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Abstract— We revisit the vehicular platoon control prob-
lems formulated by Levine & Athans [1] and Melzer &
Kuo [2]. We show that in each case, these formulations are
effectively ill-posed. Specifically, we demonstrate that in the
first formulation, the system’s stabilizability degrades as
the size of the platoon increases, and that the system loses
stabilizability in the limit of an infinite number of vehicles.
We show that in the LQR formulation of Melzer & Kuo [2],
the performance index is not detectable, leading to non-
stabilizing optimal feedbacks. Effectively, these closed-loop
systems do not have a uniform bound on the time constants
of all vehicles. For the case of infinite platoons, these
difficulties are easily exhibited using the theory of spatially
invariant systems. We argue that the infinite case is a useful
paradigm to understand large platoons. To this end, we
illustrate numerically how stabilizability and detectability
degrade as functions of a finite platoon size, implying that
the infinite case is a reasonable approximation to the large,
but finite case. Finally, we suggest a well-posed alternative
formulation of the LQR problem based on penalizing
absolute position errors in addition to relative ones in the
performance objective.

Index Terms— Vehicular Platoons; Optimal Control;
Spatially Invariant Systems.

I. INTRODUCTION

In this paper, we consider optimal control of vehicular
platoons. This problem was originally studied by Levine &
Athans [1], and for an infinite string of moving vehicles by
Melzer & Kuo [2], both using LQR methods. We analyze the
solutions to the LQR problem provided by these authors as
a function of the size of the formation, and show that these
control problem become effectively ill-posed as the size of the
platoon increases. We investigate various ways of quantifying
this ill-posedness. In section II, we show that essentially, the
resulting closed-loop systems do not have a uniform bound
on the rate of convergence of the regulated states to zero. In
other words, as the size of the platoon increases, the closed-
loop system has eigenvalues that limit to the imaginary axis.

In section II, we setup the problem formulations of [1],
[2] and investigate the above mentioned phenomena for finite
platoons numerically. In section III, we also consider the
infinite platoon case as an insightful limit which can be treated
analytically. We argue that the infinite platoons capture the
essence of the large-but-finite platoons. The infinite problem
is also more amenable to analysis using the recently developed
theory for spatially invariant linear systems [3], which we
use to show that the original solutions to this problem are
not exponentially stabilizing in the case of an infinite number
of vehicles. The reason for this is the lack of stabilizability
or detectability of an underlying system. Thus, these control
problems are inherently ill-posed even if methods other than
LQR are used. We end in section IV with alternative problem
formulations which are well-posed. The main feature of these

alternative formulations is the addition of penalties on absolute
position errors in the performance objective.

II. OPTIMAL CONTROL OF FINITE PLATOONS

In this section, we consider the LQR problem for finite
vehicular platoons. This problem was originally studied by
Levine & Athans [1] and subsequently by Melzer & Kuo [2],
[4]. The main point of our study is to analyze the control
strategies of [1], [2], and [4] as the number of vehicles
in platoon increases. We show that the solutions provided
by these authors yield the non-uniform rates of convergence
towards the desired formation. In other words, we demonstrate
that the time constant of the closed-loop system gets larger as
the platoon size increases.

A system of M identical unit mass vehicles is shown in
Fig. 1. The dynamics of this system can be obtained by
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Fig. 1. Finite platoon of vehicles.

representing each vehicle as a moving mass with the second
order dynamics

n e {1,...,M}, (1)

Tn + KTn = Un,

where z,, represents the position of the n-th vehicle, u,, is the
control applied on the n-th vehicle, and x > 0 denotes the
linearized drag coefficient per unit mass.

A control objective is to provide the desired cruising veloc-
ity vq and to keep the distance between neighboring vehicles
at a constant pre-specified level L. By introducing the absolute
position and velocity error variables

En(t) =
(n(t) =

system (1) can be rewritten using a state-space realization of

the form [2], [4]
0 1 13 0
o a7l e

-

xn(t) — vgt + ’I’LL7

xn(t) — Vd,

ne{l,...,M},
ne{l,...,M},

[
—. Ay + Bi,
where £ = [ & & }*, ¢ = [ (1 Cumr ]*,
i = [ 1 -+ Gar |7, and @y = un — kKvg. Alterna-

tively, by introducing the relative position error variable

M(t) = za(t) — za1(t) + L = &a(t) — &ua(D),

for every n € {2,...,M}, and neglecting the position
dynamics of the first vehicle, the system under study can
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be represented by a realization with 2M — 1 state-space
variables [1]

HE R R

A¢ + Bi,

with 7 := [ 72 M }*,andfhg being an (M —1)x M
Toeplitz matrix with the elements on the main diagonal and
the first upper diagonal equal to —1 and 1, respectively.

