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Abstract  

We investigate the properties of systems on lattices 
with spatially distributed sensors and actuators. These 
systems arise in a variety of applications such as the 
control of vehicular platoons, formation of unmanned 
aerial vehicles, arrays of microcantilevers, and satellites 
in synchronous orbit. We use a Lyapunov-based frame- 
work as a tool for stabilization/regulation/asymptotic 
tracking. We first present results for nominal design 
and then describe the design of adaptive controllers in 
the presence of parametric uncertainties. These uncer- 
tainties are assumed to be temporally constant, hut 
are allowed to be spatially varying. We show that 
the design yields decentralized distributed controllers 
with the passage of information determined by the in- 
teractions between different plant units. We also pr- 
vide several examples and validate derived results us- 
ing computer simulations of systems containing a large 
number of units. 

1 Introduct ion 

Systems on lattices are encountered in a wide range 
of modern technical applications. Typical examples of 
such systems include: platoons of vehicles ([I, Z ] ) ,  ar- 
rays of microcantilevers 131, unmanned aerial vehicles 
in formation [4], and satellites in synchronous orbit (51. 
These systems are characterized by the interactions be- 
tween different subsystems which often results in sur- 
prisingly complex behavior. A distinctive feature of 
this class of systems is that every single unit is equipped 
with sensors and actuators. The controller design p rob  
lem is thus dominated by architectural questions such 
as localized versus centralized control, and the inform% 
tion passing structure in both the plant and the con- 
troller. This is in contrast with kpatially lumped' con- 
trol design problems, where the dominant issues are 
optimal and reduced order controller design. 

A framework for considering spatially distributed sys- 
tems is that of a spatio-temporal system 161. In the spe- 
cific case of systems on discrete spatial domains, signals 
of interest are functions of time and a spatial variable 
n E IF, where IF is a discrete spatial lattice (e.g. Z or 

In this paper, we study distributed control of systems 
on lattices. We use a Lyapunov-based approach to pro- 
vide stability/regulation/asymptotic tracking of nomi- 
nal systems and.systems with parametric uncertainties. 
In the latter case, we assume that the unknown param- 
eters are temporally constant, but are allowed to be 
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spatially varying. We design adaptive Lyapunov-based 
estimators and controllers to guarantee boundedness of 
all signals in the closed-loop in the presence of paramet- 
ric uncertainties. In addition to that, the adaptive con- 
trollers provide convergence of the states of the original 
system to their desired values. We also show that the 
distributed design results in controllers whose informa- 
tion passing structure"is similar t o  that of the original 
plant. This means, for example, that if the plant has 
only nearest neighbor interactions, then the distributed 
controller also has only nearest neighbor interactions. 

Stabilizing controllers are designed using the technique 
of backstepping. Backstepping is a well-studied design 
tool 17, 81 for finite dimensional systems. In the infinite 
dimensional setting, a backstepping-like approach can 
he used to obtain stabilizing boundary feedback control 
laws for a class of parabolic systems (see [S, lo] for 
details). Backstepping boundary control can also he 
used as a tool for vibration suppression in flexible-link 
gantry robots Ill]. However, backstepping has not been 
applied to distributed control of systems on lattices to 
the best of our knowledge. 

Our presentation is organized as follows: in section 2, 
we give an example of systems on lattices and de- 
scribe the classes of systems for which we design state- 
feedback controllers in § 3. In § 4, we discuss appli- 
cation of controllers developed in f 3, analyze their 
structure, and validate their performance using com- 
puter simulations of systems containing a large number 
of units. We conclude by summarizing major contribu- 
tions and future research directions in § 5. 

2 Sys tems  o n  latt ices 

In this section an example of systems on lattices is 
given. In particular, we consider d mass-spring sys- 
tem on a line. This system is chosen bekause it repre- 
sent a simple non-trivial example of an unstable system 
where the interactions between different plant units are 
caused by the physical connections between them. An- 
other example of systems with this property is given by 
an array of microcantilevers 131. The interactions be- 
tween different plant units may also arise because of a 
specific control objective that we want to meet. Exam- 
ples of systems on lattices with this propert,y include: a 
system of cars in an infinite string, aerial vehicles and 
spacecrafts in formation flights. We also describe the 
classes of systems for which we design state-feedback 
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2.1 A n  example of systems o n  lattices 
A svstem consisting of an infinite number of masses and 

