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Abstract

We consider spatially distributed systems described by
Partial Differential Equations (PDEs) in which some of
the coeflicients are spatially periodic functions. Such
gystems arise in certain distributed sensorless control
schemes which we term spatio-temporal vibrational
control, which is a generalized version of standard tem-
poral vibrational control. The mechanism by which
certain sensorless periodic feedbacks stabilize or desta-
bilize systems is more generally known as paramet-
ric resonance. We develop a spatio-temporal lifting
framework using which we analyze stability and system
norms of PDEs with periodic coefficients. Examples of
FDEs in which parametric resonance occurs are given.

1 Iniroduction

As is well known, when certain Linear Time Invariant
(LTT) systems are connected in feedback with tempo-
rally periodic gains, their stability properties can be
altered. Depending on the relation between the period
of the time varying gain and the dominant modes of
the LTI system, the overall system may be stabilized or
destabilized. This phenomenon is known in the general
literature as parametric resonance, the prime example
of which is the Mathieu equation. In the controls lit-
erature, this phenomenon has been used in sensorless
feedback schemes to stabilize unstable systems, and is
normally referred to as vibrational control.

In this paper we investigate similar parametric reso-
nance mechanisms for spatially distributed systems de-
scribed by PDEs with pericdic coeflicients. Our aim
is twofold: first to characterize exponential stability
of the distributed system, and then to characterize
input-output system norms. To this end, we develop
a Ifting technique similar to the temporal lifting tech-
nigue for linear periodic Ordinary Differential Equa-
tions (ODEs) (1]. This technique provides for a strong
equivalence between distributed spatially periodic sys-
tems defined on a continuous spatial domain with spa-
tially invariant systems defined on a discrete lattice.

For the purpose of stability characterization, the lifting
technique is in some sense equivalent to the more widely
used Floquet analysis of periodic PDEs. However, Flo-
quet analysis does not easily lend itself to the compu-
tation of system norms and sensitivities. We show how
the lifting technique can be used to compute both the
spectrum of the generating operator and He and Hz
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norms of distributed systems.

Our presentation is organized as follows: we begin next
section with some mathematical preliminaries regard-
ing the spatial lifting technique. We then present a con-
venient representation of lifted transfer functions using
particular basis sets developed in [2] for use with pe-
riodic temporal systems. We then show how to write
down a representation of the lifted systems in the trans-
form domain simply from the Fourier symbol of the
original PDE operator and the Fourier expansion series
of the periedic gains. Finally, we present some exam-
ples of PDEs which exhibit parametric resonance, and
use the lifting technique to calculate regions of stability
and instability as functions of the pericd and amplitude
of the periodic gains.*

2 Preliminaries

We consider distributed systems of the form

where 4 is a linear operator with periodic coefficients
defined on a dense dornain D(A4) C L*(—e0, 00), Bisan
input operator, u is a forcing term, and ¥ is a field of in-
terest determined by the solution of the above equation.
Qur objective is to investigate dynamical properties of
systern (1) by computing the operator A eigenvalues
and input-cutput norms.

For X-periodic system {1), the ‘block-Toeplitz’
decomposition of operator A is  determined
by ﬁk = HLzlkX,(k-}-l)X]A where

L2{0, X]ND(AY
Hpzex, (k+11x) TEPTesents the orthogonal projection on

LEEX, (k4 1)X], and L3{—00, o) is decomposed into
L =00, o0) e LA-X, 00 L0, X|@---.

The difficulty with finding A, is related to the is-
sues of its appropriate domain. We now illusirate
how this problem can be circumvented. Since A has
periodic coefficients it commutes with Ty, the oper-
ator of translation by X, (Tx¥)(z) = ¥{z — X).
Therefore the operator semigroup G(t) := e*t satis-
fies G(t)Tx = TxG(t), 1.e. G(t) is also ‘periodic’ even
though it usually is not a differential aperator. Thus,
we can now define the ‘block-Toeplitz' decomposition

. Since

of G(t) as Gk(t) = HLz{kX‘(k-‘-nXlG(t)[L?lO X

G(t) is a bounded operator, indeed there are no issues
of domain.
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Furthermore, it follows that if {fi} denotes the lifting
to [7app, x of any f € L?(—o0, o0) [1], that is, fiu(#) =
fkX+2), keZ, 0 &< X, thang=CG(t)f = §i =
Yiez Gi—;(t)f;. One might think of defining the Ay as

Ay = lim,_ g+ ;:1- {(Gx(t) — I}, but this is problematic

since {Gx(t)}, as one can show, is not a semigroup even
though {G(t)} is.

