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Abstract  

We develop a method for the exact computation of the 
frequency responses for a class of infinite dimensional 
systems. In particular, we consider the distributed pa- 
rameter systems in which a spatial independent vari- 
able belongs to  a finite interval. We show that an ex- 
plicit formula for the frequency responses can be de- 
rived whenever the underlying operators can be repre 
sented by a forced two point boundary value state-space 
realizations (TPBVSR). This formula involves finite di- 
mensional computations with matrices whose dimen- 
sion is at most four times larger than the order of the 
underlying differential operator. In this way an exact 
reduction of an infinite dimensional problem to a finite 
dimensional one is accomplished. \lie also provide sev- 
eral examples to illustrate the procedure. 

1 Introduction 

We study frequency responses of the distributed paran- 
eter systems in which a spatial independent variable be- 
longs to a finite interval. Computation of frequency r e  
sponses for this class of systems is usually done numer- 
ically by resorting to finite dimensional approximations 
of the underlying operators. We show that the spatial 
discretization can be circumvented and that frequency 
responses can be determined explicitly whenever the 
underlying operators can be represented by forced two 
point boundary talue statespace realizations which are 
\rrell posed. 

Our results build on [I], where a formula for the trace of 
a class of differential operators defined by forced TPB- 
VSR with constant coefficients has been derived. This 
formula has been used for computation of the 'H2  norm 
for a class of infinite dimensional systems in which the 
dynamical generators are normal (or self-adjoint). Here 
we study the spatio-temporal frequency responses of the 
distributed parameter systems with, in general, non- 
normal dynamical generators and non-constant coeffi- 
cients in a spatially independent variable. 

Our presentation is organized as follows: in section 2, 
we formulate the problem and briefly discuss the notion 
of frequency response for the distributed parameter sys- 
tems. In 8 3, we show how the frequency responses can 
be determined explicitly without resorting to the finite 
dimensional approximations. In 5 4, we provide two 
examples to illustrate the application of the developed 

procedure. We conclude by summarizing major contri- 
butions in 5. 

2 Preliminaries 

We consider distributed parameter systems of the form 

at$(s,t) = Id+(t)l(y) + Pd( t ) l (~ ) ,  ( la)  
4(Y.t) = IC+(t)l(Y)> (Ib) 

where A, 13, and C are linear operators, d is a forcing 
term, and $ and 4 are fields of interest determined hy 
the solution of the above equation. The spatial inde 
pendent variable y is assumed to  belong to a finite inter- 
val which has been normalized to [-I, I]. We remark 
that (1) can he also used to describe multi-dimensional 
distributed parameter systems that are spatially in- 
variant in the remaining spatial directions 121. In this 
case, the application of the spatial Fourier transform 
in these directions renders differential/integral opera- 
tors into multiplication operators which results in a 
onedimensional system parameterized by a vector of 
spatial frequencies K 

Our objective is to  investigate dynamical properties of 
system (1) or system (2) by computing their frequency 
responses. The frequency response of (1) is determined 
by 

%(U) := C(iw1 - d)-'13: 

where w denotes the temporal frequency. Similarly, 
the spatio-tempoml frequency response of system ( 2 )  is 
given by 

H(w,K) := C ( ~ ) ( i w 1  - d(K))-'B(K). 

In the remainder of our paper we discuss the latter 
notion, because it is more general. 

We remark that for any given pair {w,  K}, 'H(w, 6) 

represents an operator in y that maps d(y, U,  6 )  into 
#(y,w,~) according to 

4(Y> K )  = 1; [?(U, 611 (Y, ?)d(?,U,K) d7; 
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where by an abuse of notation we use the symbol 
('H(w, K)] (y, 7) to denote the kernel function represent- 
ing the operator H(u.  .). 

Since 'H is an operator-valued function of two indepen- 
dent variables there is a variety of different ways to vi- 
sualize system properties. For example, one can study 
the maximal singular values of the operator 'H 

or compute the Hilbert-Schmidt norm of H(w, K )  prc+ 
vided that H(w, ti.)'H*(w, K) represents a tram class o p  
erator on L'I-1, 11 

~ I x ( w ,  K)IILS := trace(E(w, K)H'(w, K)). 