Following [2], [4], fictitious lead and follow vehicles, re-
spectively indexed by 0 and M + 1, are added to the formation
(see Fig. 2). These two vehicles are constrained to move at the
desired velocity vq and the relative distance between them is
assumed to be equal to (M +1)L for all times. In other words,
it is assumed that

{l‘o(t) = wvgt, $M+1(t) = vgt — (M +

or equivalently

1)L, Vt >0},

&o(t) = &un(t) = 0
G~ o - o) V0 @
A performance index of the form [2], [4]
o M+1
/ Z Qo (t +Z g3 (8) + it ())) dt

%)
is associated with system (2). Using (4), J can be equivalently
rewritten as

1

g=1 / T T 0Qu()

> + @*(t)Ra(t)) dt,

where matrices () and R are determined by

Q = {%1 0 } R = rl,

g3l
with @1 being an 2M x 2M tridiagonal symmetric
Toeplitz matrix ~ with the first row given by

[2a1 @ 0 -+ 0]e
now in the standard LQR form.

R2M  The control problem is

Fictitious Fictitious
follow Ieaq
vehicle Tpp, U 1, Uq vehicle
> jivind i
Tpf41 = vgt — (M + l)L Tp = gt

Fig. 2. Finite platoon with fictitious lead and follow vehicles.

The left and middle plots in Fig. 3 respectively show the
dependence of the minimal and maximal eigenvalues of the
solution to the LQR Algebraic Riccati Equation (ARE) Py
for system (2) with performance index (5), for {x = 0,
g1 = gz = r = 1}. Clearly, Amin{ P} decays monotonically
towards zero indicating that the pair (Q, A) gets closer to
losing its detectability as the number of vehicles increases.
On the other hand, Amax{Pas} converges towards the constant
value that determines the optimal value of objective (5) as M
goes to infinity. The right plot in Fig. 3 illustrates the location
of the dominant poles of system (2) connected in feedback
with a controller that minimizes cost functional (5) for {x = 0,
g1 = gz = r = 1}. The dotted line represents the function
—3.121/M which indicates that the least-stable eigenvalues

of the closed-loop A matrix scale in an inversely proportional
manner to the number of vehicles in platoon. Hence, the time
constant of the closed-loop system gets larger as the size of
platoon increases.

We remark that a formulation of the LQR problem for
finite platoon (2) without the follow fictitious vehicle and
appropriately modified cost functional of the form

/OOqun B+ aCt) +ri2)dt, ©)

n=1

yields qualitatively similar results to the ones presented above.
On the other hand, for system (2) without both lead and follow
fictitious vehicles, the appropriately modified performance
objective is given by (7). In this case, both the first and the
last elements on the main diagonal of matrix ) are equal
to g1. It can be shown that the pair (Q, A) for system (2,7)
is practically not detectable [5], irrespective of the number of
vehicles in formation.

Levine & Athans [1] studied the finite string of M vehicles
shown in Fig. 1, with state-space representation (3) expressed
in terms of the relative position and absolute velocity error
variables. In particular, the LQR problem with a quadratic
performance objective of the form

= %/Ooo(;qmn +Z asCa(t) + riin (1)) dt,

@)
was formulated. Furthermore, the solution was provided for a
platoon with M = 3 vehicles and {k = r = 1, ¢ = 10,
gs = 0}. We take a slightly different approach and analyze
the solution to this problem as a function of the number of
vehicles in platoon.

