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Abstract

We develop a method for the exact computation of the
frequency responses for a class of infinite dimensional
systems. In particular, we consider the distributed pa-
rameter systems in which a spatial independent vari-
able belongs to a finite interval. We show that an ex-
plicit formula for the frequency responses can be de-
rived whenever the underlying opera.toré can be repre-
sented by a forced two point boundary value state-space
realizations (TPBVSR). This formula involves finite di-
mensional computations with matrices whose dimen-
sion is at most four times larger than the order of the
underlying differential operator. In this way an exact
reduction of an infinite dimensional problem to a finite
dimensional one is accomplished. We also provide sev-
eral examples to illustrate the procedure.

1 Introduction

We study frequency responses of the distributed param-
eter systems in which a spatial independent variable be-
longs to a finite interval. Computation of frequency re-
sponses for this class of systems is usually done numer-
ically by resorting to finite dimensional approximations
of the underlying operators. We show that the spatial
discretization can be circumvented and that frequency
responses can be determined explicitly whenever the
underlying operators can be represented by forced two
point boundary value state-space realizations which are
well posed.

Our results build on [1], where a formula for the trace of
a class of differential operators defined by forced TPB-
VSR with constant coefficients has been derived. This
formula has been used for computation of the H; norm
for a class of infinite dimensional systems in which the
dynamical generators are normal (or self-adjoint). Here
we study the spatio-temporal frequency responses of the
distributed parameter systems with, in general, non-
normal dynamical generators and non-constant coefhi-
cients in a spatially independent variable.

Qur presentation is organized as follows: in section 2,
we formulate the problem and briefly discuss the notion
of frequency response for the distributed parameter sys-
tems. In § 3, we show how the frequency responses can
be determined explicitly without resorting to the finite
dimensional approximations. In § 4, we provide two
examples to illustrate the application of the developed
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procedure. We conclude by summarizing major contri-
butions in § 5.

2 Preliminaries

‘We consider distributed parameter systems of the form

dp(yyt) = [AP()|(y) + [Bd®)](y),
¢ t) = [Cy)l(w),

where A4, B, and C are linear operators, d is a forcing
term, and 1 and ¢ are fields of interest determined by
the solution of the above equation. The spatial inde-
pendent variable y is assumed to belong to a finite inter-
val which has been normalized to [—1, 1]. We remark
that (1) can be also used to describe multi-dimensional
distributed parameter systems that are spatially in-
variant in the remaining spatial directions {2]. In this
case, the application of the spatial Fourier transform
in these directions renders differential/integral opera-
tors into multiplication operators which results in a
one-dimensional system parameterized by a vector of
spatial frequencies

Bup(y, £, 5) = [A(r)b(E R)l(y) + [Br)d(t w)](p), (2a)
Byt &) = [C()Y(t, 1)i(y)- (2b)

(1a)
(1b)

Qur objective is to investigate dynamical properties of
system (1) or system (2) by computing their frequency
responses. The frequency response of (1) is determined
by

Hiw) = Cliwl — A)7'B,

where w denotes the temporal frequency. Similarly,
the spatio-temporal fregquency response of system (2) is
given by i

Hiw, k) = C(r)(iw] — A(K)) ' B(x).
In the remainder of our paper we discuss the latter
notion, because it is more general.

We remark that for any given pair {w, s}, H(w,x)
represents an operator in y that maps d{(y,w,x) into
&{y,w, k) according to

1 .
Snon) = [ (e (v .o ) i,
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where by an abuse of notation we use the symbol
[H(w, k)] {y,n) to denote the kernel function represent-
ing the operator H{w, ).

Since H is an operator-valued function of two indepen-
dent variables there is a variety of different ways to vi-
sualize system properties. For example, one can study
the maximal singular values of the operator H

O H{w, £)) == Amax{H{w, &)H" (w, x)},

or compute the Hilbert—Schmidt norm of H(w, &) pro-
vided that H({w, k)H"{w, k) represents a trace class op-
erator on L%[—1, 1]

IH(w, )hrs

Computation of |[H(w, &)||#s is usually done numeri-
cally for any given pair {w, &}, after finite dimensional
approximations of the underlying operators have been
determined by the appropriate spatial discretization. In
§ 3, we show that the Hilbert-Schmidt norm of H(w, &)
can be determined explicitly without resorting to the fi-
nite dimensional approximations, whenever H{(w, &) can
be represented by a TPBVSR which is well posed.

trace(H(w, &)H" (w, &)}

3 Computation of frequency responses from
state-space realizations

We assume that the operator H(w,x)
d{w, k) — ¢(w,x) can be represented by a well-posed
TPBVSR. of the following form

