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Abs t r ac t  

We consider spatially distributed systems described by 
Partial Differential Equations (PDEs) in which some of 
the coefficients are spatially periodic functions. Such 
systems arise in certain distributed sensorless control 
schemes which we term spatio-temporal vibrational 
control, which is a generalized version of standard tem- 
poral vibrational control. The mechanism by which 
certain sensorless periodic feedbacks stabilize or desta- 
bilize systems is more generally known as paramet- 
ric resonance. We develop a spatio-temporal lifting 
framework using which we analyze stability and system 
norms of PDEs with periodic coefficients. Examples of 
PDEs in which parametric resonance occurs are given. 

1 Introduction 

As is well known, when certain Linear Time Invariant 
(LTI) system are connected in feedback with tempo- 
rally periodic gains, their stability properties can be 
altered. Depending on the relation between the period 
of the time varying gain and the dominant modes of 
the LTI system, the overall system may be stabilized or 
destabilized. This phenomenon is known in the general 
literature as pararnetn'c resonance, the prime example 
of which is the Mathien equation. In the controls lit- 
erature, this phenomenon has been used in sensorless 
feedback schemes to st,abilize unstable systems, and is 
normally referred to as vibrational control. 

In this paper we investigate similar parametric reso- 
nance mechanisms for spatially distributed systems de- 
scribed by PDEs with periodic coefficients. Our aim 
is twofold: first to characterize exponential stability 
of the distribut,ed system, and then to characterize 
input-output system norms. To this end, we develop 
a lifting technique similar to the temporal lifting tech- 
nique for linear periodic Ordinary Differential Equa- 
tions (ODES) 111. This technique provides for a strong 
equivalence between distributed spatially periodic sys- 
tems defined on a continuous spatial domain with spa- 
tially invariant systems defined on a discrete lattice. 

For the purpose of stability characterization, the lifting 
technique is in some sense equivalent to the more widely 
used Floquet analysis of periodic PDEs. However, Flo- 
quet analysis does not easily lend itself t o  the compu- 
tation of system norms and sensitivities. We show how 
the lifting technique can be used to compute both the 
spectrum of the generating operator and 'Ha and '"z 
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n o r m  of distributed systems. 

Our presentation is organized BS follows: we begin next 
section with some mathematical preliminaries regard- 
ing the spatial lifting technique. We then present a con- 
venient representation of lifted transfer functions using 
particular basis sets developed in [Z] for use with pe- 
riodic temporal systems. We then show how to write 
down a representation of the lifted systems in the trans- 
form domain simply from the Fourier symbol of the 
original PDE operator and the Fourier expansion series 
of the periodic gains. Finally, we present some exam- 
ples of PDEs which exhibit parametric resonance, and 
use the lifting technique to calculate regions of stability 
and instability as functions of the period and amplitude 
of the periodic gains.: 

2 Preliminaries 

We consider distributed systems of the form 

atlo = A$ i uu, (1) 

where A is a linear operator with periodic coefficients 
defined on a dense domain D(A) c L*(-m, m), L3 is an 
input operator, U is a forcing term, and $ is a field of in- 
terest determined by the solution of the above equation. 
Our objective is to investigate dynamical properties of 
system (1) by computing the operator A eigenvalues 
and input-output norms. 

For X-periodic system (l), the 'block-Toeplitz' 
decomposition of operator A is determined 
by = nLllrcx,(x+l)X~AI~~IO, x l n o ( d ) ~  where 

I l ~ z l ~ x ,  ( k + l ) ~ ~  represents the orthogonal projection on 
L Z ( k X ,  (k+ l)X], and LZ( -m,  m) is decomposed into 
LZ(-00, 00) = ' .  ' P-x, 01 !3 LZ[O, XI 63 . . , . 

