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Abstract 

We study output-feedback control of systems on lattices 
with spatially distributed sensing and actuating capa- 
bilities. These systems are encountered in a wide range 
of modem applications such as: platoons of vehicles, 
arrays of microcantilevers, unmanned aerial vehicles in 
formation, and satellites in synchronous orbit. We use 
a Lyapunov-based framework as a tool for stabiliza- 
tion/regulation of systems in which nonlinearities de- 
pend only on the distributed output variable. We first 
present results for nominal design and then describe 
the design of adaptive output-feedback controllers in 
the presence of parametric uncertainties. These uncer- 
tainties are assumed to be temporally constant, but are 
allowed to be spatially varying. We show that our de- 
sign yields the distributed controllers that inherit the 
information passing structure from the original plant. 
We also provide several example of systems on lattices 
and validate derived results using computer simulations 
of systems containing a large number of units. 

1 Introduction 

Systems on lattices arise in a variety of modern tech- 
nical applications. Typical examples of such system 
include: platoons of vehicles ([I, 2, 3]), arrays of mi- 
crocantilevers [4], unmanned aerial vehicles in forma- 
tion [5], and satellites in synchronous orbit (IS, 71). 
These systems are characterized by the interactions be- 
tween different subsystems which often results in sur- 
prisingly complex behavior. A distinctive feature of 
this claw of systems is that every single unit is equipped 
with sensors and actuators. The controller design p rob  
lem is thus dominated by architectural questions such 
as localized versus centralized control, and the informa- 
tion passing structure in both the plant and the con- 
troller. This is in contrast with 'spatially lumped' con- 
trol design problems, where the dominant issues are 
optimal and reduced order controller design. 

A framework for considering spatially distributed sys- 
tems is that of a spatio-temporal system [SI. In the spe- 
cific case of systems on discrete spatial domains, signals 
of interest are functions of time and a spatial variable 
n E F, where F is a discrete spatial lattice (e.g. or 
W). 
In this paper, we extend results of [9] to t h e c a e  where 
only distributed output is available for measurement, 
rather than the entire state of the system. We con- 

sider models in which nonlinearities depend only on 
the measured signals and use a Lyapunov-based a p  
proach to provide stability/l-egulation of nominal sys- 
tems and systems with parametric uncertainties. In 
the latter case, we assume that the unknown param- 
eters are temporally constant, but are allowed to be 
spatially varying. As a result of our adaptive design, 
boundednes of all signals in the closed-loop in the pl-es- 
ence of unknown parameters is guaranteed. In addition 
to that, the adaptive controllers provide convergence of 
the states of the original system to their desired val- 
ues. We also show that the distributed design results 
in controllers whose information passing structure is 
similar to that of the original plant. This means, for 
example, that if the plant has only newest neighbor in- 
teractions, then the distributed controller also has only 
nearat  neighbor interactions. 

Our presentation is organized as follows: in section 2, 
we give an example of systems on lattices and dexribe 
the classes of systems for which we design output- 
feedback controllers in § 3. In § 4, we discuss appli- 
cation of controllers developed in 5 3, analyze their 
structure, and validate their performance using com- 
puter simulations of systems containing a large number 
of units. We conclude by summarizing major contribu- 
tions and future research directions in 8 5. 

2 Systems on lattices 
In this section 'an example of systems on. lattices is 
given. In particular, we consider a mass-spring system 
on a line. This system is chosen because it represent a 
simple non-trivial example of an unstable system where 
the interactions between different plant units arecaused 
by the physical connections between them. Another ex- 
ample of systems with this property is given by an array 
of microcantilevers [4]. We remark that the interactions 
between different plant units may also arise because of a 
specific control objective that we want to meet. Exam- 
ples of systems on lattices with this property include: a 
system of cars in an infinite string, aerial vehicles and 
spacecrafts in formation flights. We also describe the 
classes of systems for which we design output-feedback 
controllers in 8 3. 
2.1 An example  of systems on lattices 
A system consisting of an infinite number of masses and 
springs on a line is shown in Figure 1. The dynamics 
of the n-th mass are given by 

mnxn = F,-I + F, + U", n c Z ,  (1) 
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Figure 1: hlass-spring system. 