[x;(y)] = A [ 22(y) } + Boly)d(y),
o) = Cot) | 2 |, ®
n*) =0, yel-1.1],

where the dependence on w and x is suppressed for
notaticnal convenience, and x}(y) := dze(v)/dy, k =
{1,2}. Furthermore, Ag, Bg, and Cy are matrices
(with, in general, non-constant coefficients in y) of the
appropriate dimensions for any given pair {w,x}, and
' (y) == [ =] (y) =I(y) ] is an equal partitioning of
the state variables. These realizations are chosen such
that the first half of the state variables vanishes at the
boundary points y = 31, while the second half is free.
We remark that a well-posed TPBVSR with a general
linear constraint on the state at y = +1 can be trans-
formed into (3) by introducing an appropriate coordi-
nate transformation, as illustrated in Appendix A.

It can be shown that the adjoint of the operator
Hiw, &), H (w, &) : flw, &) — d(w, &), can be repre-
sented by a TPBVSR of the following form

A4 | - _ 4 a(y) | _ o
[zi(y)] = ‘Ao(w{ 22(y)} G ),
dy) = Ba(y)[ n ] @
ZQ(:I:I) = 0, ye [‘1, 1}’

where Ag, Bj, and C§ represent the adjoints (complex-
conjugate-transpose matrices) of the matrices Ag, B,
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and Cg, respectively. Thus, we can obtain a state-space
realization of H{w, x)H"(w, k) flw, k) — ¢(w, k), by
combining {3) and (4}

1 (y) 1(
SO ) BwEw ] | o
zi(y) | 0 — A3 (y) z1{y)
24(W) ) 22()
* [ ~Gi(y) }f (W,
s = [ ety 0][ 0],

.’t](:f:l) = z:(il) = 0, Yy [—1, 1}. 7

(5)

We now introduce a unitary coordinate transformation
of the form

@) )
_ quly — T2y
"(y"[qz(y)]'" n )
22
0 0 I 0 y:nl(y) z1(y)
_|o 1 00 z2(y) _.7 za2(y)
I 0 0 0 z{y) : 21 (y)
00 0 [ z2(y) z2(y)
and rewrite (5) as
al ] _ aly)
[ 40 ] = a0 [ 20 ] + B,
_ a(y) 6
#o) = | 29 ), )
(1) = 0, ye -1, 1]
where
_ Ao(y)  Boly)Bsly)
A= T[ 0 —Ajy) ]T’
0
B6) = T gy |
Cly) = [Coly) 0]T.

We note that this TPBVSR of HH" (6) is such that
the second half of the state variables vanishes at the
boundary peoints ¥ = £1, while the first half is free.
Using the argument similar to the one presented in [1]
we are able to express trace(H(w, kYH" (w, k)) as

s = trace(; [ CIBG dy -

Lllc(y)Q(y’_l){ 0 B3, -1)

o GV Jeumsw @)

1
— trace( j_ B YBEICHIP 1) dy x
[ 0 &;11,-1) ])’
@

0 0
where the state transition matrix ®(y, £) of system (6)
is partitioned conformably with the states ¢ and g2,
that is

B(y.£) = [‘I’u(y,f)

®21(y.£)

12y, )
P22(y, §)



We have arrived at (7) using the commutativity prop-
erty of the matrix trace and

Cw)B(y) = [ Co(y) © ]TT[

—Cg (v) ]

Law 01| g | =0

We now exploit the fact that the integral in (7) can
be evaluated in terms of the response of an unforce
dynamical system of the form :

[ ﬁiégg ] - [ B(j§g')(y) A?y) ] [ X;g ]

[0 I][Xl(y)},

Xa(y)

[§l§:i§]= [é] ye[-1,1],

Y(y)

(8

as

Y1)

i

/ ‘ld»(l,y)B(y)C(y)@(y, Dy

[0 1]\11(1,—1)[{)],

where ¥(y,£) denotes the state transition matrix of

(9)

system (8). Therefore, we obtain an expression for
[|H{w, )|/} s by combining (7) and (§)
IH(w, R)lEs =

1 0 ®(1,-1
—trace( [ 0 I]‘If(l,—])[o ][0 " )]).

(10)
In particular, for systems with constant coefficients
W(1,—1) is determined by

W1, —1) = exp{Q[ s g]}

Hence, we have converted the problem of evaluating
the trace of an essentially infinite dimensional object
to computations with finite matrices. For systems with
non-constant coefficients in y, at any given {w, &}, we
need to solve a differential equation whose order is four
times larger than the order of the original differential
operator to obtain the state transition matrix ¥(1, —1).
On the other hand, for systems with constant coeffi-
clents in y this computation amounts to determination
of the corresponding matrix exponential (11). Both
computations can be easily performed using commer-
cially available software such as MATLAB or MATHEMAT-
ICA.

