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Abstract 
This paper addresses the analysis and control of an 
electrohydraulic velocity servosystem in the presence 
of flow nonlinearities and internal friction. Two differ- 
ent nonlinear design procedures are employed feedback 
linearization and backstepping. It is shown that both 
these techniques can be successfully used to stabilize 
any chmen operating point of the system. Additionally, 
invaluable new insights are gained about the dynamics 
of the system under consideration. This illustrates that 
the true potential of constructive nonlinear design lies 
far beyond the mere task of achieving a desired control 
objective. All derived results are validated by com- 
puter simulation of a nonlinear mathematical model'of 
the system. 

1 Introduction 
Electrohydraulic servosystems (EHSS) are encountered 
in a wide range of modem industrial applications be- 
cause of their ability to  handle large inertia and torque 
loads and, at the same time, achieve fast responses and 
a high degree of both accuracy and performance 11, 21. 
Typical applications include active suspension systems, 
control of industrial robots, and processing of plastic. 
They are also ubiquitous in commercial aircrafts, satel- 
lites, launch vehicles, flight simulators, turbine control, 
and numerous military applications. The electronic 
components provide the desired flexibility, while the 
hydraulic part of an EHSS is responsible for success- 
ful power management. The main components of the 
power assembly of an EHSS are its hydraulic power 
supply, electrohydraulic servovalve, and hydraulic ac- 
tuator. In practice, these devices are usually actuated 
by hydraulic cylinders and hydraulic motors. 

Depending on the desired control objective, an EHSS 
can he classified as either a position, velocity or 
forceftorque EHSS. Among these the position control 
has received by fat the most attention in the litera- 
ture. However, mast of the solutions have been based 
on classical linear control theory or feedback lineariza- 
tion technique, despite the fact that the underlying dy- 
namics are nonlinear with inevitable modeling uncer- 
tainties. Two recent articles by Yao &al. [3] and Al- 
leyne and Liu [4] addressed these important issues'. In 
[3], Yao &.al. used a discontinuous projection-based 
adaptive robust controller that takes into account the 
effect of both parametric uncertainties and some non- 
linearities. In 141, AUeyne and Liu developed a control 
strategy that guarantees global stability of nonlinear, 

'The interested reader is referred to the references con- 
tained therein for a more complete picture. 
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minimum phase single-input singleoutput (SISO) sys- 
tems in the strict feedback form by using a passivity 
approach and they later used this strategy to  control 
the pressure of an EHSS. Both these articles illustrate 
that control of an EHSS is still a very research-intensive 
area and that significant improvement in the dynamical 
behavior of EHSS can be accomplished using nonlinear 
control algorithms. 

This paper investigates the control of a velocity EHSS 
whose mathematical model accounts for flow nonlinear- 
ities and internal friction. The main components of the 
system that we study are axial-piston hydraulic motor 
and electrohydraulic servovalve. It is shown that this 
system has a well defined relative degree and no non- 
trivial zem dynamacs. The latter property illustrates 
that our system is, by definition, minimum phase which 
allows application of many different design tools. In 
particular, a stabilizing controller has been designed 
using the technique of feedback linearization. Despite 
the fact that this controller successfully achieves the 
desired objectives, another controller is designed using 
the backstepping approach, which avoids unnecessary 
cancellations that can have a detrimental effect in the 
presence of parametric uncertainties and/or unmodeled 
dynamics. I t  is further illustrated, using the backstep 
ping procedure, that not only has the desired control 
objective been accomplished, but also, that a new phys- 
ical intuition about the dynamics of EHSS has been 
developed. This is to some degree a surprising discov- 
ery which additionally shows the power of construc- 
tive nonlinear design procedures. The performance of 
all designed controllers is validated by the appropriate 
simulation of a nonlinear mathematical model of the 
system. 