The difficulty with finding Ax is related to the is- 
sues of its appropriate domain. We now illustrate 
how this problem can be circumvented. Since A has 
periodic coefficients it commutes with T x ,  the oper- 
ator of translation by X, (Tx$)(z) := $(z - X). 
Therefore the operator semigroup G(t) := edt satis- 
fies G(t)Tx = TxC( t ) ,  i.e. G(t )  is also 'periodic' even 
though i t  usually is not a differential operator. Thus, 
we can now define the 'block-Toeplitz' decomposition 

of C(t) as G*(t) := ~ L Z ( * X , ( I I + ~ , X , G ( ~ ) ~ ~ ~ ~ ~ , ~ ~ .  Since 
G(t) is a bounded operator, indeed there are no issues 
of domain. 
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Furthermore, it follows that if {fk} denotes the lifting 
to & l o , x ~  Of any f E LZ(-m, 00) [I]. that IS, 6(i) := 
f ( k X + i ) ,  k E Z, 0 5 L 5 X ,  thang = G(t) f  +- B. = 
CIEZ G,- , ( t ) f , .  One might think of defining the as 

1 Ak := - (Gt( t )  - I) ,  hut this is problematic t 
since ( G k ( t ) } ,  as one can show, is not a semigroup even 
though (G( t )}  IS. 

However, it is much easier to work with the z-transform 
evaluated on the unit circle, z = el'; j := fl, 0 E 
10, Zr), by defining 

and 
&(t) := Gk(t)e-jek. 

kEZ 

Now for each B E [0, Zr), it can be shown that G e ( t )  
are indeed semigroups. The reason for this is a well 
known convolution property of z-transform which says 
that ifGl,Gz,Gs : LZ(-m, m) - LZ( -w ,  m) then 

GI = GZC3 e 6'10 = G z e G s s ,  VB E 10, 2 ~ ) .  

Therefore, 

G(t1 +tz) = G(ti)G(tz) * 
&(t, + t z )  = Ge(tl)ds(t,),  ve E [o, 2 ~ ) .  

Since &(t) $ a semigroup for each 8 E [0, Zr), we can 
now define Ae as 

which transforms at$ = A$ into &$o(t) = de&(t ) .  
Note that for each 0 E (0, IT), As : L2[0, XI 3 
ZJ(d0) + L2[0, X ]  is typically an unbounded opera- 
tor whose domain can be calculatedAfrom (2). In this 
paper we illustrate that computing As can actually be 
done rather explicitly and simply for PDE operators 
with periodic coefficients. 

As aforementioned, for every f E LZ( -m,  CO) the lifted 
signal can be defined as &(i) := f ( k X  + i), k E 
Z, 0 5 i 5 X .  The lifting can be visualized as a 
breaking a continuous-time signal up into a sequence 
of pieces which take their values in a functional space 
of a length X .  In other words, (fk} E l&lo,xl, i.e. for 
any given k E Z, fk E L2[0, X]. The lifting operator 
Wx is one-tc-one and onto and thus has a well defined 
inverse given by f = WG'g, f(s) = g,(s - kX), k E 
Z, k X  5 z 5 ( k + l ) X .  The action of the operator W;' 
is exactly the opposite of the one cauSed by the lifting 
operator. Namely, W;' puts together a sequence of 
function pieces whose value belongs to L2[0, XI, giving 
a function f E L2(-m, m) [I]. 

The z-transform of the sequence of signals ( [ k }  eval- 
uated on the unit circle is determined by f o ( i )  := 
CxsZfk(i)e-jsk.  Note that {fe} : (0, 2 ~ )  - Lz[O, XI. 
In other words, {fo} is an L'lO, XI-valued function de- 
fined on the unit circle, i.e. {fo} E L$ja.xl[O, 2 ~ ) .  The 

commutative diagram below schematically illustrates 
combined action of the lifting and z-transform on our 
system: 

3 Representation of the Lifted System 

In this section, we first develop a convenient represen- 
tation of the transforms of lifted signals, and then use it 
to obtain a representation of spatially periodic systems. 
In order to 'visualize' the transform f e ( i )  in terms of 
the original function, we have to find an appropriate 
way to 'view' fo(%) foreach fixed 8 E [0, 2r). Since for 
every pre-specified 8, f e  is a function (in L) over [0, X ] ,  
it is desirable to end a basis of Lz[O, X ]  in which the 
representation of fe is easily determined. The following 
Lemma from 121 shows that the 8-parameterized basis 
functions of the form (3), for any given 8, represent an 
orthonormal basis of Lz[O, X ] .  It turns out that this 
basis is very suitable for achieving our objective. 