The left and middle plots in Fig. 4 respectively show
minimal and maximal eigenvalues of the solution to the ARE in
LQR problem (3,7) with kK = ¢1 = g3 = r = 1. The right plot
in the same figure shows the real parts of the least-stable poles
of system (3) with a controller that minimizes (7). Clearly,
Amax{Pn} scales linearly with the number of vehicles and,
thus, the optimal value of performance objective (7) gets larger
as the size of a vehicular string grows. This is because the
pair (A, B) gets closer to losing its stabilizability when the
platoon size increases. Furthermore, in the right plot, the
dotted line represents the function — 2.222/M, which implies
the inversely proportional relationship between the dominant
eigenvalues of the closed-loop A matrix and the number of
vehicles in platoon. This implies again that as the number of
vehicles increases, there is no uniform bound on the decay
rates of regulated states to zero.

The results of this section clearly indicate that control
strategies of [1], [2], [4] lead to closed-loop systems with
arbitrarily slow decay rates as the number of vehicles increases.
In § III, we show analytically that the absence of a uniform rate
of convergence in finite platoons manifests itself as the absence
of exponential stability in the limit of an infinite vehicular
strings.

III. OPTIMAL CONTROL OF INFINITE PLATOONS

In this section, we consider the LQR problem for infinite
vehicular platoons. This problem was originally studied by
Melzer & Kuo [2]. Using recently developed theory for spa-
tially invariant linear systems [3], we show that the controller
obtained by these authors does not provide exponential stabil-
ity of the closed-loop system due to the lack of detectability of
the pair (@, A) in their LQR problem. We further demonstrate
that the infinite platoon size limit of the problem formulation
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Fig. 3. The minimal (left plot) and maximal eigenvalues (middle plot) of the ARE solution P for system (2) with performance objective (5),
and the dominant poles of LQR controlled platoon (2,5) (right plot) as functions of the number of vehicles for {x =0, g1 =¢3 =r =1}.
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Fig. 4. The minimal (left plot) and maximal eigenvalues (middle plot) of the ARE solution Py for system (3) with performance objective (7),
and the dominant poles of LQR controlled platoon (3,7) (right plot) as functions of the number of vehicles for k = q1 = g3 =r = 1.

of Levine & Athans [1] yields an infinite-dimensional system
which is not stabilizable.

A system of identical unit mass vehicles in an infinite string
is shown in Fig. 5. The infinite dimensional equivalents of (2)

o ! ' ! ! ! o
ey . Lo L Lo

T2, U2 T3, Wy 20, Ug To1, Ul T2, U2

Fig. 5. Infinite platoon of vehicles.

and (3) are respectively given by
G|l [0 1][é&
Gl L0 -k Cn

=: Anwn + Bn'l]n, n e Z,
and
1 - Tfl nn

e-B el e

=: Appn + Bpiln, n€Z,

- 2]

®)

©
where T, is the operator of translation by —1 (in the vehicle’s
index). As in [2], [6], we consider a quadratic cost functional
of the form

7= 5 [ S0 + ascio) + i) at

nez

(10)

with q1, g3, and r being positive design parameters.

We utilize the fact that systems (8) and (9) have spatially
invariant dynamics over a discrete spatial lattice Z [3]. This
implies that the appropriate Fourier transform (in this case

the bilateral Z-transform evaluated on the unit circle) can be
used to convert analysis and quadratic design problems into
those for a parameterized family of finite-dimensional systems.
This transform, which we refer to here as the Zg-transform, is

defined by
To 1= anefjne.

nez

Using this, system (8) and cost functional (10) transform to
ée 0 1

Gl K Hi] « 1]

=: /191&9 + Bgﬁo, 0 <6 < 2,

—K

(11)

and
(&S] 27
7= % /0 /0 (95 (10Qotbo (1) + (1) Roia (1) ) a0,

where Ry := r, and

2¢1(1 — cos @) O

Qo = [ 0 qs

:|,0§9<27T.

Similarly, system (9) and cost functional (10) transform to

-0 JEHE

=: qu@e + éeﬁm 0 <60 < 2m,
(12)
with

— K

1 — efjg]

7= ﬁ/w/ (35(1)Qodo(t) + i (1) Rofio (1)) d0 at,
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r, 0 <0 < 2m.