We consider state-feedback design for nominal systems 
of the form - 

springs on a line is shown in Figure 1.  The dynamics 
$1, = $2n, n E IF, (3a) 

42, = Jn($i,$z) + K,%, n EF, (3b) 

and system with parametric uncertainties of the form 

bzn = T ~ ( $ ~ , $ z )  + hk($i, $z)& + nnun. n E IF, (4b) 
Figure 1: Mass-spring system. 

where $1 := {$I,,}"€~, $2 := { $ z ~ } ~ ~ , , ,  and nn's are 
the s*called control coeficients [SI. In the latter case, 
the unknown parameters 0, and K, are assumed to be 
temporally constant, but are allowed to be spatially 

of the n-th mass are given by 

m,x, = F,-1 + F, + U,,, n E Z ,  (1) varying. 

We introduce the following assumptions about the sys- 
tems under study: where xn represents the displacement from a reference 

position of the n-th mass, F,, represent the restoring 
force of the n-th spring, and U,, is the control a p  
plied on the n-th mass. For relatively small displace- 
ments, restoring forces can be considered as linear func- 
tions of displacements F,, = k,(x,+l - x " ) ,  F,-1 = 

Assumption 1 The number of interconnections be- 
tween different plant units is uniformly bounded. In 
other words, there ezist M E N, M # M(n), such that 
J,., h,, and T" depend on at most M elements of $1 

km-l(x%-l - x " ) ,  n E Z, where k, is the n-th spring and 11, 7. 
constant. We also consider a situation in which the 
spring restoring forces depend nonlinearly on displace- 
ment. One such model is given by the so-called harden- 
ing spring (see, for example 171) where, beyond a cer- 
tain displacement, large force increments are obtained 
for small displacement increments 

F n  = 

Fn-i = 

kn { (z~+I - xn) + c;(z,+~ - ~ n ) ~ }  

kn-I { ( ~ ~ - 1  - 2") + C:-~(Z~-I - x ~ ) ~ }  
=: k..(X"+l - X " )  + Yn(X,+, - Xnl3 ,  

