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Absiract- We investigate some fundamental limitations 
and tradeoffs in the control of vehicular platoons. These 
systems are of considerable practical importance as they 
represent an  example of systems on lattices in which differ- 
ent units are dynamically coupled only through feedback 
controls. We demonstrate that in very long platoons, to 
avoid large position, velocity, and  control amplitudes, one 
needs to explicitly account for the initial deviations of 
vehicles from their desired trajectories. We further derive 
explicit constraints on feedback ga insfor  any given set 
of initial conditionsto achieve desired position transients 
without magnitude and rate saturation. These constraints 
are used to generate the trajectories around which the 
states of the platoon system a re  driven towards their 
desired values without the excessive use of control effort. 
All results are illustrated using computer simulations of 
platoons containing a large number of vehicles. 

bdex Terms-Vehicular Platoons; Spatially Intercon- 
nected Systems; Distributed Control. 

I. INTRODUCTION 
Control of vehicular platoons has been an intensive area 

of research for almost four decades [I]-[6]. These systems 
belong to the class of systems on lattices in which the 
interactions between different subsystems originate because of 
a specific control objective that designer wants to accomplish. 
Additional examples of systems on lattices with this property 
include unmanned aerial vehicles in formation [7]-[9] and 
satellites in synchronous orbit [lO]-[l21. These interactions 
often generate surprisingly complex responses that cannot be 
inferred by analyzing the individual plant units. Rather, intri- 
cate behavioral panems, an instance of which is the so-called 
string instubi/iQ [ 131 (or, more generally, the spatio-temporal 
inrtability [ 14]), arise because of the aggregate effects. Another 
particularity of this class of systems is that every subsys- 
tem is equipped with sensing and actuating capabilities. The 
contsoller design problem is thus dominated by architectural 
questions such as the choice of localized vs centralized control. 

Recent article [I51 addressed some fundamental design 
limitations in vehicular platoons. In particular, it was shown 
that string stability of a finite platoon with linear dynamics 
cannot be achieved with any linear controller that uses only 
information about relative distance between the vehicle on 
which it acts and its immediate predecessor. A similar result 
was previously established for a spatially invariant infinite 
string of vehicles with static feedback controllers having the 
same information passing properties [3]. This necessitates use 
of distributed strategies for control of platoons and under- 
scores the importance of developing distributed schemes with 
favorable architectures. We refer the reader to the references 
above for a fuller discussion of various algorithms that can be 
used for platoon control. Additional information about recent 
work on dismbuted control of systems on lattices can be found 
in [141, [16]-[20] and references therein. 

In this paper we study some fundamental limitations and 
tradeoffs in the control of vehicular platoons. We illustrate 
that in very long platoons one needs to account explicitly for 
the initial distances of vehicles from their desired trajectories 
in order to avoid large position and velocity deviations and 
the excessive use of control effort. We further derive an initial 
condition dependent set of requirements that the control gains 
need to satisfy to guarantee the desired quality of position 
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transient response, and rule out saturation in both velocity 
and control. These requirements are used to generate the 
trajectories around which the states of the string of vehicles 
are driven to their desired values without the excessive use of 
coutrol effort. 

Our presentation is organized as follows: in f 11, we 
formulate a control problem and propose a distributed control 
strategy that solves it. In 5 111, we illustrate that commanding 
a uniform rate of convergence for all vehicles towards their 
desired trajectories may require large control efforts. In f IV, 
we remark on some basic design limitations and tradeoffs in 
vehicular platoons and determine the conditions that control 
gains need to satisfy to provide operation within the imposed 
saturation limits. In 5 V, we redesign the controller of f II 
to provide the desired quality of transient response and avoid 
large control excursions. We summarize the major contribu- 
tions and the ongoing research directions in f VI. 

11. CONTROL OF VEHICULAR PLATOONS 
A system of identical unit mass vehicles in an infinite smng 

is shown in Figure 1 .  The dynamics of this system can be 
captured by representing each vehicle as a moving mass with 
the second order dynamics 

x,, = U", n E WO, (1) 

where xn represents the position of the n-th vehicle, un is the 
control applied on the n-th vehicle, and No := {0} U N = 
{O, 1 , 2 , .  . .}. 

'...* 4 :...* L-.* '...* 
2"- un 5"-1, Un-1 221% Zh"1 a . u o  

Fig. 1. Platoon of vehicles. 

