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Abstract

We consider a class of linear time-periodic systems in which the dynamical generator A(t) represents the sum of a stable time-invariant
operator A0 and a small-amplitude zero-mean T -periodic operator εA p(t). We employ a perturbation analysis to develop a computationally
efficient method for determination of the H2 norm. Up to second order in the perturbation parameter ε we show that: (a) the H2 norm can be
obtained from a conveniently coupled system of Lyapunov and Sylvester equations that are of the same dimension as A0; (b) there is no coupling
between different harmonics of A p(t) in the expression for the H2 norm. These two properties do not hold for arbitrary values of ε, and their
derivation would not be possible if we tried to determine theH2 norm directly without resorting to perturbation analysis. Our method is well suited
for identification of the values of period T that lead to the largest increase/reduction of theH2 norm. Two examples are provided to motivate the
developments and illustrate the procedure.
c© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Time-periodic systems arise in many important physical
and engineering problems (Nayfeh & Mook, 1979). Examples
of finite-dimensional systems include the Hill and Mathieu
equations, and examples of infinite-dimensional systems
include the equations describing periodic excitations of fluids,
beams, plates, strings, and membranes. Floquet analysis
provides a theoretical framework for the investigation of local
stability properties of these systems (Farkas, 1994). On the
other hand, the so-called lifting technique (Bamieh & Pearson,
1992) and the harmonic balance approach (Wereley & Hall,
1990) are most suitable for the analysis of input–output
properties of the linearized versions of these systems.
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The utility of input–output analysis for linear time-invariant
(LTI) systems is well documented (Zhou, Doyle, & Glover,
1996). The H2 norm is an appealing measure of input–output
amplification, as it quantifies variance amplification in
stochastically driven linear systems. For LTI systems, the H2

norm is determined by traces of controllability or observability
Gramians which represent solutions to standard Lyapunov
equations. On the other hand, the H2 norm of linear time-
periodic (LTP) systems can be expressed in terms of the
solution to the so-called harmonic Lyapunov equation (Zhou,
Hagiwara, & Araki, 2003). Since the entries in this equation are
bi-infinite matrices with, in general, operator-valued elements,
the computation of the H2 norm of LTP systems is a
nontrivial exercise. Furthermore, the state-transition matrix
of most LTP systems is difficult to obtain (both analytically
and numerically) which additionally hinders the analysis. The
recent article (Zhou et al., 2003) addressed these problems by:
(a) approximation of A(t) in the state equation by piecewise
constant functions; (b) truncation of bi-infinite matrices in
the harmonic Lyapunov equation. However, for systems
described by partial integro-differential equations (PIDEs) even
this approach would require solving a large-scale Lyapunov
equation; for an accurate computation of theH2 norm of PIDEs
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with one spatial variable, the entries into this equation are
typically matrices with a large number of rows and columns.

In this paper, we study LTP systems in which A(t) is
given by the sum of a stable time-invariant operator A0 and
a small-amplitude zero-mean T -periodic operator εAp(t). For
example, these systems can be obtained by linearization of
time-invariant nonlinear systems around small-amplitude T -
periodic trajectories. We employ a perturbation analysis to
develop a computationally efficient method for determining the
H2 norm. Up to second order in the perturbation parameter
ε we show that: (a) the H2 norm can be obtained from a
conveniently coupled system of finite-dimensional Lyapunov
and Sylvester equations; (b) there is no coupling between
different harmonics of Ap(t) in the expression for the H2
norm. These two properties do not hold for arbitrary values
of ε, and their derivation would not be possible if we
tried to determine the H2 norm directly without resorting to
perturbation analysis. We would like to emphasize that the
dimension of the Lyapunov and Sylvester equations mentioned
above is the same as the dimension of A(t). This is in the same
spirit as the perturbation analysis performed in Ndiaye and
Sorine (2000). Such finite-dimensional equations are clearly
easier to solve than the harmonic Lyapunov equation, which
is composed of bi-infinite matrices each element of which
has the same dimension as A(t). Our perturbation method is
well suited for identification of the values of period T that
lead to the largest increase/reduction of the H2 norm. An
immediate application domain is in fluid mechanics where
temporally-periodic excitations can be introduced either to
suppress turbulence (Jovanović, 2006, 2008) or to enhance
mixing.

We note that the perturbation analysis used here has
strong parallels with the approach of Fardad and Bamieh
(2008, 2005) for the H2 analysis of linear spatially-periodic
systems. However, there are some important differences in
the structure of frequency response operators for temporally-
and spatially-periodic systems which necessitates separate
treatments. For example, in spatially-periodic systems one
often encounters cascades of spatially-invariant differential
and spatially-periodic multiplication operators which somewhat
complicate their analysis (Fardad, 2006; Fardad, Jovanović, &
Bamieh, in press). On the other hand, state-space models of LTP
systems do not contain cascades of differential and periodic
operators, which imposes some additional structure that can be
utilized to simplify the analysis.