Feedback linearization and backstepping are well- 
studied design tools [5, 6, 71 but they have not been 
applied to control of a velocity EHSS to the best of the 
author's knowledge. Feedback linearization employs a 
change of coordinates and feedback control to  tram- 
form a given nonlinear system into an equivalent linear 
system [5].  A major caveat of feedback linearization 
approach is related to  the cancellations that are intrw 
duced in the design process. Namely, this design phi- 
losophy does not make use of 'beneficial nonlinearities' 
and can lead to instability in the presence of modeling 
uncertainties. On the other hand, backstepping repre- 
sents a recursive design scheme that can be used for 
systems in strict-feedback form with nonlinearities not 
constrained by linear bounds [6, 7). At every step of 
backstepping a new Control Lyapunov Function (CLF) 
is constructed by augmentation of the CLF from the 
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previous step hy a term which penalizes the error be- 
tween 'virtual control' and its desired value (so-called 
'stabrlizinq function'). A major advantage of hackstep 
ping is the construction of a Lyapunov function whose 
derivative can he made negative definite by a variety of 
control laws rather than by a specific control law 171. 
Additionally, as a design tool, hackstepping is less re- 
strictive than feedback linearization and its previously 
mentioned designed flexibility can put 'beneficial non- 
linearities' to good use. 

The paper is organized as follows: In section 2, EHSS 
and its nonlinear mathematical model are described. In 
section 3, structural properties of the system, such as 
nonlinear d a t i v e  degree and zero dynamics, are stud- 
ied and a controller is designed based on feedback lin- 
earization. In section 4, issues related to  the hackstep 
ping design are discussed in some detail. In conclusion, 
section 5 summarizes major contributions and future 
research directions. 

2 System Description 
A schematic of an electrohydraulic velocity servosystem 
is shown in Figure 1. 

I 

Figure 1: Electrohydraulic velocity servosystem. 

The basic parts of this system are: 1. hydraulic power 
supply, 2. accumulator, 3. charge valve, 4. pressure 
gauge device, 5. filter, 6. twostage electrohydraulic ser- 
vovalve, 7. hydraulic motor, 8. measurement device, 
9. personal computer, and 10. voltage-tecurrent con- 
verter. 

The states of the system shown in Figure 1 are mea- 
sured and they are forwarded to the personal computer. 
Electric voltage signal is generated based on this infor- 
mation according to the designed control law and i t  
is converted to the current by voltagetocurrent con- 
verter. This signal acts on the electrohydraulic servo- 
valve which in turn supplies the hydraulic motor with 
appropriate amount of oil. 

A mathematical representation of the system is derived 
in [8] using Newton's Second Law for the rotational mc+ 
tion of the motor shaft, the continuity equation for each 
chamber of the hydraulic motor, and by approximating 
the connection between the torque motor and the first 
stage of the electrohydraulic servovalve by a first or- 
der transfer function. This representation accounts for 
Bow nonlinearities and internal friction. If the state 

variables are denoted by: 21 - hydro motor angular ve- 
locity, [radls], z z  - load pressure differential, [Pa], and 
2 3  - valve displacement, [m], then the model of EHSS 
in physical ewrdinotes is given by 

1 
31 

210. 
vo 

6, = -{--B,, ,21fq~2z-qmC,PSSgn21}, 

62 = -{-q,,,zi - Ci,,,zz + cdw23 

Y = 21, 

(1) 
where the nominal values of the parameters appear- 
ing in equation (1) are: J, = 0.03 kqmZ - total iner- 
tia of the motor and load referred to the motor shaft, 
q,,, = 7.96 x lo-' 5 - volumetric displacement of the 
motor, B,,, = 1.1 x N m s  - viscous damping co- 
efficient, Cj = 0.104 - dimensionless internal friction 
coefficient, VO = 1.2 x lo-' m3 - average contained vol- 
ume of each motor chamber, /3. = 1.391 x IO'Pa - 
effective hulk modulus of the system, C d  = 0.61 - d i s  
charge coefficient, C., = 1 . 6 9 ~  lo-" & - internal or 
crossport leakage coefficient of the motor, Ps = IO' Pa 
- supply pressure, p = 850 2 - oil density, T, = 0.01 s 
- valve time constant, K, = 1.4 x IO-' $ - valve gain, 
Kq = 1.66 $ - valve flow gain, and W = 8rr x IOvm 
- surface gradient. 