A control objective is to provide a desired constant cruising 
velocity ud and to keep the inter-vehicular distance at a 
constant pre-specified level L. A coordinate transformation of 
the form 

en(t) := anEn(t) + Dn17n(t), n E No, (2) 

renders ( I )  into 

where an and a., represent nonnegative parameters that are 
not simultaneously equal to zero, with 0, and {& := 
e,, dn := en}. On the other hand, fn and 7" respectively 
denote the position error variables of the n-th vehicle with 
respect to the absolute and relative reference frames: En(t) := 
zn(t) - udt  + nL, qn(t) := zn(t) - xn-l(t) + L. By 
assigning different values to a, and 0" we can adjust the 
relative importance of these two quantities. 

The appropriate state-space for system (3) is a Banach 
space 1, x 1,. This choice of the state-space implies that 
initially, at t = 0, no vehicle is infinitely far from its desired 
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absolute position. Control design should provide houndedness 
of position and velocity error variables for every t > 0 and 
their asymptotic convergence to zero. In 5 111, we illustrate, 
hy means of an example, that choosing a Hilbert space 12 x 12 
rather than a Banach space 1, x 1, for the underlying state- 
space can be rather restrictive. Namely, this choice of the state- 
mace can exclude an entire set of relevant initial conditions 
&om the analysis. 

In particular, a choice of control law of the form 

1 
Un-1 - - (an& + bndn), (4) 8" 

U" = - 
a" +i3" an + A  

with {an > 0, b, > 0, V n  E No}, yields an infinite number 
of stable, fully decoupled second order subsystems 

n E No. ( 5 )  Bn = *" *., = -a,& - b,lL, 

Therefore, we conclude boundedness of both e,(t) and en(t), 
V t  2 0, and their asymptotic convergence to zero, for every 
n E WO. 

In the remainder of this section. we assume that la, := 
I .- ~~~ ~ ~~~~~ ~~ ~ ~~~~~ ~ 

e = const., p. := p = const., Vn E w; a. # 0, Po = 0) .  
In this case, controller (4) simplifies to 

(6a) 
1 
a0 

U,, = ~ 

uo = - - (aodo+bol l rn) ,  

a + B  a + 0  
1 

un-l - - (afi& + b n i n ) ,  n E N, P 

which in turn implies 

for every n E W. If {a # 0, p = 0}, controller (6a,7) does not 
take information ahout the preceding vehicle into consideration 
since it only accounts for the error variable with respect to the 
absolute desired trajectory. Therefore, this control strategy is 
unsafe and because of that we choose p # 0. On the other 
hand, if {a = 0,. 0 # 0}, $e information about all vehicles 
enters into (7) with the same importance which is not desirable 
from communication point of view. For these reasons, we 
consider the situation in which both a and have positive 
values and rewrite (7) as 

where q := p / (a  + p) < 1. With this choice of design 
parameters a and 0 the gains in (8) decay geometrically 
as a function of spatial location. Thus, in the very long 
string of vehicles, the positions and velocities of vehicles 
in the beginning of the platoon do not have a significant 
influence on controls that act on vehicles in the end of the 
platoon. This feature is of paramount importance for practical 
implementations. 

Using (X), we can establish the following bound on the 
infinity-norm of un(t): 

which, together with the properties of system (5) ,  implies 
boundedness of u,(t) for all t 2 0, n E No. Based on (Z), we 
also conclude houndedness of both En(t) and q,( t )  for all t 2 
0, n E No. Asymptotic convergence ofthese two quantities and 
their temporal derivatives to zero follows from the following 
expressions: x o ( t )  = udt + -eo( t ) ,  fo ( t )  = v d  + - - e o ( t ) ,  

1 1 .  
U0 e o  

the fact that limt4, e.(t) = 0, limb,, & ( t )  = 0, for every 
n E WO. Therefore, controller (6a,8) provides boundedness of 
all signals in the closed-loop and asymptotic convergence of 
the platoon of vehicles to its desired cruising formation. 

In 5 111, we illustrate that, even though our design provides 
houndedness of controls for all times and all vehicles, the lack 
of uniform bound on 1lunllm may result in an excessive use 
of control effort. 