Our presentation is organized as follows: In Section 2 we
formulate the problem and provide two examples that serve
as a motivation for our analysis. In Section 3 we give a
brief overview of the notion of the frequency response for
exponentially stable LTP systems. In Section 4 we define the
H2 norm for LTP systems. In Section 5 we employ perturbation
analysis to develop an efficient procedure for computing the
H2 norm of systems subject to small-amplitude oscillations.
In Section 6, we use the developed method to determine the
second-order corrections to the H2 norms of systems described
in Section 2.1 and Section 2.2. In Section 7, we end our
presentation with some concluding remarks.

2. Problem formulation and motivating examples

Let a linear dynamical system be given by its state-space
representation

∂tψ = A(t)ψ + Bd, (1a)

φ = Cψ, (1b)

where ψ , φ, and d, respectively, denote the state, output,
and input vector-valued functions. Eqs. (1a) and (1b) are also
commonly referred to as an evolution system (Pazy, 1983).
We assume that A(t) represents a time-periodic operator with
period T = 2π/ωo, A(t) = A(t + T ), that generates an
exponentially stable strongly-continuous (C0) semigroup on a
Hilbert space H. The input and output operators B and C are
assumed to be time-invariant. In the case where A, B, and C
are unbounded operators we assume that ψ and d belong to
dense subsets of appropriate Hilbert spaces.

In this paper, we consider a class of LTP systems in which
the operator A(t) can be represented as

A(t) = A0 + εAp(t),

where ε is a small parameter, A0 is a time-invariant operator
and creates an exponentially stable evolution, and Ap(t) is
a zero-mean T -periodic operator. In other words, we assume
that Ap(t) can be expanded in its Fourier series, Ap(t) =∑

n∈Z\0 Anejnωot . Our objective is to derive a computationally
efficient procedure for the determination of the H2 norm of
system (1) using a perturbation analysis.

We are particularly interested in distributed systems with one
spatial variable y ∈ [−1, 1]. To highlight this, we rewrite (1)
as

∂tψ(y, t) = A(t)ψ(y, t)+ Bd(y, t), (2a)

φ(y, t) = Cψ(y, t), (2b)

where for each t , ψ(·, t), φ(·, t), and d(·, t) denote vector-
valued fields in L2

[−1, 1]. We assume that ψ(·, t) belongs
to some dense subset D(A) of sufficiently smooth functions
in L2

[−1, 1] for every t . On the other hand, A(t), B, and C
are linear (integro-differential) operators in y, with A(t) =

A(t + T ). The example presented in Section 2.2 illustrates the
structure of these operators for a system describing the evolu-
tion of velocity perturbations in a two-dimensional oscillating
channel flow. We note that with a careful choice of notation and
precise definition of underlying signals, operators, and spaces,
all of our results hold for both finite-dimensional LTP systems
and infinite-dimensional LTP systems described by (2).

Let H denote the mapping from input d to output φ, φ =

Hd . We assume that H has a kernel representation given by

φ(t) =

∫ t

0
H(t, τ )d(τ )dτ,

for finite-dimensional systems of the form (1), and

φ(y, t) =

∫ t

0

∫ 1

−1
H(y, η; t, τ )d(η, τ )dηdτ,

for infinite-dimensional systems of the form (2). Here, with an
abuse of notation, we use the same symbol for an operator and
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its kernel function. It is not difficult to show that the kernel
function representing H is a doubly-periodic function in t and
τ , i.e. H(y, η; t, τ ) = H(y, η; t+nT, τ+nT ), n ∈ N0 (Bamieh
& Pearson, 1992). We assume that the system is L2-stable and
that its H2 norm is well defined; detailed conditions are given
in assumptions (A1)–(A3) in Section 4.

We next provide two examples that serve as a motivation
for our analysis. The first example represents a dissipative
version of the well-known Mathieu equation, and the second
example describes the dynamics of flow fluctuations in a two-
dimensional channel flow subject to a streamwise pressure
gradient and an oscillatory motion of the lower wall.

2.1. The dissipative Mathieu equation

The forced dissipative Mathieu equation is given by

ẍ + 2bẋ + (a − 2ε cosωot)x = d,

where a and b denote positive parameters. By selecting

ψ(t) := [ x(t) ẋ(t) ]T, φ(t) := x(t),

this equation can be represented by (1) with

A(t) :=

[
0 1

−(a − 2ε cosωot) −2b

]
,

B := [ 0 1 ]
T, C := [ 1 0 ].

Clearly, in this example H := R2, and

A(t) := A0 + εAp(t)

= A0 + ε
(

A−1e−jωot
+ A1ejωot

)
,

where

A0 :=

[
0 1

−a −2b

]
, A±1 :=

[
0 0
1 0

]
.

In Section 6.1 we consider small-amplitude oscillations and
use the perturbation analysis of Section 4 to determine how the
H2 norm changes with forcing frequency ωo.