where xn represents the displacement from a reference 
position of the n-th mass, F, represents the restor- 
ing force of the n-th spring, and un is the control a p  
plied on the n-th mass. For relatively small displace- 
ments, restoring forces can he considered as linear func- 
tions of displacements F, = k,(x,+l - x"), F,-1 = 
kn--l(xn--l - x"), n E Z, where k, is the n-th spring 
constant. We also consider a situation in which the 
spring restoring forces depend nonlinearly on displace- 
ment. One such model is given by the s*called harden- 
ing spring (see, for example [lo]) where, beyond a cer- 
tain displacement, large force increments are obtained 
for small displacement increments 

F, = kn {(X"+l - .") + CZ(Zn+l - 2 4 3 )  
=: k"(X,+l - .") + qn(zn+l - 5 4 3 ,  

kn-1(Xn-1 - .") +qn-l(xn-l - 4 3 .  

Fn-l = kn-1 {(."-I -xn) +c:_i(xn-i - 
-. -. 

For both cas& (1) can be rewritten in t e r m  of its state- 
space representation Vn E Z as 

&" = $2n, 

$2" = f"($1,"-1,*l",$1,"+1) + KnUn, (2) 
Yn = $Inr 

where $1" := zn and $2" := in, provided that the 
positions of all masses are available for measurement. 

In the particular situation in which the restoring forces 
are linear functions of displacements and all masses 
and springs are homogeneous, that is, m, = m = 
const., k, = k = const., V n  E Z, (2) represents a 
linear spatially invariant system. This implies that it 
can he analyzed using the tools of [ l l ,  121. The other 
mathematical representations of a mass-spring system 
are either nonlinear or spatially-varying. The main pur- 
pose of the present study is to design output-feedback 
controllen for this broader class of systems. 
2.2 Classes of systems 
In t.his subsection, we briefly summarize the classes 
of systems for which we design output-feedback con- 
trollers in § 3. In particular, we consider m-th or- 
der subsystems over discrete spatial lattice F with fi- 
nite number of interconnections with other plant units 
and nonlinearities that do not depend on the unmes, 
s u r d  signals. We assume that all subsystems satisfy 
the matching condition 1131. Clearly, the models pre- 
sented in 5 2.1 belong to this class of systems, as well as 
the model of an array of microcantileven [?I, provided 
that we can measure the positions of all masses (re- 
spectively microcantilevers). Furthermore, we remark 
that our results can he also used for control of fully 
actuated systems in two and three spatial dimensions 
with nonlinearities that depend only on the distributed 
output. 

We consider output-feedback design for nominal sys- 
tems of the form 

$1" = $2,*. n E F, (3a) 

$2, = $3n, n E F ,  (3b) . -  

$,, = fn($l) + nnun, n E F ,  (3c) 
Yn = $I.., n E  F, (3d) 

and systems with parametric uncertainties of the form 

n E F, (4a) 

n E F, (4b) 

where $* := { $ i ) ~ ~ } , € ~ ,  k E { l , .  . . ,m}, and K,,'s are 
the s+called control coeficients 1131. The distributed 
output is denoted by y := {y,,},,, = {$'ln},EF, 8, r e p  
resents a vector of unknown parameten, and 't' denotes 
the transpose of vector h,. 

We introduce the following assumptions about the sys- 
tems under study: 

Assumption 1 The number of interconnections be- 
tween different plant units is uniformly bounded. In 
other words, there exist M E W, A4 # A4(n), such that 
fn ,  h,, and r, depend on at most M elements of $1. 

Assumption 2 fn, h,, and T" are Lnom, continu- 
ouslg differentiable functions of their arguments. 