111. ISSUES ARISING IN CONTROL STRATEGIES WITH 
UNIFORM CONVERGENCE RATES 

In this section, we show that imposing a uniform rate of 
convergence for all vehicles towards their desired trajectories 
may generate large control magnitudes. To illustrate this, 
we consider a platoon of vehicles with controller (6a,8) and 
{an : =a  = const., b, := b = const., V n  E No}. Clearly, in 
this case both e,(t) and en(t) converge towards zero with the 
rates that are independent of the spatial location. Furthermore, 
we assume that each vehicle has a limited amount of control 
effort at its disposal, that is u,(t) E [- umax. umax], for all 
t 2 0, n E No, with umsx > 0. 

In particular, we study the situation in which at t = 0 
the string of vehicles cruises at the desired velocity with 
the lead vehicle being at its desired spatial location. We also 
assume that the distance between the vehicles indexed by n and 
n - 1, for every n E {l, . . . , N } ,  N E N, is equal to L + S,. 
The position initial conditions of the remaining vehicles can 
be chosen to ensure boundedness of e,(O) for n > N .  For 
simplicity, we assume that for n > N the spacing between 
the neighboring vehicles is at the desired level L. In other 
words, we consider the initial conditions of the form 

i n ( 0 )  = V d ,  V n  E No, 
0 n = O ,  

n > N, 
- (nL + c;,,s~) n E {I,. . . , N ) ,  (Io) 

- (nL + Cf='=lSr) 
which translates into: { e , ( O )  = 0, Vn E No}, and 
e,(O) = ( 0 ,  n = 0; -(aX:C-,S* + OSn), n E . .  
1 1 , .  . . , N I ; -  -pCklSk, n > N )  Clearly, for this choice 
of initial CondIhon {en(0)}nE&, 12, unless E:='=, sk s 0. 
Hence, despite the fact that the entire platoon cruises at the 
desired velocity vd and the inter-vehicular spacing for most 
of the vehicles is keDt at the desired level L. a relevant 
initial condition that does not belong to / 2  x Iz can he easily 
constructed. This implies that a Hilbert space 12 x 12 represents 
a rather restrictive choice for the underlying state-space. 

The absence of uniform bound in (9) indicates that the 
large states will lead to the large control signals if the 
feedback gains are not appropriately selected. In particular, 
we observe that large initial states are readily obtained if 
there exists m E {l , .  . . , N }  such that {SI,. . . ,Sm} sum 
to a bie number. Moreover. it is not difficult to see that if 
{sign< = const. + 0, Vn'E ( 1 , .  . . , N } } ,  then I E"=, S ~ I  
represents a monotonically increasing function of N .  &us, for 
N- large enough, very large initial conditions are possible if, 
for example, all S,'s are either positive or negative. Because 
of that. we studv a snatiallv constant non-zero seauence of ~, . I ~~ ~ 

S;S, that is we assume {s, := s = const. # 0, Vn E 
11,. , . , N}}. In this case, (IO) simplifies to 

i , ( O )  = v d ,  V n E N o ,  

(11) 
0 n=O, 

- n ( L + S )  n € ( l ,  ..., N } ,  z,(O) = [ 
- ( n L + N S )  n z N ,  
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or equivalently { e , ( O )  = 0 ,  V n  E N~}, e,(o) = (0 ,  = 
0; - (na + P)S, n E {l,. . . , N ) ;  - NRS,  n > N). For 
this choice of initial conditions uo E 0, whereas the initial 
m " n t  of control effort for the remaining vehicles is given 
by 

j., := 1 E,=, M - l  z,e-j-, k E { O , . .  . , M - 11, and 
the inverse DFT is defined by: zn := &E&'=;,' ike'*, 
n E {O, . . . , M - 1). Using this, system (12) and quadratic 
performance index (13) transform to 

for every n > N ,  which implies that for any choice of design 
parameter a there exist m E N such that Iun(0)l > U", for 
every 71 > m, provided that N is large enough. For example, 
if R = B = a = 1, b = 2, S = 0.5, umax = 5 ,  for N = 50, 
ulo(0) = umax = 5,  and Iun(0)l > umax, V n  > 10, with 
limn+- Iun(O)1 = 25. Simulation results for this choice of 
design parameters and initial conditions given by (11). using 
controller (6a,8), are shown in Figure 2. 