2o . |: ql O
: 0 g

},m;

If (Ag, By) is stabilizable and (Qp, Ag) is detectable for
all 8 € [0, 27), then the §-parameterized ARE

AyPy + PyAg + Qo — PyBeR,'B;Py = 0,
has a unique positive definite solution for every 6 € [0, 27).
This positive definite matrix determines the optimal stabilizing
feedback for system (11) for every 6 € [0, 27)

121,9 = Kgi[)g = — Rt;lB;Pe’LZ)g, 0 <60 < 27
If this is the case, then there exist an exponentially stabilizing
feedback for system (8) that minimizes (10) [3]. This optimal
stabilizing feedback for (8) is given by

Uy = Z Kn—kwkv n e Za
kEZ
where
1 27 R -
K, = — Kye’™ do, n € 7.
2r J,

It is easily shown that the pair (Ag, By) is controllable for
every 0 € [0, 2m). On the other hand, the pair (Qg, Ag) is not
detectable at & = 0. In particular, the solution to the ARE at
0 = 0 is given by

P = {8 r(—no+ w}’

which yields a closed-loop A matrix at 6 = 0 of the form

N 0 1
. 0

with v := %\/(K,T)2 + rqs. Therefore, matrix Ao is not
Hurwitz, which implies that the solution to the LQR problem
does not provide an exponentially stabilizing feedback for
the original system [3]. We remark that this fact has not
been realized in [2] and [6]. The spectrum of the closed-loop
generator for {x = 0, g1 = ¢3 = r = 1} is shown in Fig. 6
to illustrate the absence of exponential stability.

1

Im (}L{Ad})

-0.5

da 2 -1 08 06 04 02 0
Re(MA,})

Fig. 6. The spectrum of the closed-loop generator in an LQR
controlled spatially invariant string of vehicles (8) with performance
objective (10) and {x =0, g1 = g3 =7 =1}.

It is instructive to consider the initial states that are not
stabilized by this LQR feedback. Based on (13), it follows

that the solution of system (11) at # = 0 with the controller
of [2] is determined by

G(t) = e (0),
bolt) = &(0) — %(1 — ) (0).

We have assumed that «y # 0, which can be accomplished for
any x > 0 by choosing g3 > 0. Thus,

ST6®) = 0) = ~(1 - e )36 0),
nez nez v nez
which implies that lim¢—, o ZneZ &n(t) # 0 unless

>6u(0) = 2326(0)

nez nez

0. (14)

Therefore, if the initial condition of system (8) does not
satisfy (14) than ), &, (t) cannot be asymptotically driven
towards zero. It is not difficult to construct a physically relevant
initial condition that violates (14). For example, this situation
will be encountered if the string of vehicles at ¢ = O cruises
at the desired velocity vg with all the vehicles being at their
desired spatial locations except for a single vehicle. In other
words, even for a seemingly benign initial condition of the
form {¢,(0) = 0; £,(0) =0, Vn € Z\ 0; &(0) =S # 0}
there exist at least one vehicle whose absolute position error
does not converge to zero as time goes to infinity when the
control strategy of Melzer & Kuo [2] is employed. This non-
zero mean position initial condition is graphically illustrated
in Fig. 7.

o H H H H ! -

i » L

Es By
20(0)#0 2_1(0) =L z_»(0)=2L

(0) L_:"izL 1(0) =-1

Fig. 7. An example of a position initial condition for which there is at
least one vehicle whose absolute position error does not asymptotically
converge to zero when the control strategy of [2] is used.

We note that system (12) is not stabilizable at § = 0, which
prevents system (9) from being stabilizable [3]. Hence, when
infinite vehicular platoons are considered the formulation of
design problem of Levine & Athans [1] is ill-posed (that is,
unstabilizable). In particular, the solution of the ‘7-subsystem’
of (12) at # = 0 does not change with time, that is 7jo(¢) =
70(0), which indicates that Y _, n.(t) = > ;7 (0).
Therefore, for a non-zero mean initial condition {7, (0)}ncz,
the sum of all relative position errors is identically equal to a
non-zero constant determined by > ., 7,(0). An example
of such initial condition is given by {7,(0) = 0, Vn €
Z\0; mo(0) = S # 0}, and it is illustrated in Fig. 8. It is quite
remarkable that the control strategy of Levine & Athans [1]
is not able to asymptotically steer all relative position errors
towards zero in an infinite platoon with this, at first glance,
innocuously looking initial condition.