Assumption 3 The signs of n,, Vn E F, in (&) are 
known. 

These assumptions are used in the sections related to 
the distributed control design. We remark that under 
these assumptions the well-posedness of both open and 
closed-loop systems can be easily established. 

Remark 1 For notational convenience, the control de- 
sign problems are solved for second order systems over 
discrete spatial lattice F, that is form = 2. 

3 Lyapunov-based d is t r ibu ted  control design 

In this section, we address the problem of design- 
ing output-feedback controllers that provide stahil- 
ity/iegulation of system described in 5 2.2. Assuming 
that eveiy unit is equipped with sensors and an ac- 
tuator, we use the Lyapunov-based approach to solve 
this problem. The Lyapunov design is very suitable he- 
cause it leads to distributed controllers with the same 
localization as the original plant. This feature is of 
paramount importance for practical implementation. 
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3.1 Nominal output-feedback design 
The controllers of 191 provide stabil- 
ity/regulation/aymptotic tracking of the closed-loop 
systems on lattices under the assumption that the 
full state information is available. Hei.e, we study a 
more realistic situation in which only a distributed 
output variable is measured. We show that, as in the 
case of finite dimensional systems 1131, the observer 
backstepping can be used as a tool for fulfilling the 
desired control objective for systems on lattices in 
which nonlinearities depend only on the measured 
signals. The starting point of the output-feedback 
approach is a design of an observer which guarantees 
the exponential convergence of the state estimates 
to  their real values. Once this is accomplished, the 
combination of backstepping and nonlinear damping is 
used to account for the observation errors and provide 
closed-loop stability. 

We rewrite (3), for m = 2, in a form suitable for o b  
server design 

6, = Ad, + %(Y) + Knezun, nEF, ( 5 4  

Y" = Cd", n EF,  (5b) 

where 

We proceed by designing an equivalent of Krener- 
Isidori observer (see, for example, 114, 131) for (5) 

4. = A& + Ln(yn - jr,) + %(y) + xne2un, (6a) 

jrn = C i " ,  (W 
where L, := [ 11, lzn 1' is chosen such that Ao" := 
A - L,C is a Hurwitz matrix for every n E P. Clearly, 
this is going to be satisfied if and only if 1," > 0, Vi = 
{1,2}, V n  E F. In this case, a n  exponentially st,able 
system of the form 

& = Aon&, nEF, (7) 

is obtained by subtracting (6) from (5). The p rop  
epies of Aol imply the exponential convergence of 
dn := 11, - dn to  zero and the existence of the positive 
definite matrix PO, that satisfies 

A;,Pon + PonAon = - I ,  V n  E F .  (8) 

We are now ready to  design an output-feedback con- 
troller that guarantees stability of (3). 

Step 1 The observer-backstepping design starts with 
subsystem (3a) hy rewriting it as 

$1" = $2. + &,, n E F, (9) 

and considering &, as a virtual control and as a 
disturbance generated by (7). We propose a CLF for 
the 'n-th subsystem' of (9) 

1 1 -  
2 din 

Vl"(dl",!L) := -&" + -*;Po"$", 

where PO, is a positive definite matrix that satisfies 
(8),  and dim > 0 is a design parameter. The derivative 
of VI, along the solutions of (9,7) for every n E F is 
determined by 

(10) 
3 5 $in(& + dindin) - z l l $ n l l ; >  

where Young's Inequality (see [13], expression (2.254)) 
is used to upper hound +ln&n2 In particular, the 
choice of a 'stabilizing function' $zn4 of the form 

&,, = - (an + dlm)dln ,  a, > 0, V n  E F, 
clearly renders V M ( $ I ~ , & , )  negative definite. Since 
4 2 ,  is not actually a control, but rather, an  estimate of 
a state variable, we introduce the change of variables 

tn := 4 z m  - 4znd = $2" + (an + din)?in, (11) 

for every n E F, which adds an additional term on t,he 
right-hand side of (10) 

The sign indefinite term in (12) will be taken care of at 
the second step of backstepping. 