Computation of / IH(w,n) l l~s  is usually done numeri- 
cally for any given pair {U, IC}, after finite dimensional 
approximations of the underlying operators have been 
determined by the appropriate spatial discretization. In 
5 3, we show that the Hilbert-Schmidt norm of H(w, n) 
can be determined explicitly without resorting to  the fi- 
nite dimensional approximations, whenever H(w, K )  can 
be represented by a TPBVSR which is well posed. 

3 Computation of frequency responses from 
statespace realizations 

We m u m e  that the operator H(w,n) : 
d(w, K )  - 4(w, K) can be represented by a well-posed 
TPBVSR of the following form 

(3) 

Zi(il) = 0, Y E  1-1, 11, 

where the dependence on w and K is suppressed for 
notational convenience, and &(y) := dzh(y)/dy, k = 

{l,Z}. Furthermore, Ao, Bo, and CO are matrices 
(with, in general, non-constant coefficients in y) of the 
appropriate dimensions for any given pair { w , ~ } ,  and 
xT(y) := [ xT(y) xh(y) ] is an equal partitioning of 
the state mriahles. These realizations are chosen such 
that the first half of the state variables vanishes at the 
boundary points y = i l ,  while the second half is free. 
We remark that a well-posed TPBVSR wibh a general 
linear constraint on the state at y = +I can be trans- 
formed into (3) by introducing an appropriate coordi- 
nate transformation, as illustrated in Appendix A. 

It can be shown that the adjoint of the operator 
' H ( ~ , H ) ,  H ' ( u , K )  : f(w,.) c d(w,K), can be repre- 
sented by a TPBVSR of the following form 

L * ( k 1 )  = 0, Y E  1-1, 11, 

where A;: Bg, and C; represent the adjoints (complex- 
conjugatetranspose matrices) of the matrices Ao, BO, 

and CO, respectively. Thus, we can obtain a state-space 
realization of 'H(w,&)?f*(w,~)  : f ( w , ~ )  c #(w,K), by 
combining (3) and (4) 

X,(*I) = 22(*1) = 0, y E [-1, 11. 
(5) 

We now introduce a u n i t q  coordinate transformation 
of the form 

r 

r o  o I 0' 
0 1 0 0  = I  I O 0 0  

L O O O I  

_. -. T 

and rewrite (5) as 

where 

C(Y) := [ CO(Y) 0 IT. 
We note that this TPBVSR of HE' (6) is such that 
the second half of the state variables vanishes at the 
boundary points y = + I ,  while the first half is free. 
Using the argument similar to the one presented in [I] 
we are able to  express trace(H(w, K)H'(w, 6)) as 

where the state transition matrix a(y, <) of system (6) 
is partitioned conformably with the states 41 and 4 2 ,  

that is 
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\Ve have arrived at (7) using the commutativity prop- 
erty of the matrix trace and 

We now exploit the fact that the integral in (7) can 
be evaluated in t e r m  of the response of an unforced 
dynamical system of the form 

as 

where 'JJ(y,E) denotes the state transition matrix of 
system (8). Therefore, we obtain an expression far 
I /H (w,K) I /L~  by combining (7) and (9) 

(10) 
In particular, for systems with constant coefficients 
O(1, -1) is determined hy 

@(I , - l )  = exp { 2 [ B"c : I}. (I1) 

Hence, we have converted the problem of evaluating 
the trace of an essentially infinite dimensional object 
to computations with finite matrices. For systems with 
non-constant coefficients in y, a t  any given {U, K } ,  we 
need to  solve a differential equation whose order is four 
times larger than the order of the original differential 
operator to obtain the state transition matrix "(1, -1). 
On the other hand, for systems with constant coeffi- 
cients in y this computation amounts to determination 
of the corresponding matrix exponential (11). Both 
computations can be easily performed using commer- 
cially available software such as MATLAB or MATHEMAT- 
ICA. 

In 5 4 we illustrate the application of this procedure 
and exactly compute the frequency responses of two 
systems: a one-dimensional diffusion equation, and a 
system that describes the dynamics of velocity fluctua- 
tions in channel fluid flows. 

4 Examples 
In this section we illustrate with two examples how the 
frequency responses can be computed explicitly using 
the previously described procedure. 