j " ~  
~~~ 

Assumption 2 fn ,  h,, and T, are known, continu- 
ously differentiable functions of their arguments. 

Assumption 3 The signs of nnr Vn E F, in (4b) are 
known. 

These assumptions are used in the sections related to  
the distributed control design. Furthermore, under 
these assumptions the well-posedness of both open and 
closed-loop systems can be easily established. 

=: kn-l(in-l  - 5,) + qn-1(z,-, - Zn)3. . 
3 Lyapunov-based dis t r ibuted control design 

For both cases (1) can be rewritten in t e r m  of its state- In this section, we address the problem 
space representation V n  E Z as of designing controllers that provide stabil- 

ity/regulation/asymptotic tracking of systems 
described in 2.2. Assuming that the full state 
information is available and that every unit is 
equipped with sensors and an actuator, we use the 
Lyapunov-based approach to solve this problem. The 
Lyapunov design is very suitable because it leads to 
distributed controllers that are not centralized. This 
feature is of paramount importance for practical imple- 
mentation. It is also remarkable that the basic ideas of 
finite dimensional Lyapunov-based adaptive design [E] 
are easily extendable to this infinite dimensional 
setting. 
3.1 Nominal state-feedback design 
We first consider Lyapunov design for systems without 
any parametric uncertainties. We observe that system 
( 3 )  is amenable to be analyzed by the backstepping de- 
sign methodology. Even though a stabilizing controller 
Can be designed using various tools, we choose back- 
stepping because it gives both a stabilizing feedback 

tern under consideration. Once CLF is constructed its 
derivative Can be made negative definite using a variety 
Of 

In the first step of backstepping, equation (3a) is sta- 
bilized Vn E F by considering $2 = { $ z , . } , ~ ~  as its 
control. Since $2 is not actually a control, but rather, 
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(2) 
$1. = h, 
+zn = f~($~," - I ,$ l" ,$ l ,~+l )  + KnUn, 

where 

the particular situation in which the restoring forces 
are linear functions of displacements and all maSSeS 
and springs are homogeneous, that is, m, = = 
Const., k, = = Const,, v n  E z, (2) represents a 
linear spatially invariant system, This implies that it 
can be analyzed using the took of [12, 131. The other 
mathematical representations of a mass-spring system 
are either nonlinear or spatially-varying. The main pur- 
pose of the present study is to design statefeedback 
controllers for this broader class of systems. 

2.2 Classes of systems 
In this subsection, we summarize the classes ofsystems 
for which we design statefeedback controllers in 5 3. In 

terized by E IF with finite number of interconnections 
with other plant clearly, the models presented 
in 5 2.1 belong to this class of systems, as well as the 
model of an array of microcantilevers 131. Furthermore, 
our results can be readily extended to a class of fully ac- 
tuated two and three-dimensional mechanical systems. 

:= xn and $zn := x,,. 

particular, we consider second order systems parame law and a Control Lyapunov Function (CLF) for a sYs- 

laws' 



a state variable, the error between 1/12 and the value 
which stabilizes (3a) must be penalized in the aug- 
mented Lyapunov function at the next step. In this 
way, a stabilizing control law is designed for the overall 
system. 

Before we illustrate the distributed Lyapunov-based de- 
sign we introduce the following assumption: 

Assumption 4 The initial distributed state is such 
that both $1(0) E 12 and 1/1z(O) E 1 2 .  

Step 1 The recursive design starts with subsystem (3a) 
by proposing a CLF of the form 

The derivative of VI($I) along the solutions of (3s) is 
given by 

Vi = ($I ,&)  = ($I&)  = $m$zn. (6) 
"EF 

In particular, the choice of a 'stabilizing function' $znd 

of the form $znd = - a,$,,, a ,  > 0,  Vn E 5, clearly 
renders vl(t/J~) negative definite. Since $2 is not actu- 
ally a control, but rather, a state variable, we introduce 
the change of variables 

Czn := $2" - i z n d  = $zn + an$I,%, Vn E IF, (7) 

which adds an additional term on the right-hand side 
of ( 6 )  

ii = - Can$?" + l i i l n ~ z n .  (8) 

The sign indefinite term in (E) will be taken care of at 
the second step of backstepping. 

Step 2 Coordinate transformation (7) renders (3h) into 
a form suitable for the remainder of our design 

tz,, = an&n +$bin = a , ? h  f fn(ljii.ljiz) + nnun, n E IF 

Augmentation of the CLF from Step 1 by a term which 
penalizes the error between $2 and ljizd yields a function 