(11)

In § 4 we illustrate the application of this procedure
and exactly compute the frequency responses of two
systems: a one-dimensional diffusion equation, and a
systern that describes the dynamics of velocity fluctua-
tions in channel fluid Aows.

4 Examples

In this section we illustrate with two examples how the
frequency responses can be computed explicitly using
the previously described procedure.

4.1 A one-dimensional diffusion equation

- We consider a one-dimensional diffusion equation on

L?*{~1, 1) with Dirichlet boundary conditions

Ay, t) By (W) + d(y,1),
P(£1,2) = 0.

The application of the temporal Fourier transform
yields

Wyw) = [(wl = 8y) 7 dW)](y) = (H(w)d(w)](v)-

Our objective is to compute the Hilbert-Schmidt norm
of operator that maps d Into ¢ as a function of temporal
frequency w. A particular TPBVSR of H({w) is given
by

(g ] =12 s aea] ] 3w,

Py, w)

Il

[1 0][21(!1#‘)]‘

z2{y. w)
{t+l,w) =0, ye[-1,1]

The application of procedure described in § 3 yields thé
realization of H{w)H*(w) in the form of (6) with

00 0 iw : -1 0
¢ 0 iw 0 0 0

A= ,B= LC=
61 0 0 0| 1
10 0 o0 0 0

The application of (10,11), with the help of MATHE-
MATICA, vields

([H)IEs =
__1_{ 1+ V2w (sinh{v8w) + sin(\/gu_;))} (12)
2u? cosh(v8w) — cos(vBw) ’

Tt is noteworthy that ||H(w)||% s can be also obtained
by doing a spectral decomposition of the operator
Oyy. It is well known that this operator with Dirichlet
boundary conditions has the following set of orthonor-
mal eigenfunctions {ign }nen with corresponding eigen-
values {¥n }nen

n®q?

. {nE
oalt) = sin (L +1), 7 = -
It is easily shown that the eigenfunction expansion re-
sults into

1
2
H)s = 3, ———os
nel w? + (—)
2

which can be summed to obtain (12). However, for op-
-erators that do not have explicit expressions for their
eigenvalues, it is much easier to compute the trace ex-
plicitly as we illustrate in § 4.2.

, nelN

4.2 A system from fluid dynamics

We consider the externally excited linearized Navier-
Stokes (LNS) equations in channel! flows in the presence
of streamwise constant perturbations {that is, at k; =
0). For background material on the use of system norms
in transition to turbulence studies, we refer the reader
to [3, 4, 5] and the references therein.
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Figure 1: Three dimensional channel flow.

The forced LNS equations for streamwise constant flow
perturbations are described by [6]

elel=1%5 sl
L |~ L ¢ L8| ¥
dz
+ [B? B Bﬂ] 4 |, a3
U 0 cu
v | =1]¢c o [¢‘], (13b)
w Cow O V2 .

where u, v, and w (dx, dy, and d.) denote velocity (forc-
ing) field components in the z, y, and z directions re-
spectively (see Figure 1 for geometry in Poiseuille flow).
These equations are parameterized by two important
parameters: the spanwise wave number k;, and the
Reynolds number R. The wall-normal velocity and vor-
ticity fields are denoted by 1 (y, ¢, k;) and 2(y, ¢, k,),
respectively, with the boundary conditions

Pa{El t k) = Sytn(L, 8, k) = ¢n(lt,k:) = 0.
The underlying operators in (13) are defined by

L= A71A% 8§ = AT Co = —ik,U'(3),
By = ik, By = —kIA7L, B, := —ik. AT,
Cy = —i, Cy = 1, w = £

kz ¢ RO

where U(y) denotes the nominal velocity profile, I’ :=
dU/dy, and A represents the Laplacian, A = 8,, — k.
It is well known that system (13) is stable for any pair
{k=, B} [3].

Application of the temporal Fourier transform and
elimination of [ ¢ ¢ ]T from (13) gives oper-
ator H(w,k;,R) that maps [ d; dy d; ]T into
[u v w]" (see Appendix B)

u Hux Huu Huz dz 1
v Hu:r Huy Hvz dy

w | Hur Huy Hus dz |
[ RAu: R*Huy R*Hu: | 4.
= 0 Rﬁuy Rﬂuz dy >
L Rﬁwy Rﬂwz L dz
: (14)
where
Huz (N k) =

Cu(i2 — 8)7'B.,
Fuy(Q k) 1= CuliU - S)~1C301 ~ £)7'B,,
Hua(@, k) == C,i — S)7'C6iQI — £)7'B.,
Hes(Q k) := C(QU — LY 'B,, {r =v,w; s =y,2},
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and {1 :=wh.