Step 2 We express the 'n-th subsystem' of our system 
into new coordinates as 

41% = -(U" + din)dim + G n  + &n, 
t" = (U" + dln)(4zn + $2") + L Z J d J l "  - 41") 

+ fn(Y) + KnUn, (13h) 

dm = Aon&., (13c) 

(134 

and propose the following CLF for it 
1 1 -  
2 dzn VZ"(il",t",4") := Vl" + -e, + --GPO?d", 

with dzn > 0. The derivative of Vzn along the solutions 
of (13) for every n E F is determined by 

1Z"(!bl" - $1.) + d2,(an + dl")2C2"} 

A control law of the form 
1 

U" = -- 
K" 

{$1m + (an + d1n)dzn + bn(dJin - 41") + 
(14) fn(y)  +dzn(a, + d 1 . ) ~ 5 ~ ~  + b,Cz$}, 

with b, > 0,for every n E F, guarantees negative defi- 
niteness of VZ,, that is 

Therefore, we conclude that our design guarantees 
global asymptotic stability of the origin of the closed- 
loop system (3,7,14), for m = 2, on the Banach space 
B := 1, x 1, x 1, x 1,. 
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3.2 Adaptive output-feedback design 
We rewrite (4), for m = 2, in a form suitable for a d a p  
tive output-feedback design 

& = A$" + r),(y) + Cejnpjn(y) + linezun, ( I ja)  

Yn = C$", 
,=1 

where, for every n E F. $,, := [ $1- $2" 1' and 

We proceed by designing filters which provide 'virtual 
estimates'of unmeasured state variables (see [13],§ 7.3) 

(Lo' = AmF,? + L ~ Y ,  + r ) n ( ~ ) ,  (164 

(16c) 

€2) = Ao,<,(!' + pjn(y),  1 5 j 5 r, (16b) 
6, = Ao,v, + ezu,, 

where L, := [ II, /zn 1' is chosen such that Aon := 
A - L,C is Huiwito for every n E F. Clearly, Ao. is 
going to he Hurwitz if and only if l , ,  > 0, V i  = {1,2}, 
Vn E F. In this case, an exponentially stable system of 
the form 

E ,  = Aona,, (17) 

is obtained by combining (15) and (16) for every n E F, 
with E,, := $,, - {<io' + E;=, 8j,@ + K,v"}. The 
properties of Aon imply the exponential convergence 
of.& to zero and the existence of the positive definite 
matrix Pon that  satisfies (8). 

We are now ready to  design an adaptive output- 
feedback controller for (4) using backstepping. 

Step 1 The adaptive observer-backstepping design 
starts with subsystem (4a) by rewriting it as 

$1, = (g) + c83nCg + tci,wzn + E Z - ,  (18) 
j = 1  

and considering vln as a virtual control and €2" as a 
disturbance generated by (17). If VZ,, were control, and 
all pwameters were known, then (18) could be stabi- 
lized by 

where a, and d l ,  are positive design parameters. To 
account for parametric uncertaintie we add and sub- 
tract the right-hand side of (19) to vz,'in (18) to obtain 

&in = -(an + d ~ n ) $ i n  t K ~ { W Z ~ + ~ ~ ~ ) * ~ ! ! ) }  + 
K " u p * t y  + Elnr (20) 

where 

and $," := &' - a?', with BC' denoting the vector 
of unknown parameters. 