Therefore, we have shown that exponential stability of an
LQR controlled infinite platoon cannot be achieved due to
the lack of detectability (in the case of [2], [4]) and stabi-
lizability (in the case of [1]). These facts have very important
practical implications for optimal control of large vehicular
platoons. Namely, our analysis clarifies results of § II, where
we have observed that decay rates of a finite platoon with
controllers of [1], [2], [4] become smaller as the platoon size
increases.
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Fig. 8. An example of a position initial condition for which there is at
least a pair of vehicles whose relative distance does not asymptotically
converge to the desired inter-vehicular spacing L when a control
strategy of [1] is used.

In § IV, we demonstrate that exponential stability of an
infinite string of vehicles can be guaranteed by accounting
for position errors with respect to absolute desired trajectories
in both the state-space representation and the performance
criterion.

IV. ALTERNATIVE PROBLEM FORMULATIONS

In this section, we propose an alternative formulation of
the LQR problem for vehicular platoons. We show that the
problems discussed in § II and § III can be overcome by ac-
counting for the absolute position errors in both the state-space
realization and the performance criterion. Since consideration
of infinite platoons is better suited for analysis, we first study
the LQR problem for a spatially invariant string of vehicles,
and then discuss practical implications for optimal control of
finite vehicular platoons. We also briefly remark on the choice
of the appropriate state-space.

We represent system shown in Fig. 5 by its state-space
representation (8) expressed in terms of absolute position and
velocity error variables, and propose the quadratic performance
objective of the form

Tim 5 73 @)+ i 0) + o)+ 1) a

nez
15
with q1, g2, g3, and r being positive design parameters. It
should be noted that in (15) we account for both absolute
position errors &, and relative position errors 7,,. This is in
contrast to performance index (10) considered by Melzer &
Kuo [2] and Chu [6], where only relative position errors are
penalized in J. The main point of this section is to show that
if one accounts for absolute position errors (in addition to the
relative ones) in the cost functional, then LQR feedback will
be exponentially stabilizing.
Application of Zp-transform
whereas (15) simplifies to

renders (8) into (11),

- i/om/obr (65 (6)Qavo(t) + @5 () Raia(t)) a0 dt,

= r, and

{qg + 2¢1(1 — cosB) O
0 qs3

where Re

Qp = ],0§0<27r.
As shown in § III, the pair (Ag, By) is controllable for every
0 € [0, 2m). Furthermore, it is easily established that the
pair (Qp, Ap) is detectable if and only if

g2 + 2q1(1 — cos @) # 0, VOe€]0,2m).

Even if ¢; is set to zero, this condition is satisfied as long
as g2 > 0. However, in this situation the inter-vehicular
spacing is not penalized in the cost functional which may
result into an unsafe control strategy. Because of that, as
in [2], [6], we assign a positive value to ¢i. In this case, if

g2 = 0, the pair (Qg, Ag) is not detectable at 6 = 0, which
implies that accounting for the absolute position errors in the
performance criterion is essential for obtaining a stabilizing
solution to the LQR problem. The spectrum of the closed-
loop generator shown in Fig. 9 illustrates exponential stability
of infinite string of vehicles (8) combined in feedback with
a controller that minimizes performance objective (15) for
k=0, a=q=g=r=1}

RN

In(L{A)])

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0
Re(M{A))

Fig. 9.  The spectrum of the closed-loop generator in an LQR
controlled spatially invariant string of vehicles (8) with performance
objective (15) and {k =0, g1 = q2 =q3 =r = 1}.

For a finite platoon with M vehicles the appropriately
modified version of (15) is obtained by adding an additional
term that accounts for absolute position errors to the right-hand
side of (5)

0o M+1

J / Z q1 777L
M

D (@6 (t) + sCa(t) + riin(t))dt.

n=1

(16)

Equivalently, (16) can be rewritten as

1 =3[ e +

a*(t)Ra(t)) dt,
where Q* and R are 2M x 2M and M x M matrices given
by

« _ | @ + gl 0 o
Q" = |: 0 i R rl,

respectively. Toeplitz matrix ()1 has the same meaning as in
§ II.