Therefore, we are able to state the following theorem
for streamwise constant perturbations in any channel
flow with nominal velocity profile U(y).

Theorem 1 For any channel flow with nominal ve-
locity profile U(y), the componentwise Hilbert-Schridt
norms of streamwise constant perturbations are given
by

[ Huellfrs  Huplihs  |[HuzliErs
Hoallies  Hosllls  [MosllEis
| 1 Huells  [[Hollls [ Huzllls

[ szHI(Q! k?-) quuv(nxlh) qu‘uz(gvkz)
= 0 szw(ﬂs kZ) szﬂt(ﬂa kz) ’
0 R2fuy($0, k) R2fua (S0, k:)

where

Fro(Sh k) = |[H (S k) Es, Q= wR,

{r=u,v,w; s =z?y,z}.

The overall Hilbert-Schmidt norm for streamwise con-
stant perturbations is given by

[H{w, ks, R)|[frs = g(Lk:)R® + h(, k)R, (15)
where

g = fu:+fuy+fuz+fwv+fwz,
: Juy + fuz-

Remark 1 Functions fr., for every {r = u,v,w; s =
x,4, 2}, depend only on fwo parameters: the spanwise
wave number, and the product between temporal fre-
quency w and the Reynolds number R. Thus, for high
Reynolds number channel flows the influence of smali
temporal frequencies dominates the evolution of the ve-
locity perturbations. Therefore, one should expect the
dominance of the effects with large time constants in
channel flows. .

We remark that H,{{, k;) has a second order state-
space realization, the operators Hys(f%.k.), V{r =
v,w; 8§ = y,z}, can be represented by the fourth or-
der TPBVSR, while H.,(Q, k) and H.(Q, k:) can
be described by minimal realizations with six states.
These realizations can be chosen in a number of differ-
ent ways. The particular realizations that we use are
given in Appendix B. It is noteworthy that the Hilbert-
Schmidt norms of these operators for any given pair of
{}, k:} can be determined explicitly using the proce-
dure of § 3 which involves finite dimensional compu-
tations with matrices whose dimension is at most four
times larger than the order of the underlying operator.
Therefore, in the worst case we need to determine the
state transition matrices that belong to €2*?4 which
can be easily done, for example in MATLAB. This illus-
trates the power of the developed procedure and cir-
cumvents the need for numerical approximation of the
underlying operators.



In the particular case of Couette flow, which represents
the exact steady-state solution of the Navier-Stokes
equations of the form U(y) := y, the coupling operator
simplifies to C, = —ik.. Therefore, for this flow, all
operators in (13) have the constant coefficients in the
wall-normal direction. This implies that the nrominal-
flow-dependent quantities fy, and fu. can be deter-
mined explicitly using {10,11).

Figure 2 illustrates the (12, k.)-parameterized plots of
frs, for every {r = u,v,w; § = z,¥,2}. These com-
putations are performed in MATLAB for any given pair
{1, k;} using the procedure of § 3. The nominal-low-
dependent quantities f,, and f.. are determined for
the Couette flow.

5 Concluding remarks

‘We have developed a procedure for the explicit determi-
nation of the frequency responses for a class of infinite
dimensional systems. This procedure avoids the need
for spatial discretization and provides an exact reduc-
tion of the infinite dimensional problem to the problem
in which only matrices of finite dimensions are involved.
The order of these matrices is at most four times larger
than the order of the differential operator at hand.

We have also illustrated application of this technique
by providing two examples: a one-dimensional diffu-
sion equation, and a system obtained by linearization
of the Navier-Stokes equatiors in channel flows around
a given nominal velocity profile. In the latter case, we
have derived important relationships that illustrate the
parametric dependence of the frequency responses on
the temporal frequency w, the spanwise wave-number
k., and the Reynolds number R.