~ 
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4.1 A one-dimensional diffusion equat ion 

L'1-1, 11 with Dirichlet boundary conditions 
. We consider a one-dimensional diffusion equation on 

The application of the temporal Fourier transform 
yields 

Our objective is to compute the Hilbert-Schmidt norm 
ut oprralur that maps d into $ as a function of temporal 
frequency U. A particular TPBVSR of H ( w )  is given 
by 

d(Y 0 1 Xl(Y>W) [ x:(y:U) ] = [ iu. 0 ] [ s * ( y , w )  ] + [ -: 3 
Z * ( i l , W )  = 0, y E 1-1, I]. 

The application of procedure described in 5 3 yields the 
realization of H(w) l i ' (w)  in the form of (6) with 

0 0  0 w -1 T 

A = [  0 1 0  iw l ] , B = !  0 
i ] : C = [ i ]  . -1 0 0 

The application of (IOJI), with the help of MATHE- 
MATICA, yields 

I l ' H ( ~ ) I I Z S  = 
&(sinh(&) +sin(&)) 1. (12) 1 - 

2d' - + cosh(&) -cos(&) 

It is noteworthy that llH(w)IILs can be also obtained 
hy doing a spectral decomposition of the operator 
&. It is well known that this operator with Dirichlet 
boundary conditions has the following set of orthonor- 
mal eigenfunctions {lp,],~~ with corresponding eigen- 
values {T"}.EN 

It is easily shown that the eigenfunction expansion r e  
sults into 

which can be summed to obtain (12). However, for op- 
-erators that do not have explicit expressions for their 
eigenvalues, it is much easier to compute the trace ex- 
plicitly as we illustrate in f 4.2. 

4.2 A system from fluid dynamics 
\Ve consider the externally excited linearized Navier- 
Stoka (LNS) equations in channel flows in the presence 
of streamwise constant perturbations (that is, at k, = 
0). For background material on the use of system norms 
in transition to turbulence studies, we refer the reader 
to 13, 4, 51 and the references therein. 



-1 lk= 
Figure 1: Three dimensional channel flow. 

The forced LNS equations for streamwise constant flow 
perturbations are described by [6] 

where U, U, and w (dr, dy, and d;) denote velocity (forc- 
ing) field components in the z, y, and 2 directions re- 
spectively (see Figure 1 for geometry in Poiseuille Row). 
These equations are parameterized by two important 
parameters: the spanwise wave number k,, and the 
Reynolds number R. The wall-normal velocity and vor- 
ticity fields are denoted by $l(y, t,k,) and &(y,t,k*), 
respectively, with the boundary conditions 

th(*1,t,kz) = av$l(*l,t,kz) = $ 2 ( * l , t , k Z )  = 0. 

The underlying operators in (13) are defined by 

L := A-'4', S := A-l,  C, := -ik,U'(y), 

i i 
n .- .- zk,, ' B Y .- .- -k:A-', 8, := -ikSA-'av, 

c U .- .- -- c, := I ,  c, := -a,, 
k, ' kz 

where U(y) denotes the nominal vel?city profile, U' := 
dUJdy, and A represents the Laplxian, A := ay, - k:. 
It is well known that system (13) is stable for any pair 
{ k , : R )  131. 

Application of the temporal Fourier transform and 
elimination of [ +I $2 1' from (13) gives oper- 
ator H(w,k, ,R)  that maps [ d, d, d, 1' into 
[ U v w 1' (see Appendix B) 

H,, nu, xu= 

H,, HWV H,, 

R% R'R,, R2R, ,  

0 R7=LV RR,, 
:= [ 0 R'%y R R . ; ]  [ :], 

(14) 
where 
R, , (Q,~ , )  := c,(inr - sj-IB,, 
G~~(R,~,) := c,(inr - s)-lcp(inr - L)-~B,, 
G",(Q,k,) := C"(iQ1 - S)-'Cp(iQI - E)- '&, 
G&,kZ) := c,(inr - L)-'B,, {l. =zI,w; s=y,z}  

and Q := wR. 

Therefore, we are able to state the following theorem 
for streamwise constant perturbations in any channel 
flow with nominal velocity profile O(y). 