We propose a CLF of the form 

where Pon is a positive definite matrix that satisfies 
(S), d l ,  > 0 is a design parameter, and r, = r;, > 0. 
The derimtive of V.1, along the solutions of (20,17) for 
eveiy n E F is determined by 

%in 5 -an&, f Kndln(Uzn  +U!?' &I)) - -[1€"11: 3 
4din 

.^  
+ ~K~ldp).{r;l&') + sign(En)$lnuF)}, 

where we used Young's Inequality (see [13], expression 
(2.254)) to  upper bound $ i n ~ z n .  In particular, the fol- 
lowing choices of a 'stabilizing function' vznd and u p  
date law for the estimate 8:) 

VZnd = --Wn ""~il', V n  E F, 

4P' = sign(Kn)$lernu,?', V n  E F, 

clearly render Valn($iln, a!?), E,,) negative semi- 
definite. Since VZ" is not actually a control, we 
introduce the second error variable as 

._ 
:= vz, - v z n d  = uzn + up' Vn E F, 

which adds an additional term on the right-hand side 
of Vd" I 

The sign indefinite term in the last equation will be 
taken care of a t  the second step of hackstepping. 

Step 2 The differentiation of czn with respect to  time 
for m = 2 yields 

&" = h*" + ,p,.4p, + u(l)-pl n n  

.^  
= -1znv , ,  + U" + wy*tp + up) sp'. 

We now use the definition of up) to  rewrite ,?"d?' 
as 

w("l)*p' = p*p' + (a. + d1")8!3+&" 
- p.g(ll -(I) (0) 

n n 

- n + (an t din)291,(E2n + €2") i 
;pj',"'~p~, 
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where 
and 

represents the first element of vector 8:) 

pLn := [ tg1 tg) . . .  ti:) 3 * , 
$1 .- .- (a" + dl") [ &) ' . '  ti:) uzn I * ,  
ZPP) := [ ol, . . .  e,, 1'. 

Hence, (2. can be expressed as 

tzn = an + d y ~ ~ p ) * $ ~ )  + (a, + d1,)8y,)Ezn + un, 
where 

U" := -12"Vl" + w:"d$,? + pn4? + 
ey;{(a" +d1")510,' + wP"8P'}, 

J("% := 29:) - ap1, 

The CLF from Step 1 is augmented by the three terms 
that penalize cz., diZ1, and E " ,  respectively, to  obtain 

V 2 " ( $ ' l " , C 2 " , 8 ~ ~ ~ , 8 : ~ ~ , E " )  := V a l " ( $ I " . P , E " )  + 
1 2 1 -(2)* -& + st% A;'&'' + &PO&,, 2 dzn 

where dz,, > 0 and A, = A: > 0. The derivative of 
Vmzn is determined by 

3 1  1 5 -a"$:% - -(- + -)II€lI: t 
4 din dzn 

8i2)*{~; '8~2) + Czn(+lner+l + ~ P ~ U A ~ ) ) }  + 
tn{un  + un + $ d + : 8 ?  i 

&,((a, + dl");Pya)2cZ"}, 

with e,+l being the (r+l)-st coordinate vector in R"'. 
In particular, the following choicm of a control law un 
and update law for the estimate 8:') 

U" = - {an + $in$+,8$? + b n t n  + 
dZn((an + d l ~ ) j ? d ) ~ b n } ,  

iF) = C,A, {+lne,+1 + 8?Jd?} , 

with b, > 0, for every n E F, transfoim 
V ~ z n ( $ l n , t n , ; P ~ ) , B ~ ' , ~ n )  into a negative semi- 
definite function of the form 

3 1  1 
k z n  5 - an$:, - hn& - ~ ( z  + ~ ) I I E ~ I I $  

5 0, Vn EF. 

One can establish boundedness of all signals in the 
closed-loop adaptive system and asymptotic conver- 
gence of $I,., &, and cn to  zero for every n E P, using 
similar proof technique to  the one presented in [9]. 

4 Examples 
In this section, we discuss application of controllers de- 
veloped in § 3 to  the systems described in § 2.1. Fur- 
thermore, we analyze the structure of these controllers 

z r k b k n x  Go Gz 

Figure 2: Controller architecture of massspring sys- 
tem with controllers of § 3.1 and § 3.2. 

and validate their performance using computer simula- 
tions of systems containing a large number of units. 