7LEF n E Y  

1 
V2(~1,Cz) := Vl($l) + 2 (Cz,Czi I (9) 

whose derivative along the solutions of 

1/11., = - a,i ln + <zn, n EF, (loa) 

Czn = + fn($i,$il) + nnun, n E F, (lob) 

is determined by 

R e m a r k  1 Control law (11) achieves global asymp- 
totic stability of the origin of system (3) on W : = , l z  x 12 

by completely altering its dynamics through the process 
of cancellation at the second step of backstepping. A s  a 
result of feedback design, a closed-loop system that con- 
tains infinite number of decoupled second order linear 
subsystems is obtained. The designed controller is es- 
sentially a lfeedback linearization type' controller 1141. 
However, as a design tool, backstepping is less restric- 
tive than feedback linearization [8]. firthennore, the 
results presented here are easily generalizable to the 
adaptive setting, as we show in 3 3.2. We also remark 
that, by a careful analysis of the dynamical properties 
of a particular system, the problem of unnecessary can- 
cellations can be circumvented. 

Remark 2 If the initial state of system (3) does not 
satisfy Assumption 4,  controller (11) can still be used 
to attain global asymptotic stability of its origin, but 
on a Banach space B := I, x l,, rather than on 
a Hilbert space W := 12 x 1 2 .  This follows from the 
fact that for  every fixed n E F, the derivative of 
h ( 1 / 1 i n , $ z n )  := +$?,++(1/)2n+a,1/)1a)2 > 0,  v$,, := 

[ $1, $zn 1' E Rz \ {O}, along the solutions of the 
'n-th subsystem' of ( 3 ) l l )  is determined by VZ, = 
-an$?,, - bn(1/1zn + anliiin)' < 0, V$n E Wz \ IO}. 
Therefore, we conclude global asymptotic stability of the 
origin of the h-th subsystem' of (3 , l l )  for every n E F, 
which in turn guarantees global asymptotic stability of 
the origin of ( 3 , l l )  on a Banach space B := I, x 1,. 
Furthermore, Assumptions 1-2 imply boundedness of 
un f o r  every n E IF. However, we note that VZ($I,$Z) 
defined by (9) no longer represents a Lyapunou function 
for system A l l )  if Assumption 4 is violated. 

R e m a r k  3 If a control objective is to asymptotically 
track a reference output r,,(t), with output of system 
(3) being defined as yn := $ln, Vn E F, then it can be 
readily shown that the following control law 

1 
K, 

Un = - -{(I + anbn)($ln - r,,(t)) 

+ (an + bn)(&n - +n(t)) + Jn - "(t)], 1~ E F, 

fulfills this objective. We assume that, for every n E F, 
rn, Cn, and r,, are known and uniformly bounded, and 
that in is piecewise continuous. 

3.2 Adaptive state-feedback design 
In this subsection we consider adaptive state-feedhack 
design. We study systems with temporally constant un- 
known parameters that are allowed to  be spatially vary- 
ing. The dynamic controllers that guarantee bounded- 
ness of all signals in the closed-loop and achieve 'regu- 
lation' of the plant state are obtained using Lyapunov- 
based approach. 

I 

*in 

- - - - {(I + ambn)$ln + (a. + bn)l/lzn + fn), 
where b,'s are positive design parameters Vn E F, Vz 
becomes a negative definite function, that is 

VZ = - c a n $ ? n  - b n C k  < 0. 
n t F  n E F  Proceedings of the American Control Conference 
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The first step of the backstepping design is the same 
as in 5 3.1. However, in the second step, we have t a  
construct an Adaptive CLF to account for the error 
between a virtual control and its desired value, and for 
our lack of knowledge of parameters in (4b). In other 
words, we need to estimate the values of unknown pa- 
rameters 0, and reciprocals of unknown control coeffi- 
cients n,, en := 5 ,  in order to avoid the division with 
an estimate of n, which can occasionally assume zero 
value. 



Step 2 We start the second step of our design by aug- 
menting CLF (9) by two terms that account for the er- 
rors between unknown parameters 8, and en and their 
estimates 8, and 8, 

where &(t) := 8, - 8,(t), &( t )  := e,, - &(t ) ,  r, is 
a positive definite matrix, and P,, is a positive con- 
stant. We assume that Kz(tbl(O),C~(O),8(0),c(O)) is 
finite (this assumption will he relaxed in Remark 4). 
The derivative of Voz along the solutions of 

$I,, = - a . h  + Zzn, n E F, (13a) 

(2" = an$zn + T., + h;(& + 6,)  + xnun, n E F, (13b) 

is determined b j  

V - 2  = - an$?,, + 
n E F  

CZ.($I., + an$zn f r, + hL9, + nnun} f 
n E F  

We eliminate 8, from (14) with 

8, = Cznrnhn($l,$z), n E IF. (15) 

A choice of control law of the form 

un = - &{$M +an&" + T., + h,bn + b d z n } ,  (16) 

V n  E IF, together with (15) and the relationship 

%& = nn(Qn - an) = 1 - nn&, 