2.2. An example from fluid mechanics

We consider the dynamics of velocity fluctuations in a two-
dimensional channel flow with geometry illustrated in Fig. 1.
For background material on the use of input–output norms in
analysis of fluid systems see Schmid and Henningson (2001),
Bamieh and Dahleh (2001) and Jovanović and Bamieh (2005)
and the references therein.

Incompressible flow of a viscous Newtonian fluid satisfies
the Navier-Stokes (NS) and the continuity equations given in
their non-dimensional forms by Panton (1996)

ut = −(u·∇)u − ∇P + (1/R)∆u + F,

0 = ∇·u,

where u is the velocity vector, P is the pressure, F is the body
force, ∇ is the gradient, and ∆ := ∇2 is the two-dimensional

Fig. 1. A two-dimensional channel flow subject to a streamwise pressure
gradient and an oscillatory motion of the lower wall.

Laplacian. The Reynolds number R is defined in terms of the
centerline velocity and the channel half-width.

Let the flow be subject to a streamwise pressure gradient,
Px = −2/R, an oscillatory motion of the lower wall, U (y =

−1, t) = 2α sinωot , and let the nominal body force be equal
to zero, F̄ ≡ 0. Here, t denotes the non-dimensional time,
α and ωo are, respectively, the non-dimensional amplitude
and frequency of the wall oscillations, and U is the nominal
streamwise velocity. In steady-state the NS equations simplify
to the x-direction momentum equation

Ut = −Px + (1/R)Uyy,

subject to

U (−1, t) = 2α sinωot, U (1) = 0, Px = −2/R.

With the appropriate scaling of the NS equations, α and ωo
can be expressed as {α = Ru/R, ωo = Ω/R}, where Ru is
the Reynolds number defined in terms of the wall oscillation
amplitude (in physical units) and the channel half-width, and
Ω is the Stokes number (i.e., the non-dimensional temporal
frequency). Under these conditions, it is readily shown that the
steady-state solution of the NS equations is given by

U (y, t) = U0(y)+ 2(Ru/R)U1(y, t), U0(y) = 1 − y2,

U1(y, t) = Uc(y) cos(Ω/R)t + Us(y) sin(Ω/R)t,

where Uc(y) and Us(y) represent solutions to

U ′′
s (y) = −ΩUc(y), U ′′

c (y) = ΩUs(y),

Uc(±1) = Us(1) = 0, Us(−1) = 1.

Here, U ′′
r (y) denotes the second derivative of Ur (y), that is

U ′′
r (y) := d2Ur (y)/dy2, r = s or r = c.

The linearization of the NS equations around U (y, t) in
combination with the Fourier transform in x yields a one-
dimensional PIDE (in y) parameterized by the wave-number
kx ∈ R. This PIDE has a state-space representation (2), with
the state of the system determined by a scalar field ψ(kx , y, t)
denoting the stream function (Panton, 1996). On the other hand,
the input and output fields d and φ, respectively, denote body
force and velocity fluctuations. With this choice of the system’s
state, the operator A(t) in (2) is given by

A(t) := ∆−1
(

1
R

∆2
+ jkx

(
U ′′(y, t)− U (y, t)∆

))
,

where ∆ := ∂yy − k2
x with homogeneous Dirichlet boundary

conditions, and ∆2
:= ∂yyyy − 2k2

x∂yy + k4
x with homogeneous
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Dirichlet and Neumann boundary conditions. Note that ∆−1 is
defined by

∆−1
: f 7→ g ⇔ f = ∆g =: g′′

− k2
x g, g(±1) = 0.

The underlying Hilbert space for A is given by Reddy and
Henningson (1993)

H :=

{
g ∈ L2

[−1, 1]; g′′
∈ L2

[−1, 1], g(±1) = 0
}
.

The operator A is unbounded and is defined on the domain

D(A) :=

{
g ∈ H; g(4) ∈ L2

[−1, 1], g′(±1) = 0
}
.

If H is endowed with the inner product that determines the
kinetic energy of velocity fluctuations, then B B∗

= C∗C = I ,
and the adjoint of the operator A(t) is given by Jovanović and
Bamieh (2005)

A∗(t) = (1/R)∆−1∆2
+ jkx (U (y, t)− ∆−1U ′′(y, t)).

Finally, we represent A(t) in a form suitable for H2 norm
analysis

A(t) = A0 + (Ru/R)(A−1e−j(Ω/R)t
+ A1ej(Ω/R)t ),

where

A0 := ∆−1
(

1
R

∆2
+ jkx

(
U ′′

0 (y)− U0(y)∆
))
,

A±1 := Ac ∓ jAs,

Ar := jkx∆−1 (U ′′
r (y)− Ur (y)∆

)
, r = s, c.

In Section 6.2, we consider wall oscillations of small
amplitude (Ru � R), and determine the H2 norm dependence
on kx and Ω in channel flow with R = 2000 using the
perturbation analysis of Section 4.