A.  LQR design for a platoon on a circle 
To illustrate that the above raised issues are not caused 

by the specific control strategy, we  also consider a Linear 
Quadratic Regulator (LQR) design for a platoon on a circle that 
consists of M vehicles. By exploiting the spatial invariance, 
we analyticaNy establish that any LQR design leads to large 
control signals for the appropriately selected set of initial 
conditions. 

and 

where k k  > 0 and 

for every k E (0 , .  . . , M - 1). Clearly, the pair ( A I ,  E*)  
is stabilizable fo! every k E {0, . . . , M - 1). On the other 
hand, the pair Q k , A k )  is detectable if and only if i , , k  > 0 
for every k E I O , .  . . , M- 1). These conditions are necessary 
and sufficient for the existence of a stabilizing optimal solution 
to the LQR problem (IZ,l3). 

It is readil shown that for in(0) vj,  i.e,for ~ ~ ( 0 )  0, 
we have: E,=, U,,@) = y ( ; ( o ) ( k ( o ) ,  which in 
tum implies 

L - 1  2 M - l  . 

M - 1  M - 1  M - l  

R k  n=O n=o "=o 

6 l l k  
IY .2 .  "II.2 inf-  <:(o) 5 u ~ ( 0 )  5 s u p %  (:(o). 

Thus, we have established the lower and upper bounds on the 
initial amount of control effort for a formation that CNiSes at 
the desired velocity vd. These bounds are determined by the 
deviations of vehicles from their absolute desired trajectoces 
at t = 0, and by the LQR design parameters 6 l l k  and R k .  

Clearly, since @ I l k  > 0 (for detectability) i n f k @ l l k / &  is 
always greater than zero. We note that this quantity can be 
made Smaller by increasing the control penalty. particular, 
for zn(~) = % ( L  - q, 0 < s < L, we have 

Fig. 3 .  Circular platoon of M vehicles. 

The control objective is the Same as in 5 11: to drive the 

constant level L. Clearly, this is possible only if the radius of 

entire platoon at the constant cruising velocity Vd, and keep the 
distance between the neighboring vehicles at a pre-specified 

a circle is given by r M  = ML/2rr. We rewrite system ( I )  for 
n E { O ,  . . . , M - 1) in terms of a state-space realization of 
the form 

S2 h l k  
M - 1  

u2(0) 2 - M ( M  - ~ ) ( z M  - 1) inf -, 
" = O  6 R k  

where ( " ( t )  := Z.( t )  - vdt - nL and c , ( t )  := & ( t )  - v d  
denote the absolute position and velocity errors of the n-th 
vehicle, respectively. We propose the following cost functional 

M - 1  M - 1  where E,=, dQn-m~m t 0, Q1, = Q-},  for 
all sequences %, and {E,"==;,'Cz:i u;R,_,u, > 0 ,  
H', = A%$, for all non-zero seauences un. 

We utilize the fact that system (12) has spatially invari- 
ant dynamics over a circle. This implies that the Discrete 
Fourier Transform (DFT) can be used to convert analysis 
and quadratic design problems into those for a parameterized 
family of second order systems [14]. DFT is defined by: 

which illustrates an unfavorable scaling of the initial amount 
of control effort with the number of vehicles in formatipn. 
Hence, unless umax 2 S 2 ( M  - I)(ZM - 1) infk @ l l k / 6 ~ k ,  
there exist at least one vehicle for which Iun(0)l > U". 

The results of this section illustrate that in very large 
platoons one needs to take into account the initial distance of 
vehicles from their desired trajectories and to adjust the control 
gains accordingly in order to avoid large velocity deviations 
and the excessive use of control effort. In the next section, 
we give conditions that the feedback gains need to satisfy 
to prevent saturation in both velocity and control and discuss 
some design limitations and tradeoffs in vehicular platoons. 

IV. DESIGN LIMITATIONS AND TRADEOFFS I N  
VEHICULAR PLATOONS 

In this section, we determine the conditions that control 
gains need to satisfy to provide operation within the imposed 
saturation limits. Our analysis yields the explicit constraints 
on these gains-for any given set of initial conditions-to 
achieve desired position transients without magnitude and rate 
saturation. We also remark on some of the basic limitations and 
tradeoffs that need to be addressed in the control of vehicular 
platoons. 
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Fig. 2. 
System is given by ( I  I )  with N = 50 and S = 0.5. 