Theorem 1 For any channel flow vnth nominal ve- 
locity pmfile U(y), the component-e Hilbert-Schmidt 
n o m  of streamwise constant perturbations are given 
by 

1 I IW"Z Ilks ll~."llas I I L  I ILS 
I IW", l i b  W"# I IZHS I IH", I I t s  
I I ~ & r s  I / ~ & f S  l l ~~ .112HS 

Rzfvv (Q,kz )  R 2 h Z ( Q , k z )  , 1 RZfuz(Q,kz) pfuv(n,kz) R 4 f u z ( n , k z )  

= [  : R Z f w v ( Q , k z )  Rz fw . (Q ,  k,) 

[ 
where 

f r e ( n , k a )  := l l%(Q,kz) l l%~,  n := wR, 
{r = u,v,w; s = z,y,  z } .  

The overall Hilbert-Schmidt norm for streamwise con- 
stant perturbations is given by 

IIH(w,kz,R)IIks = g(n,kx)RZ + h(Q,k,)R4,  (15) 

where 

9 := f"Z + f " V  + f". + f," + f,., 
h := fuv +A.. 

Remark 1 Functions f7.., for every { r  = U, v, w; s = 
I, y, L}, depend only on two pammeters: the span-e 
waue number, and the pmduct between temporal fre- 
quency w and the Reynolds number R. Thus, for high 
Reynolds number channel flows the influence of small 
temporal frequencies dominates the evolution of the ve- 
locity perturbations. Therefore, one should ezpect the 
dominance of the eflects with large time constants in 
channel flows. 

\lie remark that %,,(Q,k,) has a second order state- 
space realization, the operators %,.(n,k,) ,  V { r  = 
v, w; s = y, z } ,  can be_ represented by the fourth or- 
der TPBVSR, while H,,(Q, k,) and R,,(Q, k,) can 
be described by minimal realizations with six states. 
These realizations can be chosen in a number of differ- 
ent ways. The particular realizations that we use are 
given in Appendix B. It is noteworthy that the Hilbert- 
Schmidt norms of these operators for any given pair of 
{Q ,  k,} can he determined explicitly using the proce- 
dure of 5 3 which involves finite dimensional compu- 
tations with matrices whose dimension is at most four 
times larger than the order of the underlying operator. 
Therefore, in the worst case we need to  determine the 
state transition matrices that belong to C z r x z a 3  which 
can be easily done, for example in MATLAB. This illus- 
trates the power of the developed procedure and cir- 
cumvents the need for numerical approximation of the 
underlying operators. 
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In the particular case of Couette flow, which represents 
the exact steady-state solution of the Navier-Stokes 
equations of the form U(y) := y, the coupling operator 
simplifies to C, = -ik,. Therefore, for this flow, all 
operators in (13) have the constant coefficients in the 
wall-normal direction. This implies that the nominal- 
Row-dependent quantities fuv and jus can be deter- 
mined explicitly using (10,Il). 

Figure 2 illustrates the (Cl, k,)-parameterized plots of 
fTa, for every {T = u,w,w; s = x,y,z}. These com- 
putations are performed in MATLAB for any given pair 
{R, k,)  using the procedure of 5 3. The nominal-flow- 
dependent quantities fuv and fuz are determined for 
the Couette Row. 

5 Concluding remarks 
We have developed a procedure for the explicit determi- 
nation of the frequency responses for a class of infinite 
dimensional systems. This procedure avoids the need 
for spatial discretization and provides an exact reduc- 
tion of the infinite dimensional problem to the problem 
in which only matrices of finite dimensions are involved. 
The order of these matrices Is at most four times larger 
than the order of the differential operator at hand. 

We have also illustrated application of this technique 
hy providing two examples: a one-dimensiooal diffu- 
sion equation, and a system obtained by linearization 
of the Navier-Stokes equations in channel flows around 
a given nominal velocity profile. In the latter case, we 
have derived important relationships that illustrate the 
parametric dependence of the frequency responses on 
the temporal frequency w, the spanwise wave-oumber 
k,, and the Reynolds oumher R. 