3. Frequency response of LTP systems

We next provide a brief overview of the notion of the
frequency response for exponentially stable LTP systems with
period T = 2π/ωo. We refer the reader to Sandberg,
Möllerstedt, and Bernhardsson (2005), Wereley and Hall
(1990), Zhou and Hagiwara (2002) and Zhou et al. (2003)
for additional information. In particular, the details of rigorous
conditions for the existence of frequency response operators of
the LTP systems can be found in Zhou and Hagiwara (2002).

It is a standard fact that the frequency response of a stable
LTI system describes how a persistent harmonic input of a
certain frequency propagates through the system in steady state.
In other words, the steady-state response of a stable LTI system
to an input signal of frequency ω, is a periodic signal of
the same frequency but with a modified amplitude and phase.
The amplitude and phase of the output signal are precisely
determined by the value of the frequency response at the input
frequency ω.

On the other hand, the steady-state response of a stable LTP
system to a harmonic input of frequency ω contains an infinite
number of harmonics separated by integer multiplies of ωo, that
is ω + nωo, n ∈ Z. Using this fact and the analogy with the

LTI systems, the frequency response of an LTP system can be
defined by introducing the notion of exponentially modulated
periodic (EMP) signals. As shown in Wereley and Hall (1990),
EMP signals are more suitable for the analysis of LTP systems
than persistent complex exponentials. Namely, the steady-state
response of (1) to an EMP signal

d(t) =

∞∑
n=−∞

dnej(nωo+θ)t , θ ∈ [0, ωo),

is also an EMP signal

φ(t) =

∞∑
n=−∞

φnej(nωo+θ)t , θ ∈ [0, ωo).

The frequency response of (1) is an operator that maps a bi-
infinite vector d := col {dn}n∈Z to a bi-infinite vector φ :=

col {φn}n∈Z , that is φ = Hθd.
For system (1), the frequency response operator Hθ can be

expressed as (Wereley, 1991)

Hθ = C(E(θ)−A)−1B,

where E(θ) is a block-diagonal operator given by E(θ) :=

diag{j(θ + nωo)I }n∈Z, and I is the identity operator. On the
other hand,A, B, and C represent block-Toeplitz operators, e.g.

A := toep{. . . , A2, A1, A0 , A−1, A−2, . . .},

where the box denotes the element on the main diagonal of A.
This bi-infinite matrix representation is obtained by expanding
the operators A, B, and C of (1) in their Fourier series,
e.g. A(t) =

∑
∞

n=−∞
Anejnωot . Clearly, since B and C are time-

invariant operators their block-Toeplitz representations simplify
to block-diagonal representations, i.e., B = diag{B} and C =

diag{C}.

4. H2 norm of LTP systems

The H2 norm of a T -periodic system (1) with φ = Hd is
defined as (Bamieh & Pearson, 1992)

‖H‖
2
2 :=

1
T

∫ T

0

∫
∞

0

[
‖H‖

2
H S

]
(t, τ )dtdτ,

where ‖ · ‖H S denotes the Hilbert–Schmidt (HS) norm. For
finite-dimensional systems with kernel function H(t, τ ), the HS
norm simplifies to the Frobenius norm of matrices[
‖H‖

2
H S

]
(t, τ ) := tr

(
H∗(t, τ )H(t, τ )

)
, (3)

where tr(·) denotes the matrix trace. For infinite-dimensional
systems with spatio-temporal kernel function H(y, η; t, τ ), the
HS norm is given by[
‖H‖

2
H S

]
(t, τ )

:=

∫ 1

−1

∫ 1

−1
tr
(
H∗(y, η; t, τ )H(y, η; t, τ )

)
dηdy.

As shown in Bamieh and Pearson (1992), the H2 norm of an
LTP system can be interpreted as the square-average of the L2
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norms of the responses to a set of impulse forcing functions
applied over the entire interval [0, T ]. This interpretation
of the H2 norm of LTP systems represents the appropriate
generalization of a well-known deterministic interpretation of
the H2 norm of LTI systems (Zhou et al., 1996). The stochastic
interpretation of the H2 norm is discussed in the Appendix.

Notation: We use trace(·) to denote the trace of an infinite-
dimensional operator with spatial kernel function G

trace(G) :=

∫ 1

−1
tr(G(y, y))dy.

In order to unify our notation between the trace of operators and
the trace of matrices, we assume that trace(G) collapses to the
standard matrix trace tr(G) when G is finite dimensional. It can
be shown that∫ 1

−1

∫ 1

−1
tr
(
G∗(y, η)G(y, η)

)
dηdy =

∫ 1

−1
tr(G̃(y, y))dy

= trace(G̃),

where G̃ = G∗G is the kernel composition of G∗ and G.
It is now possible to give a unified definition of the HS norm

for both finite- and infinite-dimensional systems by replacing
(3) with[
‖H‖

2
H S

]
(t, τ ) := trace(H∗(t, τ )H(t, τ )), (4)

where for infinite-dimensional systems H(t, τ ) is a spatial
kernel function at every (t, τ ).