The control objective is stabilization of any chosen o p  
erating point of the system. It is readily shown that 
equilibrium points of system (1) are given by 

Z I N  - arbitrary constant value of our choice, 

while the value of the control signal necessary to keep 
2 3  at the equilibrium is U N  = 2 2 3 ~ .  

It is assumed that the motor shaft does not change 
its direction of rotation, 21 > 0. This is a practical 
assumption and in order for i t  to be satisfied, the ser- 
vovalve displacement 23 does not have to move in both 
directions relative to  the neutral position 2 3  = 0. This 
fact allows us to restrict the entire problem to the re- 
gion where zs > 0. In this case, the mathematical 
representation of the system simplifies to 

K 

61 = - 1 {-B,z ,  + gm22 - q . " c f P , } ,  

Jt 

2 a  
V. 6 2  = -{-gm21 - CCmZZ + c d w 2 3  

y = 2,. 

(3) 

3 Feedback linearization 
In this section, structural properties of the system, such 
as nonlinear relative degree and zero dynamics, are in- 



vestigated and a controller is designed based on feed- 
back linearization approach. These structural proper- 
ties represent a generalization of their well-known lin- 
ear couuterparts. Namely, the relative degree of a SISO 
linear system is determined as a difference between the 
number of poles and zeros of the corresponding t rans  
fer function. Equivalently, it is equal to the number of 
times that output has to be differentiated in order for 
the input variable to appear. On the other hand, the 
zero dynamics describe the internal behavior of the s y s  
tem when the ontput is identically equal to  zero. The 
systems with asymptotically stable zero dynamics are 
referred to as the minimum phase system and they are 
much easier to control than the systems whose zero dy- 
namics is not stable. I t  is shown that our system has 
good structural properties: well defined relative degree 
and no nontrivial zero dynamics. These features im- 
ply that EHSS lends itself to  numerous available design 
tools. 

3.1 Relative Degree a n d  Zero Dynamics 
The mathematical model of the system can be rewritten 
as 

(4) 
k = f(z)+Cj(z)u, 

Y = q-4, 
hy defining z := [zl zz z#, f := If1 f? h]', 
0 := [0 0 Kr/(KqTr)]', h := 11, and 

1 fi := {-Bmzi+ pmz2 - qmCfPs}, 

- 2P. 
vo !E-- fZ := -{-4LZl - CtmZ2 + cdw23 -(pS - Z2)}, 

In order to determine relative degree, the output should 
be differentiated a sufficient number of times 151. The 
first derivative of y = h(z) is given by 

1 
- {-Bmzi + qmzz - q-C,Ps} + 0 .  U' 
5% y = 

=: L&) + L,ii(z)u. (5 )  

Since the control input does not appear in (5), the out- 
put function should be differentiated one more time to  
yield 

1 
J, 

Y = -{-Bmfi+qmfi}+O.u 

=: L$L(z)  + L ~ L ~ F + ) u .  (6) 

The absence of U in y requires determination of the 
third derivative of y as follows 

(7) 
... 
Y = L$&) + L , L ; A ( ~ ) ~ ,  

where 

and 

Thus, one can conclude that LgL$h(z) # 0, VZZ < Ps. 
Since z2 represents the load pressure differential it can 
never become greater than the supply pressure. This 
implies that system (3) bas a relative degree equal to 
three, T = 3, which is well-defined in the entire state 
space of physical interest. 