Simulation results of vehicular platoon using control law (6a,8) with a = 0 = a = 1, and b = 2. The initial sfate of the platoon 

We rewrite system (I) as 

8 ,  = U,, n E NO. (15) 

The justification for the notation used in (15) is given in 5 V. 
We want to drive each vehicle towards its desired absolute 
position w d t  - nL, and its desired velocity wd. For the time 
being we are not concerned with the relative spacing between 
the vehicles. If we introduce the error variable {Tn(t) := 
% ( t )  - w d t  + nL, n E No}, we  can rewrite (15) as 

in = 8,, n E NO, (16) 
and choose U, to meet the control objective. I n  particular, we 
take 8, of the form 

U, = - p:rn - ZP,~,, n E (17) 
where, for every n E No, p, represents a positive design 
parameter. With this choice of control, the solution of sys- 
tem (16,17) is for any n E NO given by 

m(t )  = (G, + d,t)e-P"', 
i,(t) = ( d ,  - %pn - d,p,t)e-P", 

% ( t )  = (%pi - Zd,p, + d,p:t)e-'"', 

(184  
(18b) 

(18c) 
where for every n E NO 

c, := r"(0) = b,(O) + nL, 
d, := r,(O)p, + in(0) (19) 

= (Z"(0) + d)P, + (S"(0) - V d ) .  

We want to determine conditions that the sequence of 

Ikn(t)l 5 rn,max, V t  2 0, (2Oa) 
Il'n(t)l 5 wmax, V t  2 0, (20b) 

positive numbers { p n } n ~ ~ a  has to satisfy to guarantee 

lZLn(t)l 5 umax, V t  2 0, (20c) 

with {rn,max > O? V n  E NO), umaX > 0, and U,,,- > o 
being the pre-specified numbers. For notational convenience, 
we have assumed that all vehicles have the same velocity and 
control saturation limits, given by wmax and U,,,-, respec- 
tively. Typically, the sequence {rn,max n t ~ D  is given in terms 
of position initial conditions {T,, ( O ) j n E N 0  as {T~,,,.- := 
7, rn(0)l}ntNo, where sequence of numbers {yn > 1, V n  E 
No\ determines the allowed overshoot with respect to the 
desired position tra'ectory of the 7b-th vehicle. Clearly, for this 
choice of {rn.m-{nENa, {rn(0))nt~g satisfies (2Oa). Based 
on (Ma), m ( t )  asymptotically goes to zero, so we only need 
to determine conditions under which (2Oa) is violated for 
finite non-zero times. If (18a) achieves an extremum for some 
t, E (0, CO), the absolute value of rn at that point is given 
by: 

Therefore, if sequence of positive numbers {pn)nE~o  is cho- 
sen such that 

condition (20a) will be satisfied for every t 2 0. This implies 
thai, for good position transient response (that is, for small 
position overshoots), design parameters p ,  have to assume 
large enough values determined by (21). 

Clearly, @Ob) is going to be violated unless lin(0)l 5 D ~ ~ ~ ,  
for every n E NO. I f i n  has a maximum or a minimum at some 
non-zero finite time 1,. the absolute value of (18b) at that point 
can be upper bounded by 

li.n(L)l = ldn/e-P"'" 5 Id,l 5 Ir,(O)lp. + lin(0)l. 
Thus, to avoid velocity saturation, sequence of positive design 
parameters {pn}nE~o has to be small enough to satisfy 

Irm(0)lpn + iin(0)l 5 wmax, V n  E NO. (22) 
Finally, to rule out saturation in control we need to make 

?we that condition (20c) is satisfied far bath t = 0 and 
t, > 0, where the potential extremum of t& takes place. 
The absolute values of (18c) at these two time instants are 
respectively given by /Un(0)l  = I - r,(O)p; - Z i n ( O ) &  5 
Ir.(O)lp: + 21i.n(0)l~n, and I8,.(Fn)l = Id,lpneCP"'- < 
Id& 5 lrfi(o)lpi + ) i n ( O ) [ p n .  Since p, > 0 ,  for e v e 6  
n E NO, condition (2Oc) IS met if 

lrm(o)Ip2 + z ( ~ , ( o ) ( P ,  i umax. ~n E NO. (23) 