Let H(t, τ ) = C Φ(t, τ )B, where Φ is the state-transition
operator. We state the main assumptions on systems (1)–(2) as
follows:

(A1) A(t) describes an exponentially stable evolution;
(A2) B B∗ and C∗C are bounded operators;
(A3)

∫
∞

0

[
‖Φ‖

2
H S

]
(t, τ )dt is finite for every τ ∈ [0, T ].

Conditions (A1)–(A3) guarantee that the H2 norm of the
LTP system is well-defined and finite.

The H2 norm of an LTP system can also be found
from (Colaneri, 2000)

‖H‖
2
2 =

1
T

∫ T

0
trace(V (τ )C∗C) dτ (5)

=
1
T

∫ T

0
trace(W (τ )B B∗) dτ, (6)

where V (·), W (·) are the T -periodic steady-state solutions of
the following differential Lyapunov equations (DLEs)

d
dτ

V (τ ) = V (τ )A∗(τ )+ A(τ )V (τ )+ B B∗, (7)

−
d

dτ
W (τ ) = A∗(τ )W (τ )+ W (τ )A(τ )+ C∗C. (8)

Let {Wn}n∈Z denote the Fourier series coefficients of W ,

W (t) =

∑
n∈Z

Wn e jnωot .

Eq. (6) demonstrates that the H2 norm is equal to the trace
of the constant component W0 B B∗ of the T -periodic function
W (·)B B∗. Let WBB∗ denote the Toeplitz representation of
W (·)B B∗. Then W0 B B∗ constitutes the diagonal element of
WBB∗. This motivates yet another method for the computation
of the H2 norm in which (8) is replaced by its Toeplitz
counterpart, an equation in W , referred to as the harmonic
Lyapunov equation (HLE) (Zhou et al., 2003). We summarize
this method in the next theorem.

Theorem 1. Let A, B, and C denote the Toeplitz representa-
tions of A(t), B, and C, respectively, with

F := A− E(0) = A− diag{jnωo I }n∈Z.

Then under assumptions (A1)–(A3)

‖H‖
2
2 = trace(V0C∗C) = trace(W0 B B∗),

where V0 and W0 are, respectively, the diagonal elements of the
Toeplitz operators V andW that satisfy the harmonic Lyapunov
equations

FV + VF∗
= −BB∗, (9a)

F∗W +WF = −C∗C. (9b)

For LTI systems, the above formulae simplify to the well-
known expressions commonly used for determination of theH2
norm (Zhou et al., 1996).

5. Perturbation analysis of the H2 norm

Since the entries of the harmonic Lyapunov equation are
bi-infinite matrices with, in general, operator-valued elements,
determination of the H2 norm of the LTP systems is arguably
a computationally intensive undertaking. In view of this, we
will consider the problem where the operator A(t) can be
represented as the sum of a time-invariant operator A0 and
a zero-mean time-periodic operator εAp(t), where ε denotes
a small real parameter. For this special case, we will employ
a perturbation analysis to develop a computationally efficient
method for the determination of theH2 norm. We will show that
theH2 norm can be obtained by solving a conveniently coupled
system of Lyapunov and Sylvester equations. The entries in
these equations are determined by the elements of the bi-infinite
matrices in (9).1

Using the structure of A(t), we represent the operator F in
(9) as

F = F0 + ε
∑
m∈N

Fm,

F0 := diag{F(n)}n∈Z = diag{A0 − jnωo I }n∈Z.

1 For the oscillating channel flow example, the underlying Lyapunov and
Sylvester equations are operator-valued equations in the wall-normal direction
(y). A discretization in y can be used to obtain a set of matrix-valued equations
that can be easily solved in e.g. MATLAB. The order of these equations is
determined by the size of discretization in the wall-normal direction (typically
around 50).
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On the other hand, for each m ∈ N, Fm represents a block-
Toeplitz operator with A−m and Am on the mth upper and lower
block sub-diagonals, respectively. For example,

F1 := toep
{
. . . , 0, A1, 0 , A−1, 0, . . .

}
,

F2 := toep
{
. . . , 0, A2, 0, 0 , 0, A−2, 0, . . .