renders (14) into 

V o  2 = -ca.,$?,, - x b n C &  
" E P  ..tF 

where sn := $1, + a,$zn + r, + h,&, + bnCz,. With a 
choice of update law for the estimate & 

8 = Pnsign(nn)t,s,, n E IF, (17) 

V e z  simplifies to 

Vh = - c a n . L : n - c b n C k  =: W(.Li,Cz)50. 
?%EF m E F  

Using the definition of Czn given by (7), we can rewrite 
(16), (15), and (17) for every n E IF as 

U" = 

8, = 

8. = 
Sn = 

Since V=Z 5 0, we conclude that V.2 is a non-increasing 
function of time. Thus, using (12) and the origi- 
nal assumption that V,z($~(O).~z(O),8(O),I(O)) < 00, 

we conclude global uniform boundedness of $1,  $2, 

I,, and &, that is, {lltbi(t)llz := E n E F t b k ( t )  < 
m, I l i z ( t ) l l 2  := < m, llMt)lIZ := 

&(t)8,&) < w, l l b " ( t ) l l Z  := Z ( t )  < 05, V t  2 O } .  

E E-, in E c,, $1, E .e,> *am E CW7 un E c,, 

Using the last set of expressions, properties of h, and 
T,, (see Assumptions 1-Z), and (16), it follows that 

V n  E IF}, which in turn implies {e ,  E C,, in E C,, 
l/iln E C,, l/izn E C,, V n  E IF}. Moreover, since 
V.z($,(t),Cz(t),8(t),B(t)) is a non-increasing function 
of time bounded from below by zero, it has a limit 

integration of V.2 gives 
Vazm := limt-,, V.z($i(t),Cz(t),Bn(t), &(t)).  Hence, 

v.z($'1(o),Cz(o),6(o~,~(o)) - v.2, < m, 

which in combination with the definition of Cz implies 
+ln E Cz, $3, E CZ, V n  E IF.,The~fore, we have 
shown that $ln,$zn E CznLc,, tbln,$zn E C,, V n  E 
IF. Application of the Barbglat lemma [7, 151 implies 
that both $ln(t) and $zn(t)  asymptotically go to zero 
for all n E IF. In other words, the state of (4) converges 
to zero as t i m. Therefore, the dynamical controller 
obtained as a result of the backstepping design guaran- 
tees boundedness of all signals in the closed-loop system 
(4,18) and asymptotic convergence of the state of (4) 
to zero. 

Remark 4 The assumption onfiniteness ofV.z(t = 0 )  
is not natural. Namely, i t is reasonable to assume that 
the initial distributed state belongs to the underlying 
state-space (in this case 12 x lz) ,  but, since we want 
to consider systems w i th  infinite number of unknown 
parameters it i s  somewhat artif icial t o  assume that we 
know most of them. If we have some a priori infor- 
mat ion about values that the unknown parameters can 
assume we can choose sequences (r,},,, and {Pn},EQ 
such that V,(t = 0 )  is f in i te.  However, this would lead 
to  parameter update laws w i t h  very large gains since 
elements of these two sequences have t o  increase their 
values as n - W. Clearly, this i s  not desirable f rom 
a practical point of Mew. Here we show that controller 
(18) guarantees boundedness of all signals in the closed 
loop, and convergence of the state of (4) to zero as 
t - m even when V,z(t = 0 )  = W. This follows f rom 
the fact that f o r  every b e d  n E F the derivative of 

along the solutions of the ' n - th  subsystem' of (13, lB)  is 
determined by 

V = z ,  = -a..& - bnC?* =: Wn($ln,Czn) 5 0 

Using similar argument as before we conclude that 

IS, E c m ,  en E c-, 8, E Lm, in E c,> 
$I., E c2ncm, $2. E C2nC,, un E C,, V n  E IF} 
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which in turn implies boundedness of all signals in the 
closed-loop system (4,18) and asymptotic convergence 
of both $ln(t) and $z,(t) to zero, for all n t F. It is 
noteworthy that when E, E P  V&(t = 0) < CQ it might 
be advantageous to use E, V.2, as a CLF for the en- 
tire infinite dimensional system rather than to consider 
V.2, as' a CLF for the n-th plant unit. By performing 
analysis of this type both beneficial intemctions between 
different subsystems and beneficial nonlinearities a n  be 
identified and unnecessary cancellations can be avoided 
in the process of control design. 

Remark 5 The results of this subsection can also be 
applied for  the control of systems with temporally and 
spatially constant pammetnc uncertainties. I t  can be 
shown that, JOT this class of systems, centralized dis- 
tributed controllers are obtained if we start our design 
with one parameter estimate per unknown parameter. 
On the other hand, controller (18) has a different pa- 
rameter update law in every single control unit K, (K., 
denotes a controller that acts on the n-th plant unit G, ,  
V n  E IF), even when all parameters are both spatially 
and temporally constant. This 'over-parametenzation' 
is advantageous in applications because it allows for im- 
plementation of decentralized adaptive distributed con- 
trollers, as illustrated in § 4.  This useful property can- 