However, it is much easier to work with the z-transform
evaluated on the unit circle, z = &/%; j:= /—1;, 8 €
[0, 27), by defining

fo o= Z feeT%, Fee &2[0, X]»

kEZ

and .
Go(t) = Gu(t)e "
kez
Now for each 8 € [0, 2), it can be shown that Ga(t)
are indeed semigroups. The reason for this is a well
known convolution property of z-transform which says
that if Gy, G2, Gs : L7(—oc, 00} — L?¥(—00, 00) then

G =GG3 & (;'19 = ézeé:;s, ¥a € [0, 2m).

Therefore,
G(t1+t2) = G(tl)G(tz) =
Goltr +t2) = Go(t1)Ge(t), YO €0, 21).

Since Go(t) is a semigroup for each @ € [0, 27), we can
now define Ag as

. o 1lya

Ao i= lim = (Co(t) - 1), @)
which transforms 8, = A% into 8pe(t) = Asta(t).
Note that for each 8 & [0, 27), Ap : L?0, X] >
D(Ap) — L*[0, X] is typically an unbounded opera-
tor whose domain can be calculated from (2). In this
paper we illustrate that computing .4¢ can actually be

done rather explicitly and simply for PDE operators
with periodic coefficients.

As aforementioned, for every f € Lz(-—oo, oo) the lifted
signal can be defined as fi(2) = fkX + %), k €
Z, 0 € £ < X. The lifting can be visualized as a
breaking a continuous-time signal up into a sequence
of pieces which take their values in a functional space
of a length X. In other words, {fx} € I?A[o, x)» 1-e for
any given k € Z, f, € L2[0, X]. The lifting operator
Wx is one-to-one and onto and thus has a well defined
inverse given by f = Wi'g, f(z) = ge(z — kX), k €
Z, kX <z < (k+1)X. The action of the operator W!
is exactly the opposite of the one caused by the lifting
operator. Namely, Wx' puts together a sequence of
function pieces whose value belongs to LZ[O, X], giving
a function f € L*(—o0, oo} [1].

The z-transform of the sequence of signals {fi} eval-
uated on the unit circle is determined by f3(%) =
ez Fe(®)e™%. Note that {fo} : [0, 2m) — L0, X].
In other words, {fs} is an L*[0, X}-valued function de-
fined on the unit circle, i.e. {fe} € LEE[O.X][O: 2x1). The
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commutative diagram below schematically illustrates
combined action of the lifting and z-transform on our
system.:

&
L2, x)0: 2m] —=— L7z x[0: 27]

Tzl z=ei®

li’ [0, X]

[ws

—Z , I[}~0, x)

_

Lz(-oo, oc)

3 Representation of the Lifted System

In this section, we first develop a convenient represen-
tation of the transforms of lifted signals, and then use it
to obtain a representation of spatially periodic systems.
In order to ‘visualize’ the transform fo(&) in terms of
the original function, we have to find an appropriate
way to ‘view fp(2) for each fixed 8 € {0, 2x). Since for
every pre-specified 8, fp is a function (in £) over [0, X],
it iz desirable to find a basis of L*0, X} in which the
representation of fs is easily determined. The following
Lemma from [2] shows that the #-parameterized basis
functions of the form (3), for any given 8, represent an
orthonormal basis of L%[0, X]. It turns out that this
basis is very suitable for achieving our objective.

Lemma 1 The G-parameterized set of functions
{Da,n}nez of the form
1 2mn+ 6
Yon(d) = ——e X z, q
o.n(2) N5d (3)

for each @ € [0, 27) represents a complete orthonormal
basis of L*(0, X].