}
,

and similarly for the other Fm’s. In view of the above
decomposition of F , we rewrite the harmonic Lyapunov
equation (9a)(
F0 + ε

∑
m∈N

Fm

)
V + V

(
F∗

0 + ε
∑
m∈N

F∗
m

)
= −BB∗,

and represent V as

V :=

∑
n∈N0

εnVn = V0 + εV1 + ε2V2 + · · · . (10)

The self-adjoint block-Toeplitz operators {Vn}n∈N0 satisfy the
following sequence of operator Lyapunov equations

F0V0 + V0F∗

0 = −BB∗, (11a)

F0Vi + ViF∗

0 = −

∑
m∈N

(FmVi−1 + Vi−1F∗
m), (11b)

for each i ∈ N. The unperturbed system is stable and thus from
the necessity part of Theorem 2 of Zhou, Hagiwara, and Araki
(2002) the operators V0 and Vi , i ∈ N will always exist. Since
F0 and B are block-diagonal operators, it follows from (11a)
that V0 is also a block-diagonal operator, V0 = diag{X}, with

A0 X + X A∗

0 = −B B∗.

Using linearity of (11b) we express V1 as

V1 =

∑
m∈N

V(m)1 ,

where

F0V(m)1 + V(m)1 F∗

0 = −(FmV0 + V0F∗
m). (12)

Here, for each m ∈ N, V(m)1 denotes a self-adjoint block-
Toeplitz operator with non-zero elements on the mth block sub-
diagonals; this structure of V(m)1 follows directly from (12) and
the simple observation that a product between a block-diagonal
and the block-Toeplitz operator with non-zero elements on
the mth block sub-diagonals yields an operator with non-
zero elements on the mth block sub-diagonals. Thus, V1 is
a trace-less operator, and each V(m)1 is a self-adjoint block-
Toeplitz operator with Ym on the mth upper block sub-diagonal.
Furthermore, the operator Ym represents the solution to the
following Sylvester equation

(A0 + jmωo I )Ym + Ym A∗

0 = −
(

A−m X + X A∗
m

)
.

Based on the linearity of (11b) and the above representation
of V1 it follows that V2 can be expressed as

V2 =

∑
m∈N

∑
k∈N

V(m,k)2 ,

where

F0V(m,k)2 + V(m,k)2 F∗

0 = −(FmV(k)1 + V(k)1 F∗
m). (13)

Now, since Fm and V(k)1 are, respectively, block-Toeplitz
operators with non-zero elements on the mth and kth block
sub-diagonals, their product will have non-zero elements on the
main-diagonal if and only if m = k. Thus, we see from (13)
that only operators V(m,m)2 have a non-zero trace; for m 6= k,

the operators V(m,k)2 are trace-less. In view of this, we disjoin

the block-diagonal part of V(m,m)2 from the rest of it

V(m,m)2 = diag{Zm} + V̄(m,m)2 ,

and derive the following Lyapunov equation for operator Zm

A0 Zm + Zm A∗

0 = −(AmYm + Y ∗
m A∗

m + A−mY ∗
m + Ym A∗

−m).

From (10), the fact that V1 is trace-less, and the form of
V2 shown above, we conclude that up to second order in the
perturbation parameter ε the H2 norm can be expressed as

‖H‖
2
2 = trace

((
X + ε2

∑
m∈N

Zm

)
C∗C

)
+ higher-order terms in ε. (14)

Remark 1. Expression (14) is found for a system with an
infinite number of harmonics in its A operator, Ap(t) =∑

n∈Z\0 Anejnωot . We emphasize that (14) represents a formal
expansion of the H2 norm and we make no claims with regard
to its convergence. In the case of a finite number of harmonics
in operator A, Ap(t) =

∑
n∈M Anejnωot , M := {−M,−M +

1, . . . ,M−1,M}\0, it can be shown that the convergence of the
H2 norm perturbation series is guaranteed by the exponential
stability of the unperturbed system and the boundedness of the
operators B B∗ and C∗C . We omit the details for sake of brevity
and refer the reader to Fardad (2006, Appendix to Chap. 5) for
a similar proof.

Based on the preceding discussion we state the following
result.

Theorem 2. For a finite number of harmonics, up to second
order in the perturbation parameter ε, the H2 norm of system
(1) with

A(t) = A0 + ε
∑
n∈M

Anejnωot ,

M := {−M,−M + 1, . . . ,M − 1,M} \ 0,

is given by

‖H‖
2
2 = trace

((
X + ε2

M∑
m=1

Zm

)
C∗C

)
+ O(ε3),

where

A0 X + X A∗

0 = −B B∗,

(A0 + jmωo I )Ym + Ym A∗

0 = −
(

A−m X + X A∗
m

)
,

A0 Zm + Zm A∗

0 = −(AmYm + Y ∗
m A∗

m + A−mY ∗
m + Ym A∗

−m).
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Remark 2. Up to second order in the perturbation parameter
ε, there is no coupling between different harmonics of Ap(t)
in the expression for the H2 norm. This decoupling between
different harmonics does not hold for arbitrary values of ε,
and its derivation would not be possible if we tried to solve
the harmonic Lyapunov equation directly without resorting to
perturbation analysis.