A TPBVSR with a linear boundary  constraint  
on the state 

Consider the operator H(w,  K )  : d(w, K )  - 4(u, K )  

with a well-posed TPBVSR of the form 

NP(+l )  = 0, Y E  I--1, 11, 
where N is a constant matrix. i t  is readily shown that  
a coordinate transformation of the form 

renders (16) into (3) where matrix M is chosen such 
that TI is invertible. Similarly, for the following class 
of systems 

N-p(-l) = 0, 

N+P(+l) = 0, Y E  1-1, 11, 

a y-dependent change of coordinates can be used to  
rewrite them in the form suitable for the application of 
the procedure described in 5 3. 

B A TPBVSR of the LNS equations at k= = 0 

In this section we describe the TPBVSR that are 
used for the frequency response computations of the 
streamwise constant LNS equations. Once the tempo- 
ral Fourier transform has been applied, (13a) can be 
rewritten as 

(17a) 

(17b) 

with R := wR, where w denotes the temporal frequency. 
By combining (17a) and (17b) with (13b) we arrive at 
(14). Since the Reynolds number enters nicely into the 
equations, we can study (17) at R = 1. In the particular 
case of Couette Row system (17) can he rewritten as 

$1 = R(iR1 - L)-'(B,d, + B,d,), 

$12 = R(iR1 - S)-'(CP$1 + Bzd,), 

(a,,,, - (2k: + inp,, + k:(k: + iR))$l = 

(8"" - (k: + iR))+z = ik,$i - ik,d,, 

with the boundary conditions & ( i I )  = 8,$l(il) = 

(18b) 

+ Z ( i l )  = 0. 

In particular, system (18,13h) can be represented hy a 
TPBVSR (3), which is a suitable form far the applica- 
tion of the procedure presented in 5 3, with matrices 
Ao, Bo, and CO determined by 

0 1 0  1 2k:+iR 0 0 0 1 0 

0 0 1 0 0 1  I 0 

1 ik, 0 k : + i n  0 0 0 1  

0 0 ik, 
-ik, 0 0 

C"0 0 0 - & O O O  

C,O O t  0 0 0 0  
CO:= [ C"O] = [ 1 0 0 0 0 0 1  

The realizations of f lra(R,  k,) can be now easily deter- 
mined for every {T = U, U, w ;  s = x, y, 2). For example, 
TPBVSR of R,,(R, k,) is given by 

Xl(i1) = 0, Y E 1-1, 11 

As previously mentioned, %,,(Cl, k,) and flpa(Q, k ) ,  
for every { r  = U,W; s = y,z], are the second and 
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Figure 2: Plots of fr.(n, k z ) .  fnv(n,k,) and fU.(n, k,) are determined for the Couette flow. 

the fourth order operators, respectively. We note that 121 B. Bamieh, F. Paganini, and M. A. Dahleh, 
their minimal realizations can be obtained by comhin- "Distributed control of spatially inmiant system," 
ing the respective realizations of (18b) and (18a) with IEEE %maclions Automatic Control, vol. 47, no. 7, 
the corresponding rows of (13h). For example, a mini- pp. 1091-1107, 2002. 
mal realization of R.,(Q,k,)  is given by 131 P. J. Schmid and D. S. Henningson, Stobilitv and 

%ansition in Shear Flows. New York Springer-V&ag, 

[ d(Y) ] [ k: + iR ] [ it::; ] + [ - i k z  ] dr(y)' 141 B. Bamieh and M. Dahleh, "Energy ampiifi- 
cation in channel fiows with stochastic excitation," 
Physics of Fluids, vol. 13, no. 11, pp. 3258-3269, 2001. 

d(Y) = O 0 2001. 

111(*1) = 0, y E 1-1, I]. 
[5] hl. R. Jovanovii: and B. Bamieh, "Frequency 
domain analysis of the linearized Navier-Stokes equa- 

Alternatively, l /%(% k.)llLs can be determined from 
the followinp non-minimal realization of R,,,tn. k. )  

tions," in Proceedings of the 2003 .American Control 
Conference, pp. 319&3195, 2003. 

I ..~ , -, 
161 hl. R. JovanoviC and B. Bamieh, "The spatio- 
temporal impulse response of the linearized Navier- 
Stokes equations," in Proceedings of the 2001 American 

Z1(*1) = 0, y E 1-1, I]. 

Control Conference, pp. 1948-1953, 2001 
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