Inequalities (21). (22). and (23) establish conditions for posi- 
tive design parameters p ,  to prevent saturation in velocity and 
control, and guarantee a good position transient response. We 
remark that these conditions can be somewhat conservative, but 
they are good enough to illustrate the major point. Clearly, for 
small excursions from the desired position trajectories control 
gains have to assume large values, determined by (21). On 
the other hand, for small velocity deviations and small control 
efforts these gains have to be small enough to satisfy (22) and 
(23). These facts illustrate some basic tradeoffs that designer 
faces in the control of vehicular platoons. In particular, the 
set of control gains that satisfies (22) and (23) determines 
the maximal position deviations and the rates of convergence 
towards the desired trajectories. in other words, the position 
overshoots and settling times can be significantly increased in 
the presence of stringent requirements on velocity and control 
saturation limits. 

For the example considered in 5 111 with the initial condi- 
tions of the form 
&,(I)) = vd, V n E  NO, 

0 n = 0 ,  
- (nh + c;,,s~) n E { I , .  . . , N ) ,  (24) 

- (RL + C*" , lSk)  R > N, 
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condition (21) is always satisfied, which implies that the 
largest deviation for all vehicles from their desired abso- 
lute positions takes place at t = 0. Therefore, the chosen 
initial conditions do not impose any lower bounds on the 
control gains. On the other hand, whereas conditions (22) 
and (23) do not put any constraints on po, they respectively 
dictate the following upper bounds on { P ~ } " E N :  p ,  5 

N ) ,  and P, 5 { ~ U ~ ~ / I ~ ; = ~ S X I ,  n E {L. . . ,N};  

choice of {P"}-EN 

{Wmax/\xL=1SkI, n E {1>. . . ,N) ;  ~max/Ix:=1sklx 7% > 

n > N } .  In particular, the following 

with {0 < pn 5 1, 0 < un 5 1, V n  E N}, clearly satisfies 
the above requirements. Figure 4 illustrates the solution of 
system (16,17) for initial conditions determined by (24) with 
N = 50andS-  = 0.5,foreveryn E { I , . .  . ,A'}. The control 
gains are chosen using (25) with vmax = umar = 5, {en = 
1, U,, = 0.8, Vn E N}, to prevent reaching imposed velocity 
and control saturation limits. The dependence of these gains 
on discrete spatial variable n is also illustrated in Figure 4. 

Thus we have shown that controller (17) with the gains 
satisfying (21), (22), and (23) precludes saturation in both 
velocity and control and takes into account the desired quality 
of position transient response. However, this control strategy is 
unsafe, since it does not account for the inter-vehicular spac- 
ings. Because of that, in f V we redesign controller (6a,7) by 
incorporating the constraints imposed by (20) in the synthesis. 

V. CONTROL WITHOUT REACHING SATURATION 

We again consider system (I), and introduce an error 
variable of the form 

~ n ( t )  := a n l m ( t )  + LLxn(t), n E No, (26) 

being defined by (18a,19), { P , ) ~ ~ N ~  satisfying @ I ) ,  (22), 
and (23), and parameters {an}nE~a and, {/3,.}nE~p, having 
the properties discussed in I 11. The initial conditions on 
these two variables and their first derivatives are given by: 
{Cn(0) = ~ " ( 0 )  - % ( O )  =: p", n E No), {&(O) = 
~ " ( 0 )  ~ &(O) =: U,, n E No}, ( ~ " ( 0 )  = ("(0) - 
C-l(O) = pm - ~ " - 1 ,  n E N}, {xn(0) = ("(0) - 
C"-i(O) = + - un--l, n E N}, where { z ~ ( O ) , ~ ~ ( O ) } ~ ~ N ~  
and {Zn(0).fn(O)}n~~o represent the actualandthemeasured 
initial conditions, respectively. If perfect information about 
the initial positions and velocities is available, then clearly 
{pn = U, = 0, V n  E No). However, since initial condition 
uncertainties are always present we want to design a controller 
to guard against them. 