When A(t) contains only the first harmonic ωo, i.e.,

A(t) = A0 + ε
(

A−1e−jωot
+ A1ejωot

)
,

the operator F can be represented as F = F0 + εF1, where
F0 and F1 are defined in the beginning of this section. Using
the structure of operators F0, F1, and Vi−1 in (11b) we can
establish that:

• For any n ∈ N0, V2n in (10) is a self-adjoint block-Toeplitz
operator with non-zero elements on block sub-diagonals 2k,
k = 0, . . . , n, that is

V2n = diag{V2n,0} +

n∑
k=1

S2kdiag{V2n,2k}

+

n∑
k=1

diag{V ∗

2n,2k}S
∗

2k,

where S2k denotes a bi-infinite block-Toeplitz operator with
identity operators on the upper block sub-diagonal 2k.
Notation Vn,k indicates that Vn,k belongs to the kth upper
block sub-diagonal of Vn , and, for any {n ∈ N0, k =

0, . . . , n}, the operators V2n,2k represent the solutions to
Lyapunov and Sylvester equations given in Theorem 3.

• For any n ∈ N, V2n−1 in (10) is a self-adjoint block-Toeplitz
operator with non-zero elements on block sub-diagonals
2k − 1, k = 1, . . . , n, that is

V2n−1 =

n∑
k=1

S2k−1 diag{V2n−1,2k−1}

+

n∑
k=1

diag{V ∗

2n−1,2k−1}S
∗

2k−1,

where S2k−1 denotes a bi-infinite block-Toeplitz operator
with identity operators on the upper block sub-diagonal
2k − 1. Notation Vn,k indicates that Vn,k belongs to the kth
upper block sub-diagonal of Vn . Thus, trace(V2n−1) ≡ 0,
and, for any {n ∈ N, k = 1, . . . , n}, the operators V2n−1,2k−1
represent the solutions to Lyapunov and Sylvester equations
given in Theorem 3.

The above observations for time-periodic operators A(t)
with a single harmonic ωo are summarized in Theorem 3.

Theorem 3. The H2 norm of system (1) with

A(t) = A0 + ε
(

A−1e−jωot
+ A1ejωot

)
, 0 < ε � 1,

is given by

‖H‖
2
2 =

∞∑
n=0

ε2n trace
(
V2n,0C∗C

)
,

Fig. 2. Plots of f2(ωo) and log10 | f2(ωo)| in the expression for the H2 norm
of dissipative Mathieu equation with a = 1 and b = 0.2.

where

A0V0,0 + V0,0 A∗

0 = −B B∗,

A0V2n,0 + V2n,0 A∗

0 = −(A1V2n−1,1 + V ∗

2n−1,1 A∗

1
+ A−1V ∗

2n−1,1 + V2n−1,1 A∗

−1),

(A0 + jlωo I )Vl,l + Vl,l A∗

0 = −(A−1Vl−1,l−1 + Vl−1,l−1 A∗

1),

l ∈ N,
(A0 + jmωo I )Vl,m + Vl,m A∗

0 = −(A−1Vl−1,m−1

+ Vl−1,m−1 A∗

1 + A1Vl−1,m+1 + Vl−1,m+1 A∗

−1),

m =

{
2, 4, . . . , l − 2 l-even,
1, 3, . . . , l − 2 l-odd.

Application of Theorem 3 is illustrated in Section 6 on two
examples: the dissipative Mathieu equation of Section 2.1 and
the two-dimensional oscillating channel flow of Section 2.2.

6. Examples

In this section, we employ Theorem 3 to determine the
second-order corrections to the H2 norms of systems described
in Section 2.1 and Section 2.2.

6.1. The dissipative Mathieu equation

The H2 norm of the dissipative Mathieu equation subject to
small-amplitude oscillations (see Section 2.1) is given by

‖H‖
2
2 = f0 + ε2 f2(ωo)+ O(ε4),

where f0 = 1/(4ab), and

f2(ωo) =
64ab2

+ 4
(
3a − 4b2

)
ω2

o − ω4
o

2a2b
(
4b2 + ω2

o

) (
16a2 − 8

(
a − 2b2

)
ω2

o + ω4
o

) .
The formula for f2(ωo) is obtained from Theorem 3 with the
help of MATHEMATICA.

Plots of f2(ωo) and log10 | f2(ωo)| in the expression for the
H2 norm of the dissipative Mathieu equation with a = 1 and
b = 0.2 are shown in Fig. 2. We observe two resonant peaks: the
positive at ωo ≈ 1.88, and the negative at ωo ≈ 3.40. As can be
seen from the plot of log10 | f2(ωo)|, the latter resonant peak has
a very small magnitude compared to the peak at ωo ≈ 1.88 and
its contribution to the H2 norm is not likely to be significant.
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Fig. 3. Plots of f0(kx ) and f2(kx ,Ω) in the expression for the H2 norm of
two-dimensional oscillating channel flow with R = 2000.