The following Proposition shows that the coefficients
in the 9p n(£)-basis expansion of fg(#) can be deter-
mined from the Fourier transform of the original func-
tion f{z).

Proposition 2 Let f(x)
Fourier transform F{k.)

€ L*(—o0,00) have a

Flks) = f © Ha)e ety 4)
Then f'a(:i:) can be represented as
s 1 2rn+ 0 .
fa(@) = == 3 F(Tr ) en(@) (5)

neZ

We now apply these representations to find the corre-
sponding representations of the underlying operators in
the 9g,.(%)-basis.
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3.1 Spatially-Invariant Operators

Proposition 2 enables us to find the spectral coefficients
in the ¥ n{%)-basis expansion of fg(:i:) as ‘samples’ of
the Fourier transform F{k;). This practically means
that for a spatially invariant PDE {3] of the form

3:‘9’)(1?, t) = A(az)"l‘)(ﬂ’-’, t)l
whose frequency domain equivalent is given by

\i’(kx: t) = -A(jkz)\p(kf-! t),

(6)

the representation of the transformed lifted system

Bl t) = Apthol, 1),
in the basis {Ps (£} }nez. is completely determined by
Ba(t) = AaUe(t),

where Wo(t) = [--- U(&,t} ¥(ZF,¢) .17, and
Ap = diag{A(j %%} }rez. In other words, the ma-
trix representation of Ay in the chosen basis is simply
d'lag{A(jE’—‘-}ig)}ﬂgz, where A(-) is the symbol used
for the original PDE operator. For example, in the
case of a heat equation on L%[—oo, o0, Sp(x,t) =
8Zi(x, 1), the properties of our system are fully deter-
mined by diag{- -+ , —(ZZF2)?, —(£)?, (4%, -,
where parameter & takes all values between 0 and 27.

3.2 Periodic Gains

To apply this theory to an arbitrary PDE with periodic
coefficients we need a method for lifting the part of the
system which contains the periodic term. Suppose that
we have a problem of the form (6) where the operator .A
can be represented as A(d;) := A, (8;) + f(x), with A,
a spatially invariant operator and f{z) an X-periodic
function, f(z) = f(z + X). Since we know how to
lift the spatially invariant part of our system, we now
illustrate a way for lifting a periodic gain. Let

d(z,t) := fx)y(x,1).

Due to X-periodicity of the function f, fi(£)
S(kX +£) = f(£), Yk € Z, the lifted signal is given by

P2, 8) = f@EWk(3,8), k€L, 0<E <X, (8)

After applying the z-transform and evaluating it on the
unit circle, (8) simplifies to

da(&,1) = f(E)da(2,1), 0 €0, 2m), 0< E < X,

which practically means that the lifted operator is just
multiplication by f(%) and is constant in . Qur ob-
jective is to find the representation of this operator
in the {¥g,(&)}necz-basis. Since f(z) is a periodic
function, it can be decomposed into its Fourier se-
ries, f(z) =3, oz Ome’ ¥z By applying the Fourier
transform on (7) we obtain

/°° Fl)p(z, )e ™7 = de

M

$(ks,t) =

= Zam/ viz, t)e Tithan X ¥ dz

meZ

= E am Y (ke —

med

T

—!t)' (9)
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Using Proposition 2, we express g (Z.t) as

2an + 6

do(d,t) = oz ®( 1 E)00,n(2)
= Jx Tamenam VIR )90 (2),
where, based on (9), @(-@;{—e,t) is determined by
2mn + 0 2r{n—m)+ 6
2Tl = Y eIl
mel
2k +B
= Z an—k¥( d 8},
keZ .

or equivalently in the matrix form ®g{t) = I'¥e(L),
where T is a bi-infinite Toeplitz matrix defined by

[ ]
ag a— a_>
r.= a1 4o a1 (10)
az ay ap
L3 N N N -

Thus, we conclude that the matrix representation of a
spatial-periodic gain in the {#p.(%)}necz-basis is com-
pletely determined by a Toeplitz matrix whose elements
correspond to the Fourier coeflicients

2am

¢ '_ifxf( e ' X “de
m = e A z)e .