Lemma 1 The 8-pummeterized set of functions 
{fie.n}nez of the f o m  

2an + Bi: 
(3) 

1 1 7  rifs,,,(i) := -e 

for each 8 E (0, 27r) represents a complete orthononnal 
basis ofL2[0 ,  XI. 

The following Proposition shows that the coefficients 
in the Oe,,(i)-basis expansion of f e ( i )  can be deter- 
mined from the Fourier transform of the original func- 
tion f(z) 

Proposition 2 Let f(z) E Lz(-m, 03) have a 
Fourier transform F ( k , )  

~ ( k . )  := 1: f(s)e-j**=&. (4) 

Then f e ( i )  can be represented as 

We now apply these representations to find the corre- 
spondina representations of the underlyina operators in -~ ~ -~ 
the S@.n(b)-hasis. Proceedings 01 the American Control Conlerence 
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3.1 Spatially-Invariant Operators 
Proposition 2 enables us to find the-spectral coefficients 

in the t98,,(i)-hasis expansion of f8( i )  as 'samples' of &&t)  = &Enez*(- I t)08,n(*) 
the Fourier transform F(k , ) .  This practically means Pn n-m +8 

Using Proposition 2, we express & ( i , t )  as 

2 m  + 0 

that for a spatially invariant PDE [3] of the form = &-LC,,meza,w ( x % t ) ~ O , . . ( i . ) .  

2nn f B 
X 

at$(z> t )  = d(az)lL(z, t ) ,  ( 6 )  where, based on (9), a(- , t)  is determined by 
whose frequency domain equivalent is given by 

2an + 0 2n(n - m) + 0 
*(k,,t) = d(jk,)B(k,,t), * ( T , t )  = Ca,W .t)  

" , L l  

the representation of the transformed lifted system 

&&(; , t )  = d 8 d ' e ( i , t ) ,  

in the basis { ~ 9 e , , ( i ) } ~ ~ z ,  is completely determined by 

8s(t) = AeYe( t ) ,  

where Q e ( t )  := [ . . .  !?(a,t) P ( F , t )  - . I T ,  and 
Ae := d i a g { d ( j v ) } , e z .  In other words, the ma- 
trix representation of d e  in the chosen basis is simply 
d i a g { A ( j v ) } , , E z ,  where a(.) is the symbol used 
for the original PDE operator. For example, in the 
case of a heat equation on L*[-m, DO], &$(x,t) = 
a:$(x,t), the properties of our system are fully deter- 
mined by diagt. .  . ,-(-)', -($)', -(-)', . . . } ,  
where parameter B takes all values between 0 and 2n. 

3.2 Periodic  Gains  
To apply this theory to an arbitrary PDE with periodic 
coefficients we need a method for lifting the part of the 
system which contains the periodic term. Suppose that 
we have a problem of the form (6) where the operator A 
can be represented as a ( & )  := dl (a,) + f ( s ) ,  with dl 
a spatially invariant operator and f ( x )  an X-periodic 
function, f(z) = f(z + X). Since we know how to 
lift the spatially invariant part of our system, we now 
illustrate a way for lifting a periodic gain. Let 

O(z,t) := f(.)$(z, 1). (7) 

Due to X-periodicity of the function f, 6(i) := 
f (kX + 2 )  = f(j.), V k  E Z, the lifted signal is given by 

,$b(i,t) := f ( i ) & ( i , t ) ,  k E z, 0 5 i 5 x .  (8) 

After applying the z-transform and evaluating it on the 
unit circle. (8) simplifies to 

&(i,t) = f ( i )&(P , t ) ,  e t [o, Zn), o 5 i 5 X, 

which practically means that the lifted operator is just 
multiplication by f(2) and is constant in B .  Our ob. 
jective is to find the representation of this operator 
in the {1Po,,(i)},Ez-hasis. Since f(z) is a periodic 
function, it can be decomposed into its Fourier se- 
ries, f(z) = CmEZamej*z. By applying the Fourier 
transform on (7) we obtain 

or equivalently in the matrix form % ( t )  = r V e ( t ) ,  
where r is a bi-infinite Toeplitz matrix defined by 

1 

Thus, we conclude that the matrix representation of a 
spatial-periodic gain in the {19s,,(?)),~~-basis is com- 
pletely determined hy a Toeplitz matrix whosc eleinenls 
correspond to the Fourier coefficients 

2am l X  -j-= 
a,, := xl /(.)e x d x .  