The left and middle plots in Fig. 10 respectively show the
minimal and maximal eigenvalues of the ARE solution for
system (2) with performance objective (16), and the right plot
in the same figure shows the real parts of the least-stable poles
in an LQR controlled string of vehicles (2,16) for {x = 0,
g1 = q2 = g3 = r = 1}. Clearly, when the absolute position
errors are accounted for in both the state-space realization
and J, the problems addressed in § II are easily overcome.
In particular, the least-stable closed-loop eigenvalues converge
towards a non-zero value determined by the dominant pole of
the spatially invariant system.

We note that qualitatively similar results are obtained if
LQR problem is formulated for system (2) with either func-
tional (6) or functional (7) augmented by a term penalizing
absolute position errors.

In § IV-A, we briefly comment on the initial conditions that
cannot be dealt with the quadratically optimal controllers.
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Fig. 10. The minimal (left plot) and maximal eigenvalues (middle plot) of the ARE solution Py, for system (2) with performance objective (16),
and the dominant poles of LQR controlled platoon (2,16) (right plot) as functions of the number of vehicles, for {x = 0,1 = g2 = g3 =7 =1}.

A. On the choice of the appropriate state-space

In this subsection, we remark on the initial conditions that
are not square summable (in a space of the absolute errors)
and as such are problematic for optimal controllers involving
quadratic criteria.

Motivated by example shown in Fig. 8 we note that the
initial relative position errors {7, (0)}necz cannot be non-zero
mean unless the absolute position errors at ¢ = 0 sum to
infinity. Namely, if ) ., £,.(0) is bounded, then

D ma(0) = D (€a(0) — £u-1(0))

nez nez
= > &(0) = > &-1(0) = 0.
nez nez

Clearly, for the initial condition shown in Fig. 8, that is,

zn(0) = —nL + S, ¥VneNy
zn(0) = —nlL, Vn € Z\ No,

sequence {&,(0) }nez sums to infinity if S 7 0. In addition to
that, {£,(0)}nez € la, whereas {1, (0)}ncz € l2. Therefore,
despite the fact that the inter-vehicular spacing for all but a
single vehicle is kept at the desired level L, a relevant non-
square summable initial condition' is easily constructed. It
is worth noting that the controller of § IV is derived under
the assumption of the square summable initial conditions and
as such cannot be used for guarding against an entire class
of physically relevant initial states. This illustrates that a
Hilbert space l; may represent a rather restrictive choice for
the underlying state-space of system (8). Perhaps the more
appropriate state-space for this system is a Banach space /.
The control design on this state-space is outside the scope of
this work. We refer the reader to [5], [7] for additional details.

V. CONCLUDING REMARKS

We have illustrated potential difficulties in the control of
large or infinite vehicular platoons. In particular, shortcomings
of previously reported solutions to the LQR problem have been
exhibited. By considering the case of infinite platoons as the
limit of the large-but-finite case, we have shown analytically
how the aforementioned formulations lack stabilizability or
detectability. We argued that the infinite case is a useful
abstraction of the large-but-finite case, in that it explains the
almost loss of stabilizability or detectability in the large-but-
finite case, and the arbitrarily slowing rate of convergence
towards desired formation observed in numerical studies of
finite platoons of increasing sizes. Finally, using the infinite
platoon formulation, we showed how incorporating absolute

!In a space of the absolute position errors.

position errors in the cost functional alleviates these difficulties
and provides uniformly bounded rates of convergence. We
refer the reader to [5] where well-posed formulations of Ho
and Hoo control problems for infinite vehicular strings are
proposed.

The literature on control of platoons is quite extensive, and
we have not attempted a thorough review of all the proposed
control schemes here. However, it is noteworthy that the early
work of [1], [2], [4], [6] is very widely cited, but to our
knowledge these serious difficulties with their methods have
not been previously pointed out in the literature.

As a further note, we point out that in a recent article [7]
it was shown that imposing a uniform rate of convergence
for all vehicles towards their desired trajectories may generate
large control magnitudes for certain physically realistic initial
conditions. Therefore, even though the formulation of an
optimal control problem suggested in § IV circumvents the
weak points of [1], [2], [4], [6], additional care should be
exercised in control of vehicular platoons.
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