For example,

‘ \ j% = —1,
. T £
= — = m = —r = =
fiz) Esm(Xm) a iz m 1,
0 otherwise,
and
£
‘ -~ m==l,
flxy=¢ cos(%z,im) = am=4{ 2
0 otherwise.

3.3 Feedback Interconnections

The procedure described in § 3.1 and § 3.2 can bhe ap-
plied to obtain a representation of a system with spa-
tially periodic coefficients on L?(—oc, 00) of the form

Oz, t) = (A1 + BifC(z,t) + Bau(z,t)
=: A¢i(z,t) + Bu{z,t), (11a)
y(z,t) = Cy(z,t), ' (11b)

where A, By, Bz, and C are spatially-invariant oper-
ators, f is a given X-periodic matrix valued function,
u is a distributed input, ¥ is a distributed output, and
1 is a distributed state. We ean equivalently represent
system (11) as shown in Figure 1.
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u B, f P J e ) N
B |+ p f

Figure 1: Block diagram of system (11) with spatially
invariant operators A;, 51, B2, and C, and
an X-periodic matrix valued function f.

Since the lifting is invariant under feedback [1] the
transformed lifted system can be rewritten as

I

(-ﬁw + Bwf(i)ée)lfj'e(fﬁ,t) + Bzaﬁe(i‘, t)
. Aste(E,t) + Beto(E, 1), (12a)
Coda () 1), (12b)

Bupel, 1)

I

i

gs(j:: t)

where {Alg, Bis, Baa, ée} and f(&) can be lifted ac-
cording to the procedure described in § 3.1 and § 3.2,
respectively. Thus, in the {¥sn(&)}nez-basis system
(12) is represented by

Wolt) = (A + BueECe)¥a(t) + Basls(t)
=: ApWa(t) + BaUs(t), (13a)
Yo(t) = CoTolt), {13k)

where, for example, A1 is a bi-infinite block diagonal
matrix determined by diag{.A1(725%%2)},.cz, and E is
a block Toeplitz matrix whose elements can be deter-
mined based on (10}.

As an example, consider 8y = 82y + cos(5F )02y +
O:u. In this case, the operators on the right-hand side
of (13a) become Ag = (I + ') diag{—(#72%8)?},, ¢y and
By = diag{j =%}z, respectively.

We emphasize that systems (11) and (13) have same
stability properties. In particular, it can be shown
that the spectrum of the generator of (11) is de-
termined by o{.A} = |Jscg,2x) o{As}. Furthermore,
since both Wx and Wyx! represent bijective linear
isometries it follows that the lifting preservers sys-
tem norms [1]. To illustrate this, we apply the tem-
poral Fourjer transform on (11) and (13) to obtain
y(z.w) = [Clw — A)'Bu(w)] (z) =: H{w)u(w)! (z),
and Yy(w) = Coljw ~ Ag) " 'Bels{w) =: Hg(w)Ue(w),
respectively. We remark that for any given w, H{w) rep-
resents a spatial operator that maps u(w) into 9(w). On
the other hand, Hg(w) is a multiplication operator pa-
rameterized by two frequencies: w € R and ¢ € [0, 2x).
Properties of these two operators are closely related.
For example, it can be shown that the He and Ha
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norms of operator ‘H can be determined as

H]leo SUP Omax{H(w)}
weR

= sup sup Umnx{Hﬂ(w)}l
8e(0,2m) weER

1 oo
2= | I s do

1 i [=] 2
= ) [ s do o,

il =

where || - ||#s denotes the Hilberti-Schmidt operator
norm. It is noteworthy that the H2 norm of stable
systems can be determined based on solutions of the
operator Lyapunov equations of the form

AP + PA” - BB,
AL+ QA -C°C,

4

as [H|2 = trace{PC"C} = trace{QBB"}, where A",
B”, and C” represent adjoints of operators A, B, and
C, respectively. In general it is very difficult to solve
operator Lyapunov equations for P and Q. However,
it is much easier to work with the lifted operators and
compute the Hz norm of stable system (11) as

IHI2

2r
f trace{ PyC3Co} db
4]

1l

b2 s
f trace{QeBs By} db,
0

with Py and Qp being the solutions of

AoFe
8@

+ BFA; =
+ Qods

- BHB;)
—C3Cs.