Figure 2 illustrates controller architecture of mass- 
spring system with the aforementioned controllers. We 
observe that nominal and adaptive output-feedback de- 
signs result in the closed-loop systems with the same 
passage of information. Remarkably, in both these 
cases, Lyapunov-based design yields decentralized con- 
trollers K,, Vn E Z, that require only measurements 
from the  n-th plant unit G, and its immediate neigh- 
hors G,-: and G,+I. t o  achieve desired objective. 

In applications, we clearly have to  work with systems on 
lattices that contain large but finite number of units. 
All considerations related to infinite dimensional sys- 
tems are applicable here, but with minor modifications. 
For example, if we consider the mass-spring system 
shown in Figure 3 with N masses (n = 1 , 2 , .  . . , N )  
both the  equations presented in f 2.1 and the control 
laws o f f  3 are still valid with appropriate 'boundary 
conditions' of the form: xj = xj = uj 0, V j  E 
Z \ { 1 , 2  , _ _ _ ,  N ) .  

Figure 3: Finite dimensional mass-spring system 

4.1 Nominal output-feedback design 
The nominal Lyapunov-based output-feedback design 
for mass-spring system leads to decentralized dynamic 
distributed controllers of the form 

41, = 4 2 "  + h"(111" - 41") 
4 z n  = 12"($l" - 41") + fn + knUn 

1 
K" 

un = ---{$in + (an +din)&* + fn + 
h n ( $ ~ n  -din) + (&,(a, +din) '  + h , ) x  
(4zn  + (a" + dl")$l")} 

(21) 
where, for example, for a nonlinear mass-spring system 
with a hardening spring and {m" = m, k, = k, qn = q, 
Vn E Z}, fn is determined by 

k 

4 

fn = ;t?h,"-l - 2111" + $I,"+l)+ 

- { ( $ L ~ - I  m - $I.)~ + ( $ L ~ + ~  - 
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Figure 4 illustrates simulation results of nominal non- 
linear mass-spring system with N = 100 masses and 
m, = kn = qn = 1. Output-feedback control law 
(21) is used with a, = b, = 1, d l ,  = dz, = 0.2, 
1 1 ,  = 5, 12“ = 6, and &,(O)  = &(O) = 0, Vn = 
L 2 , .  . . , N.  The initial state of the system is randomly 
selected. Clearly, numerical results show that the nomi- 
nal output-feedback distributed controller (21) achieves 
desired control objective in a n  effective manner with a 
reasonable amount of control effort. 

k I 

F i g u r e  4: Nominal output-feedback control of nonlin- 
ear mass-spring system. 

4.2 Adaptive output-feedback design 
Formulae for adaptive output-feedback controllers for 
mass-spring systems can be readily obtained combining 
results of 5 2.1 and 8 3.2. We remark that as a result of 
our design we obtain decentralized distributed dynamic 
controllers whose architecture is shown in Figure 2. 

5 Concluding remarks 

This paper has dealt with the output-feedback dis- 
tributed control of spatially discrete infinite dimen- 
sional systems in which nonlinearities depend only on 
the distributed output variable. I t  has been illustrated 
that Lyapunov-based approach can he successfully used 
to  obtain output-feedback conhrollers for both nominal 
systems and systems with parametric uncertainties. I t  
has been also shown that the design procedure yields 
dynamical controllers that inherit the passage of infor- 
mat,ion from the original plant. Therefore, as a result 
of Lyapunov-based design control systems with an in- 
trinsic degree of decentralization are obtained. 

Our current efforts are directed towards development 
of modular adaptive schemes in which parameter up- 
date laws and controllers are designed separately. The 
major advantage of using this approach rather than the 
Lyapunov-based design is the veisatility that it offers. 
Namely, adaptive controllers of this paper are limited 
to Lyapunov-based estimators. From a practical point 
of vieu. it might be advantageous to  use the appropri- 
ately modified standard gradient or 1east-squaI.es type 

identifiers. 
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