2 norm of periodic systems subject to small amplitude
oscillations without resorting to either of these two ap-
proaches. The only approximation in our analysis arises due
to discretization of channel flow system in the wall-normal
direction. As far as temporal dynamics is concerned, our
analysis is exact.

VI. CONCLUDING REMARKS

We use a perturbation analysis to develop an efficient
method for computation of the H2 norm of LTP systems
with small amplitude oscillations. We show that, up to a
second order in perturbation parameter, the H2 norm can
be determined by solving a conveniently coupled system
of Lyapunov and Sylvester equations whose structure is
determined by the structure of unperturbed LTI system.

f0(kx): f2(kx, Ω):

Fig. 3. Plots of f0(kx) and f2(kx, Ω) in the expression for the H2 norm
of two-dimensional oscillating channel flow with R = 2000.

For finite dimensional systems, the size of these equations
corresponds to the size of matrices in the original LTI system.
For infinite dimensional systems, these equations are operator
valued and they are typically solved by resorting to finite di-
mensional approximation of the underlying operators. In the
channel flow example, this amounts to solving Lyapunov and
Sylvester equations of the size determined by discretization
in the wall-normal direction (typically less than 50). The
developed procedure is suitable for identification of forcing
frequency ωo := 2π/T that leads to the largest H2 norm
reduction/increase.
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