Il

Results of this section are summarized in the following
theorem.

Theorem 3 The feedback stability and the system
norms are preserved under the lifting. In particular,
the spectrum of the generaior of (11) is equal to the
spectrum of the generator of (13) as 6 ranges over cll
possible values, that is

afA} = |] {46}

9€0,2n)

Furthermore, the Ho and Hy norms of eperater map-
ping input u into oulput y are determined by

= sup  sup omax{Hs(w)},
gelo, 2w} weER
= g [ s d

27 oo
= 5f [ it du s,

4 Examples of PDEs with Periadic Coeflicients

In this section we illustrate with two examples how sta-
bility properties of PDEs can be changed by introduc-
ing feedback terms with spatially periodic coefficients.
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Our results reveal that, depending on the values of am-
plitude and frequency of a periodic gain, the original
equation can be either stabilized or destabilized. This
phenomenon is referred to as ‘parametric resonance’
and is encountered in many problems of physical sig-
nificance. Furthermore, we show how our results can
lead to an analytic expression for the eigenvalues of the
underlying operators, for a special class of PDEs with
periodic ceefficients. This is to some degree a surpris-
ing discovery since our original intention had been to
develop a tool for a numerical approzimation of trans-
formed lifted operators.

First example

In [4], the periodic solutions of the Ginzburg-Landau
{GL) eguation are studied. This equation results
from nonlinear stability theory and appears in the
analysis of many relevant fluid mechanics problems:
the Bénard problem, the Taylor problem, Tollmien-
Schlichting waves, gravity waves, etc. {for more details
see [4] and references therein). Tt is worth mentioning
that the GL equation describes the evolution of a slowly
varying complex amplitude of a neutral plane wave.

The lincarization of this equation around its limit cycle
solution go 1= f(x)exp (JQU), f{z} = f(z + X), results
in a PDE with periodic ¢oeffictents of the form

O = o + nde + w2fPe+ F297), (14)

where ¢” is the complex-conjugate of a fleld ¢, and
zyi=p—38, 20 i=co+7, 23 :=7—p, withey, £, and p
being real valued parameters. Furthermore, p := ¢o/c1,
0<d <o

If we introduce the following notation

o= 2]

we can rewrite {14} as
Qeyp == A=),
where the operator A is given by
T oz 283 + 22| ff?
o [ (za /%)

Clearly, A can be separated into a sum of a spatially
invariant operator and a matrix-valued periodic func-
tion, which lends itself to the application of the results
derived in § 3. We use these results for a numerical
approximation of A and investigate its eigenvalues. In
particular, we assume f(z) := ecos(%—(’lz) and consider
a problem of the stability of system (14}. We note that
in this case (14) cannot be interpreted as the linearized
GL equation since ¢o, for the above given f(z), is no
longer a limit cycle solution of the nonlinear GL equa-
tion. Nevertheless, this problem is worth investigating
because it represents an example of a system whose sta-
bility can be changed by feedback terms with spatially
periodic gains.

(15)

(16)

2 f?

A A RE+ 23R |

Figure 2 illustrates the maximal real part of the op-
erator A eigenvalues, A(A), as a function of € and X,
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for g = 0.4, p = 0.4, and © = 5. It can be readily
shown that for ¢ = 0, max{Re{}A)}) = p = 04,
which means that system {14} is ‘open-loop’ unsta-
ble. Clearly, ‘closing a loop’, by introducing the spa-
tially periodic gains in feedback, changes the value of
max {Re{A(A)}}) significantly, as illustrated in Figure 2.

A
- o=

L
25z

max (Refh(A))
©

Lo
G &

Figure 2: max(Re{A{A)}}) as a function of ¢ and X
for f(z) := ecos(Zx), co = 0.4, p = 0.4,

and Q = 5.