Double differentiation of (26) with respect to time yields 

8" = (an + /3")(U" - 8,) - /3"(Un-1 - I l -1 )  
=: (a, + Pn)L - pncn-~, n e % ,  (27) 

where U". is given by (17). System (27) can be represented in 
terms of its state-space realization of the form 

where {B, := E " ,  U, := in}. In particular, this system can 
be stabilized by the following feedback 

(29a) 
1 

a0 
Go = - - ( a d o  + b o v o ) ,  

With 4k := / 3 k / ( a k  + pk), provided that { P m  # 0, V n  E N}. 
It is noteworthy that, if parameters a, and On are such that 
{an := a = const., := /3 = const., V n  E N), then con- 
troller (29) has the same properties as controller (6a,7). For the 
same choices of design parameters {an}nENo F d  {bn}nENo, 
these two control strategies are only distinguished by the 
regions from where the states of systems (3) and (28) have to 
be brought to the origin. Namely, due to different formulations 
of control objectives, the initial states of system (3) may 
occupy a portion of the state-space that is significantly larger 
than a region to which the initial conditions of system (28) 
belong. In the former case, this region is determined by 
the maximal deviations from the desired absolute trajectories 
at 1 = 0, whereas, in the latter case, it is determined by 
the precision of measurement devices, that is their ability to 
yield an accurate information about the initial positions and 
velocities. As illustrated in 5 111, the initial conditions may have 
an unfavorable scaling with discrete spatial variable n, which 
may result in the very large initial position deviations (and 
consequently, a large amount of the initial control effort) for 
large n's, unless the size of the initial conditions is explicitly 
accounted for. We have shown in 5 IV how to generate the 
initial condition dependent trajectories around which the states 
of vehicular platoon can be driven to zero without extensive 
use of control effort and large position and velocity overshoots. 

Usin the definition of G,, we finally give the expressions 
for { U n j n P N o  

Un = a, + c,, (30) 
where U ,  and U, are respectively given by (17) and (29). We 
remark that {U. E U , ,  V n  E No) ifperfect information about 
the initial conditions is available. The only role of {IL),~N~ 
is to account for the discrepancies in the initial conditions due 
to measurement imperfections. 

Asymptotic convergence of c,,, xn, cn, and kin to the origin 
for every n E NO can be easily established. Therefore, con- 
troller (30) provides operation within the imposed saturation 
bounds and asymptotic convergence of the platoon of vehicles 
to its desired cruising formation. 

Simulation results of the platoon system with 101 vehicles 
(A4 = 100) usin controller (30) with {ao = 1, a, = 
/3" = 1 , V n  E fl ,..., M}}, {an = 1, b, = 2 , V n  E 
{ O , . .  . , M } }  are shown in Figure 5. The measured initial 
condition is given by (24) with N = 50 and S, = 0.5, 
for every n E {l>. . . I N } ,  whereas the numbers p,, and U, 
that determine the actual positions and velocities at t = 0 
are randomly selected. The rates of convergence towards the 
onein are chosen usine (25) with vmar = umrr = 5. - .  I 
{ p n  ,= 1 ,  U,, = 0.8, V n  E {l, . . . ,  M}},~to-prevent 
reaching imposed velocity and control saturation limits, and 
po is set to 1. These convergence rates are shown in the far 
right plot in Figure 4. Clearly, the desired control objective 
is successfullv accomolished with the analitv of the transient 
response detirmined 6y the prescribed saturation bounds 

VI. CONCLUDING REMARKS 
The main purpose of this paper is ta illustrate some funda- 

mental design limitations and tradeoffs in automated highway 
systems. We show that in very large platoons the designer 
needs to pay attention to the initial deviations of vehicles 
from their desired trajectories when selecting control gains. 
We also establish explicit constraints on these gains-for any 
given set of initial conditions-to assure the desired quality 
of position transients without magnitude and rate saturation. 
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Fig. 4. 
control gains (far right plot) are determined using (25) with umax = umax = 5,  and {e. = 1, on = 0.8, V n  E N). 

Solution of system (16,17) for initial conditions determined by (24) with N = 50 and S,, = 0.5, for every n E {I, .  . . , N ) .  The 

These requirements are used to generate the trajectories around 
which the states of the platoon system are driven towards their 
desired values without the excessive use of control effort. 

Ongoing research effort is directed towards the design of 
robust controllers for vehicular platoons with favorable archi- 
tecture. The main drawback of the control strategy employed 
in this paper is that it only guards against the initial condition 
uncertainties. The robust design will also provide satisfactory 
performance in the presence of extemal disturbances and un- 
modelled dynamics. Sensitivity of distributed control strategies 
to communication noise and delays is another topic worth 
considering. 
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