For example, 

0 otherwise, 

and 

- m=*1, (i 0 otherwise. 

2n 
x f(z) = ECoS(--l) * a,  = 2 

3.3 Feedback Interconnections 
The procedure described in 5 3.1 and 3 3.2 can be ap 
plied to obtain a representation of a system with spa- 
tially periodic coefficients on LZ( -m,  m) of the form 

where dt, B , ,  &, and C are spatially-invariant oper- 
= ators, f is a given X-periodic matrix valued function, 

U is a distributed input, y is a distributed output, and 
= Rm*(kz - - , t ) .  2nm (9) $ is a distributed state. We can equivalently represent 

system (11) as shown in Figure 1. 

2nm 
a ,  J_", $(z, t)e-Jtk=-- X )=dz 

mG? 

X 
"tEZ 
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* U a2 s Y 

n o r m  of operator 71 can be determined as 

((HI(, := SUP U m e x { H ( W ) }  
W E R  - - SUP S U P U ~ ~ ~ { H ~ ( ~ ) } ,  

Figure 1: Block diagram of system (11) with spatially 
invariant operators AI, BI , Bz, and C, and 
an X-periodic matrix valued function f .  

Since the lifting is invariant under feedback [l] the 
transformed lifted system can he rewritten as 

where ( d i e ,  &e, &e,  de} and f(2) can be lifted ac- 
cording to the procedure described in 5 3.1 and 5 3.2, 
respectively. Thus, in the {t9e,,(?)},Ez-basis system 
(12) is represented by 

where, for example, Ale is a bi-infinite block diagonal 
matrix determined by d i a g { d l ( j F ) } n s z ,  and B is 
a block Toeplitz matrix whose elements can be deter- 
mined based on (10). 

As an example, consider a,$ = a:$ + cos($z)~?;$ + 
&U. In this case, the operators on the right-hand side 
of (13a) become An = ( I  + r) diag{-( v ) Z } n E z  and 
Be = diag{j-},Ez, respectively. 

We emphasize that systems (11) and (13) have same 
stability properties. In particular, it can he shown 
that the spectrum of the generator of (11) is de- 
termined by u{d} = Ue E [ O , Z n l  a{Ae}. Furthermore, 
since both Wx and W;' represent bijective linear 
isometries it follows that the lifting preservers sys- 
tem norms [I]. To illustrate this, we apply the tem- 
poral Fourier transform on (11) and (13) to obtain 
y(z,w) = [C(jw - d)-'Bu(w)] (z) =: [H(w)u(w)] (z), 
and Ye(w)  = C e ( j w  - Ae)-'BeUe(w) =: He(w)Ue(w) ,  
respectively. We remark that for any given U ,  H ( w )  r e p  
resents a spatial operator that maps .(U) into $(w).  On 
the other hand, He(w)  is a multiplication operator pa- 
rameterized by two frequencies: w € B and 0 E [0, 2 ~ ) .  
Properties of these two operators are closely related. 
For example, it can be shown that the H, and ?iz 

where 11 . I ~ H S  denotes the Hilbert-Schmidt operator 
norm. It is noteworthy that the Hz norm of stable 
systems can be determined based on solutions of the 
operator Lyapunov equations of the form 

dP + PA' = -UB' ,  
d'Q + &A = -C'C, 

as 117111: = trace{PC'C} = trace{QBU'}, where A', 
U', and C' represent adjoints of operators A, B, and 
C, respectively. In general it is very difficult to solve 
operator Lyapunov equations for P and Q. However, 
it is much easier to work with the lifted operators and 
compute the l i z  norm of stable system (11) as 

117111; = /'" trace{PoC.i'Cs} d0 
0 

7.- 

= 1 trace(QeB8B.i') de, 

with Pa and Qe being the solutions of 

AePe + PeAz = -BeBB', 
A;Qe + QeAe = -CzCe. 