Figure 3 shows max (Re{A(A)}) as a function of ¢ for
X = 1.31. This plot further illustrates the previously
mentioned changes in max (Re{A{.A)}), and reveals an
interesting feature of this example. Namely, the regions
of instability and stability repeat in an alternating ar-
rangement for certain values of the amplitude e.

max (Re{MA)J)

4

=g

9 2 4 6 [] 10
€

Figure 3: max (Re{A(A)}) as a function of ¢ for
f(z) = gcos(LEz), X = 131, co = 04,
p=04,and Q=5

'

Second example

In [5], a class of nonlinear PDEs with periodic plane
wave solutions including forms of the Schrédinger and
generalized KAV equations is considered. The linearize-
tion of these equations around a plane wave yields the
following PDE with periodic coefficients:

Bepl,t) = p(B)d(a, 1) + e ¥ (2,1), (1T)

where p is a polynomial with complex coefficients, and
« is a complex scalar. We can define the state by {15),
which transforms (17) into (16), with

A= A A | [ p{0z) e (F)=
Tl An An || ate ¥ E (o,
Proceadings of the American Control Conference
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Operator A can be separated into a sum of a spa-

_ tially invariant operator and a matrix-valued periodic
function, and the previously described procedure trans-
forms (16} into

Ba(t) = Aabo(t). (18)

Bi-infinite Toeplitz matrices Ag12 and Ag2; are defined
in (10) with the elements of Ag12 given by

_ a m=2 (19)
fm = (0 otherwise,

and the elements of Ag2; given by

a* m=-=-2, (20)
{1 =
™ 0 otherwise.

Furthermore, if we define p,(8) := p(j 22%+2), then

Aput = diag{pn(B)}nez, Aezz = diag{pn(f)Incz.

The eigenvalues of As are computed by defining Ga =
Al — Ay and using the formula

det(Ge) = det(Go1) det(Gozz — Con1 Gy} Garz).

Noting that Gg12 and Gs2:1 are just scaled backward and
forward shift operators, respectively, then det{A] — Ag}
is computed to be

o 2
ez (A = 2 (8)) Tnez(2 — 22 (6) — ,\——LJ_E

Hnez{(/\ ~ pu-2(6)) (A — pr(8)) — IQJZ};

which yields the eigenvalues An(8)} of Ap equal to

} =

5{Pn—2(6) + 2(6) % /4ol + (pa—2l®) - 23(0))).

This result can be applied to the nonlinear Schrodinger
equation

J0ep(z,t) = — Ble(z,t) ~ Vipp )e(zt), (21)

with potential V(4¢") that satisfies the dispersion
equation V(a®) = (Z)? - (¥)%.  As illustrated
in (5], (21) exhibits a periodic plane wave solution
ae’ %=~ %9 The linearization of {21) around this so-
lution, together with a coordinate transformation of the
formz = z — £t, yields (17) with

p(8z)
[0

0. + {8 + V(a®) + @*V'(a))},
7@V’ (a?).

i

It is readily shown, using the previously derived formula
for An(6), that the generator of (17} has purely imagi-
nary eigenvalues if and only if V*(a?) € 0. On the other
hand, if V’(a®) > 0 then there exist an eigenvalue of A
with a positive real part. The same conclusion has been
derived in [5] using the technique which is well-suited
for systems that can be represented by {17). It is worth
noting that the spatio-temporal lifting can be used for
analysis of stability and input-output norms of general

linear PDEs with periodic coefficients on L2(—oo, o0). 194

5 Concluding Remarks

‘We have developed the appropriate framework for anal-
ysis of stability properties and system norms of dis-
tributed parameter systems with spatially periodic co-
efficients. It has been shown that the main ideas of
a well known temporal lifting technique for linear pe-
riodic ODEs are readily extendable to PDEs in which
some of the coeflicients are spatially periodic functions.
A particular basis set has been used to obtain conve-
nient representations of transformed lifted signals and
spatially periodic systems. It has been also illustrated,
by means of two examples, how stability properties of
spatially invariant PDEs can be changed when a spa-
tially periodic feedback is introduced.
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