not be achieved with controllers that have one estimate 
per unknown parameter since they require information 
about the entire distributed state to estimate unknown 
parameters. 

Remark 6 One can show that the dynamical con- 
troller of the form 

un = -&&, 
8" = {(h -e&)) + a , , ( h  - rn(t))}rnhn, 

in = a s i g n ( n n ) t ( i z n  -+n(t))+am($ln - ~ ~ ( t ) ) } s " ,  
(19) 

guarantees boundedness of all signals in the closed-loop 
system (4,19) and asymptotic convergence of $l,(t) to 
Tn(t), for all n E lF, where 

It is assumed: that, for every n t IF, the reference signal 
rn, and its first two derivatives ?", and P, are known 
and uniformly bounded, and that i, is piecewise con- 
tinuous. 

4 Examples 
In this section, we discuss application of controllers de- 
veloped in § 3 to the mass-spring system. Fhrthermore, 
we analyze the structure of these controllers and vali- 
date their performance using computer simulations of 
systems containing a large number of units. 

Figure 2 illustrates controller architecture of mass- 
spring system with the controllers of § 3. Remark- 
ably, in all cases, Lyapunov-based design yields d e  
centralized controllers K,, Vn t Z, that require only 
measurements from the n-th plant unit G, and its 
immediate neighbors G,-I and G,+I, to achieve d e  
sired objective. In applications, we clearly have to  
work with systems on lattices that contain large but 

Figure 2: Controller architecture of mass-spring sys- 
tem. 

finite number of units. All considerations related to  
infinite dimensional systems are applicable here, but 
with minor modifications. For example, if we con- 
sider the mass-spring system shown in Figure 3 with 
N masses (n = 1,2,. . . , N) both the equations pre- 
sented in 5 2.1 and the control laws of 3 are still valid 
with appropriate 'boundary conditions' of the form: 
2) = 4 = U )  3 0, V j  E Z\ { l , Z , .  . . ,  N}. 

Figure 3: Finite dimensional mass-spring system 

4.1 Nominal  state-feedback design 
Figure 4 shows simulation results of uncontrolled (up- 
per left) and controlled nonlinear mass-spring system 
with N = 100 masses and m = k = q = 1. The initial 
state of the system is randomly selected. The nomi- 
nal controller (11) with a, = b, = 1, Vn = 1 , 2 , .  . . , N 
is used. Clearly, the desired control objective is met 
with a reasonable transient response. This transient re- 
sponse can be further improved with a different choice 
of design parameters a, and b,. 

*. I * I . s .  ,o 

Figure 4: Nominal control of nonlinear mass-spring 
system. 

4.2 Adaptive state-feedback design 
Simulation results of a linear mass-spring system with 
unknown parameters $,I = e, 8,z = I, and 

tion is done with N = 100 masses for m, = k, = 1, 
&, = 1 ~~ > 0 are shown in Figure 5 .  The simula- 
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V n  = 1 , 2 , .  . . , N using adaptive controller (18) with 
yn = fin = a, = b, = 1, and 8,(0) = b.(O) = 0.5, 
V n  = 1 , 2 , .  . . , N.  The initial state of the massspring 
system is randomly selected, We observe that dis- 
tributed adaptive controller (18) provides boundedness 
of all parameter estimates and convergence of the state 
of the error system to zero. 

Figure 5: Adaptive control of linear mass-spring sys- 
tem. 

5 Concluding remarks 

This paper deals with the distributed control of spa- 
tially discrete infinite dimensional systems. It has been 
illustrated that Lyapunov-based approach can be suc- 
cessfully used to obtain state-feedback controllers for 
both nominal systems and systems with parametric un- 
certainties. It has been also shown that the control 
problem can be posed in such a way to yield controllers 
of the same structure as the original plant. There- 
fore, as a result of Lyapunov-based design control s y s  
t e r n  with an intrinsic degree of decentralization are 
obtained. Furthermore, within Lyapunov framework 
desired control objective can be achieved irrespective 
of whether the plant dynamics is linear or nonlinear. 

Our current efforts are directed towards development 
of output-feedback controllers and modular adaptive 
schemes in which parameter update laws and con- 
trollers are designed separately. The major advantage 
of using this approach rather than the Lyapunov-based 
design is the versatility that it offers. Namely, adaptive 
controllers of this paper are limited to Lyapunov-based 
estimators. From a practical point of view it might be 
advantageous to use the appropriately modified stan- 
dard gradient or least-squares type identifiers. 
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