Results of this section are summarized in the following 
theorem. 

Theorem 3 The feedback stability and the system 
n o m s  are preserved under the lifting. In particular, 
the spectrum of the genemtor of (11) is qual to the 
spectrum of the generator of (13) as 0 mnges over all 
possible values, that is 

u{d) = U U{&) .  

e E IO, 2 4  

Furthermore, the H, and 712 norms of opemtor map- 
ping input U into output g are determined by 

11li11m := suPom~{71~w)} 
U E R  

- - SUP supumaX{He(w)}, 
e s [ o , w  U E R  

117111: := - 

4 Examples of PDEs with Periodic Coefficients 

In this section we illustrate with two examples how sta- 
bility properties of PDEs can be changed by introduc- 
ing feedback terms with soatiallv periodic coefficients. 
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Our results reveal that, depending on the values of am- 
plitude and frequency of a periodic gain, the original 
equation can be either stabilized or destabilized. This 
phenomenon is referred to as 'parametric resonance' 
and is encountered in many problems of physical sig- 
nificance. Furthermore, we show how our results can 
lead to an analytic ezpression for the eigenvalues of the 
underlying operators, for a special class of PDEs with 
periodic Coefficients. This is to some degree a surpris- 
ing discovery since our original intention had been to 
develop a tool for a numerical approximation of trans- 
formed lifted operators. 

F i r s t  example  
In [4], the periodic solutions of the Ginzburg-Landau 
(GL) equation are studied. This equation results 
from nonlinear stability theory and appears in the 
analysis of many relevant fluid mechanics problems: 
t,he Benard problcm, the Taylor problem, Tollmien- 
Schlichting waves, gravity waves, etc. (for more details 
see [4] and references therein). It is worth mentioning 
that the GI, equation describes the evolution of a slowly 
varying complex amplitude of a neutral plane wave. 

The lincarization of this equation around its limit cycle 
solut,ion 90 := f (z)  exp (jnt), f (z )  = f(s + X ) ,  results 
in a PDF, with periodic coeficients of the form 

814 = 214 + -t ~ 3 ( 2 l f / ~ 9 + f * 4 * ) ,  (14) 

wliere 4' is the complex-conjugate of a field 4, and 
ZI := p- jn ,  z2 := CO+?, z3 := j - p ,  with CU, R ,  and p 
being real valued parameters. Furthermore, p := CO/C,, 

0 5 c; 5 c,. 

If we introduce the following notation 

i : =  [$?I 
we can rewrite (14) as 

where the operator A is given by 

Clearly, A can be separated into a sum of a spatially 
invariant operator and a matrix-valued periodic func- 
tion, which lends itself to the application of the results 
derived in 5 3. We use these results for a numerical 
approximation of A and investigate its eigenvalues. In 
particular, we assunie f(z) := ~ c o s ( 2 z )  and consider 
a problem of the stability of system (14). We note that 
in this case (14) cannot be interpreted as the linearized 
GL equation since 90, for the above given J(s) ,  is no 
longer a limit cycle solution of the nonlinear GL equa- 
tion. Nevertheless, this problem is worth investigating 
because it represents an example of a system whose sta- 
bility can he changed by feedback terms with spatially 
periodic gains. 

Figure 2 illustrates the maximal real part of the o p  
erator A eigenvalues, A(d), as a function of E and X, 

for c,, = 0.4, p = 0.4, and R = 5. It can he readily 
shown that for E = 0, max(Re{X(A))) = p = 0.4, 
which means that system (14) is 'open-loop' unsta- 
ble. Clearly, 'closing a loop', by introducing the spa- 
tially periodic gains in feedback, changes the value of 
max (Re{X(A))) significantly, as illustrated in Figure 2. 

Figure 2: max (Re{X(d)}) as a function of E and X 
for f(s) := ECOS(%Z), CO = 0.4, p = 0.4, 
and R = 5.  