6.2. Two-dimensional oscillating channel flow

The H2 norm of a two-dimensional oscillating channel flow
is parameterized by the wave-number kx , the Stokes number
Ω , and the Reynolds numbers R and Ru (see Section 2.2). For
small-amplitude oscillations of the lower wall (Ru � R), we
use Theorem 3 to obtain[
‖H‖

2
2

]
(kx ) = f0(kx )+ R2

u f2(kx ,Ω)+ O(R4
u),

where functions f0(kx ) and f2(kx ,Ω) also depend on the
Reynolds number R.

Fig. 3 illustrates plots of f0(kx ) and f2(kx ,Ω) in the
two-dimensional oscillating channel flow with R = 2000.
These two functions are determined numerically using the
Matlab Differentiation Matrix Suite (Weideman & Reddy,
2000) with 50 collocation points in the wall-normal direction.
We observe a peak in the plot of f0(kx ) which is caused
by ‘poorly damped modes’ of parallel channel flow U0(y).
Clearly, depending on the value of Stokes number Ω this
peak can be attenuated or amplified in the presence of wall
oscillations. For small values of Ω (approximately Ω < 20)
‘the periodic feedback’ leads to a reduction in the H2 norm,
whereas for large values of Ω (approximately 20 < Ω <

250) it increases the H2 norm. Thus, the perturbation analysis
facilitates identification of the Stokes numbers (i.e. the wall
oscillation frequencies) that lead to amplification or attenuation
(relative to U0(y)) of background disturbances. Once the wall
oscillation frequency is selected using perturbation analysis,
the influence of the wall oscillation amplitude on the H2 norm
can be studied using, for example, the truncation of bi-infinite
operators in the harmonic Lyapunov equation or so-called
‘approximate modeling approach’ (Zhou et al., 2003). We note
that our analysis provides a computationally efficient method
for determination of the H2 norm of periodic systems subject
to small-amplitude oscillations without resorting to either of
these two approaches. The only approximation in our analysis
arises due to discretization of channel flow system in the wall-
normal direction. As far as temporal dynamics is concerned, our
analysis is exact.

7. Concluding remarks

We use a perturbation analysis to develop an efficient
method for computation of the H2 norm of LTP systems with
small-amplitude oscillations. We show that, up to second order

in the perturbation parameter, the H2 norm can be determined
by solving a conveniently coupled system of Lyapunov and
Sylvester equations whose structure is determined by the
structure of unperturbed LTI system. For finite-dimensional
systems, the size of these equations corresponds to the size of
matrices in the original LTI system. For infinite-dimensional
systems, these equations are operator-valued and are typically
solved by resorting to finite-dimensional approximation of
the underlying operators. In the channel flow example, this
amounts to solving Lyapunov and Sylvester equations of the
size determined by discretization in the wall-normal direction
(typically less than 50). The developed procedure is suitable for
identification of forcing frequency ωo = 2π/T that leads to the
largest H2 norm reduction/increase.
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Appendix. Stochastic interpretation of the H2 norm

In this section we give a stochastic interpretation to the
definition of the H2 norm using the notion of cyclostationary
processes (Gardner, 1990). A stochastic process v is called
cyclostationary if its statistical properties change periodically in
time. In particular the variance of v, Rv(t, t) = E {v(t)v∗(t)},
is a periodic function of t . It can be shown that the output
of an LTP system whose input is a stationary process is
cyclostationary (Gardner, 1990).

We consider an infinite-dimensional LTP system. The
development for finite-dimensional LTP systems is standard
and thus omitted. Let H denote the spatio-temporal kernel
function of the infinite-dimensional LTP system. Let d be a
white noise random field in both the spatial and temporal
directions, and let φ = Hd. Then

Rφ(y, y; t, t) = E {φ(y, t)φ∗(y, t)}

=

∫
∞

0

∫
∞

0

∫ 1

−1

∫ 1

−1
H(y, η; t, τ )E {d(η, τ )d∗(χ, s)}

H∗(y, χ; t, s)dη dχ dτ ds

=

∫
∞

0

∫ 1

−1
H(y, η; t, τ )H∗(y, η; t, τ )dη dτ,

where the last equality follows from the fact that d is
a white noise spatio-temporal random field and therefore
Rd(y, η; t, s) = E {d(η, χ)d∗(η, s)} = I δ(η − χ)δ(τ −

s), (VanMarcke, 1988). We have thus established that

tr(Rφ(y, y; t, t))

=

∫
∞

0

∫ 1

−1
tr(H∗(y, η; t, τ )H(y, η; t, τ ))dη dτ.

Comparing the above equation to the definition of the H2 norm
for infinite-dimensional systems we have

‖H‖
2
2 =

1
T

∫ T

0

∫ 1

−1
tr(Rφ(y, y; t, t))dy dt. (A.1)
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Eq. (A.1) means that theH2 norm of a spatially distributed LTP
system is equal to the average over one temporal period and
sum over the entire spatial domain of the variance of the output
random field, when the input random field is spatio-temporal
white noise.
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