A TPBVSR with a linear boundary constraint
on the state

Consider the operator H(w, &) : d(w, k)
with a well-posed TPBVSR of the form

—  #(w, k)

nw | p(y)
[P’z(y) ] = A [ pz(y)_]- + Bi(y)d(y),
é(y) = Cily) [ ﬂ;gz; ], (16)
Np(£l) = 0, y€(-1,1],

where N is a constant matrix. It is readily shown that
a coordinate transformation of the form
56 )

o] =50 - 16

M
renders (16) into (3) where matrix M is chosen such
that Ty is invertible. Similarly, for the following class
of systems

»{y)
p2(y)

nly)
p2(y)

z1(y)
z2(y)

ny) | _ p1(y)
[ P2ly) ] = A [ p2(y) ] + Bi(y)d),
s = aw [ 29 ],
N_p(-1) = 0, _
N+p(+1) = 0,_ yE [_1, 1],
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a y-dependent change of coordinates can be used to
rewrite them in the form suitable for the application of
the procedure described in § 3. :

B A TPBVSR of the LNS equations at k; = 0

In this section we describe the TPBVSR that are
used for the frequency response computations of the
streamwise constant LNS equations. Once the tempo-
ral Fourier transform has been applied, (13a) can be
rewritten as

’#:71 (17&)
W2 (17b)

with 0 := wR, where w denotes the terporal frequency.
By combining (17a) and (17b} with {13b) we arrive at
(14). Since the Reynolds number enters nicely inio the
equations, we can study (17) at R = 1. In the particular
case of Couette flow system {17) can be rewritten as

(aywv - (2"73 + in)aw + kf(kf + iﬂ))ll')l =

o]t w18, o

(Oyy — (k2 + )2 = ikyty — ikeds,  (18b)

with the boundary conditions ¥ (£1) = Gy (El} =
Pa(E1) = 0.

REQI — L) '(Bydy + B.d.),
RO — 8) " (Cpvn + Beda),

ft

In particular, system (18,13b) can be represented by a
TPBVSR (3), which is a suitable form for the applica-
tion of the procedure presented in § 3, with matrices
Ap, B, and Cp determined by

0 1 0 0 0 0
24+ 0 0 010
0 0 0 00 1
Ao = 2,42 , . ’
—k2(KZ+i0) O 0 000
0 0 0 1 0 0
ik, 0 k2+i2 0 0 0
0O 0 0
0 0.0
0O 0 ¢
BU = [ B,;o BVO BZO ]= 0. kg 0 .
0 G ik:
—ik, 0 0
Cluo 0 0 —& 000
Cy = Chvo = 1 0 0 0 6 0
Cuo 0 &7 0 000

The realizations of Hro(, k:) can be now easily deter-
mined for every {r = u,v,w; s = z,y, z}. For example,
TPBVSR of Hauy (52, k) is given by

6] -~

u(y) Cuo [

z1(y)
z2(y)

T (y)
2a(y)

zi(y)

24 (y) ] + Byody(y),

E
ye[-1, 1}

As previously mentioned, H,.(f, kz)'énd Hes(Q, k2),
for every {r = v,w; 3 = y,z}, are the second and

:El(:bl) 0,



Figure 2: Plots of fro{Q k2). fuy (9, k.) and fu:(Q, k) are determined for the Couette flow.

the fourth order operators, respectively. We note that [2] B. Bamieh, F. Paganini, and M. A. Dahleh,
their minimal realizations can be obtained by combin- “Distributed control of spatially invariant systems,”
ing the respective realizations of (18b) and (18a) with IEEE Transactions Automatic Control, vol. 47, no. T,
the corresponding rows of (13b). For example, a mini- pp- 1091-1107, 2002.

mal realization of Hur (S, k2) is given by [3] P.J. Schmid and D. 8. Henningson, Stability and

Transition in Shear Flows. New York: Springer-Verlag,

(o]

uly)

o 1 nl(y)] + [ 0 ]dr 2001.

[ kD +i2 0 ] [?‘Jz(y) ~ik: @ [4] B. Bamieh and M. Dshleh, “Energy amplifi-
[ _i 0 ] [1;'1 (y)] cation in channel flows with stochastic excitation,”

ks m(y) |’ Physics of Fluids, vol. 13, no. 11, pp. 3258-3269, 2001.

5 M. R. Jovanovi¢ and B. Bamieh, “Frequenc

m(F) =0, ye[-1,1) ([io]main analysis of the linearized Navier—Smk:ﬁq equa)j
tions,” in Proceedings of the 2003 American Conirol
Conference, pp. 3190-3195, 2003.
6] M. R. Jovanovi¢ and B. Bamieh, “The spatio-

it

Alternatively, {Huz (9, k:)||%s can be determined from
the following non-minimal realization of H»(£2, k.)

[ -"'5:1(.11) ] — 0[ z1{y) ] + Baoda(y), temporal impulse response of the linearized Navier-
z5(y) z2{y) Stokes equations,” in Proceedings of the 2001 American
- C z1(y) Control Conference, pp. 1948-1953, 2001.
u(y) = Lo 12('_!}) B

(1) = 0, ye[-1, 1]
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