Figure 3 shows max(Re{X(A)}) as a function of E for 
X = 1.31. This plot further illustrates the previously 
mentioned changes in max(Re{X(A))), and reveals an 
interesting feature of this example. Namely, the regions 
of instability and stability repeat in an alternating ar- 
rangement for certain values of the amplitude E. 

'r ; I 

..... 

Figure 3: max(Re{X(d)}) as a function of E for 
f(z) := ~ c o s ( % z ) ,  X o 1.31, CO = 0.4, 
p = 0.4, and R = 5.  

Second example 
In 151, a class of nonlinear PDEs with periodic plane 
wave solutions including f o r m  of the Schrodinger and 
generalized KdV equations is considered. The lineariza- 
tion of these equations around a plane wave yields the 
following PDE with periodic coefficients: 

&#(s , t )  = p(&)$(s,t) + ue2'fZ4*(z , t ) ,  (17) 

where p is a polynomial with complex coefficients, and 
OL is a complex scalar. We can define the state by (15), 
which transforms (17) into (16), with 

A := [ 2;; diz ] :=b P(&) oeZJ(yi)' 
d z z  OL*e-21(?+l= p * ( & )  
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Operator A can be separated into a sum of a spa- 
tially invariant operator and a matrix-valued periodic 
function, and the previously described procedure t r a m  
forms (16) into 

$e(t) = Ae@e(t). (18) 

Bi-infinite Toeplitz matrices As12 and Aezl are defined 
in (10) with the elements of Aeiz given by 

U m = 2 ,  
0 otherwise, 

and the elements of Ae21 given by 

a' m =  -2 ,  
0 otherwise 

am = { 
Furthermore, if we define pn(8) := p ( j v ) ,  then 

Asii = diag{p,(8)},Ez, Aszz = diag{pL(O)},Ez. 

5 Concluding Remarks  

We have developed the appropriate framework for anal- 
ysis of stability properties and system norms of dis- 
tributed parameter systems with spatially periodic c o  
efficients. It has been shown that the main ideas of 
a well known temporal lifting technique for linear pe- 
riodic ODES are readily extendable to PDEs in which 
some of the coefficients are spatially periodic functions. 
A particular basis set has been used to obtain conve- 
nient representations of transformed lifted signals and 
spatially periodic systems. I t  has been also illustrated, 
by means of two examples, how stability properties of 
spatially invariant PDEs can be changed when a spa- 
tially periodic feedback is introduced. 
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/a12 ) = 
rI"€Z (A - P 4 ) )  rI,,,(A - P P )  - 
rI,cz{(x - P"-z(o))(A - P X B ) )  - bl2Iz  

- pn-z(e) 

which yields the eigenvalues X,(b') of Ae equal to 

1 
5 t ~ n - 2 ( 8 )  +Pxe)  * \/w + (pn-2(4 - p ; ( w i .  

This result can be applied to the nonlinear Schrodinger 
equation 

. j a w k t )  = - aZv(z,t) - ~ ( v v * ) v ( z , t ) ,  (21)  

with potential V(4S') that satisfies the dispersion 
equation V(az) = ($)2 - (F)'. As illustrated 
in (51, (21) exhibits a periodic plane wave solution 
ad(*'-+'). The linearization of (21) around this SD- 
lution, together with a coordinate transformation of the 
form z := L - $t, yields (17) with 

P(&) := + j {a: + v(a2 )  + azV'(az)}, 
a := jazV'(nz). 

I t  is readily shown, using the previously derived formula 
for A,(@, that the generator of (17)  has purely imagi- 
nary eigenvalues if and only if V'(a2) < 0. On the other 
hand, if V'(a2) > 0 then there exist an eigenvalue of A 
with apositive real part. The same conclusion has been 
derived in [5] using the technique which is well-suited 
for systems that can be represented by (17). I t  is warth 
noting that the spatiotemporal lifting can be used for 
analysis of stability and input-output n o r m  of general 
linear PDEs with periodic coefficients on Lz(-m, m). 124 Proceedings 01 the American Control Conference 
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