3.2 Feedback Linearization Design 
The features of EHSS discussed in 53.1 allow us to feed- 
hack linearize this system with a control law of the form 

where 

Note that yd is the desired ontput value which can be 
either time varying or constant, while ko, k~ and kl 
are positive design parameters which have to satisfy 
k1k2 > ko to guarantee stability. 

Simulation results of system (3) achieved using con- 
trol law (8,9) for yd = Z I N  = 200rad/s, z(0) = 0, 
Lo = 5000, ki = 5150, and k2 = 151 are shown in Fig- 
ure 2. Clearly, a desired control ,objective is met with 
a reasonable control effort. 

Figure 2: Simulation results of system (3) obtained 
using control law (8,9), for ko = 5000, kl = 
5150 and ki = 151, X I N  = 200rad/s, and 
z(0) = 0. 

Even though the proposed controller works well, its 
design relies heavily on cancellation of nonlinearities, 
which can he detrimental in the presence of parametric 
uncertainties and/or unmodeled dynamics. In the next 
section, we present a controller designed using a back- 
stepping approach which allows us to avoid unnecessary 
cancellations. 

4 Backstepping Design 
This section addresses the problem of designing a con- 
troller which provides asymptotic stability of the o p  
erating point of interest. Assuming that the full state 
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information is available, the underlying technique for 
solving this problem is hackstepping 16, 71. Backstep 
ping represents a powerful design tool that can be a p  
plied to the 'lower triangular' syste& with nonlineari- 
ties not constrained hy linear bounds. It is remarkable 
that in the process of controller design very important 
information about the dynamics of EHSS are obtained. 

Clearly, system (3) is 'lower triangular' and, therefore, 
suitable for application of backstepping. However, be- 
fore starting the design, a coordinate transformation 

z. .-=. , .- , - Z ~ N ,  V i  = 1,2,3; U :=U - U N ,  (10) 

is introduced to rewrite equation (3) in a form that 
would decrease the number of necessary recursive steps 
from three to  two. In this manner, using the relation- 
ships given by (2), the model of our system in terms of 
these deviation variables takes the form 

where 

Careful consideration of the model (11) reveals a block- 
strict-feedback form. Namely, by defining vector q and 
scalar < as q := [zi 221' and < := a, one can rewrite 
(11) as 

il = f(7) + gh)<, ( W  

F = W O ,  (12b) 

where f(q) := [fi fzl', fi := - {-Bmzi +qmzz). 
1 

Jt 
20. fz := v, {-qmzl - (Ci- + y(zz))z2), g(q) := [O gzl', 

The system, in this form, is now amenable to he ana- 
lyzed by the backstepping design methodology. In the 
first step, equation (12a) is stabilized hy considering 
variable < as its control. Since 5 is not actually a con- 
trol but, rather, a state variable, the error between < 
and the value which stabilizes (12a) must be penalized 
in the augmented Lyapunov function at the next step. 
In this way, a stabilizing control law is designed for the 
overall system. 

Step 1 The recursive design starts with subsystem 
(12a) by proposing a CLF of the form 

The derivative of V,(q) along the solutions of (12a) is 
given by 

VI = LJvl(q) + LpK(q)t, (15) 

where 

LrK(q) = - B& - (Cjm + ~ ( Z Z ) ) Z ; ,  (16) 

and 

Based on (15) it  can be concluded that LjVi(q) is a 
negative definite function, that is, 

W1(q) := - L,K(q)  > 0, vq E D, (18) 

where D E RZ is the region of the state space which 
contains all P I  and zz of physical interest'. 

We stress that, due to the design flexibility of backstep 
ping, we can choose a variety of 'stabilizing functions' 
<d := a(q) to  make Vi negative definite. For example, 
the nice properties of LjVi(q) allow a choice of 'virtual 
control' identically equal to zero, <dl  := oli(q) 0. 
This means that, unforced nonlinear subsystem (12a) 
has an asymptotically stable equilibrium at q = 0. 
Hence, in the remainder of the design procedure, the 
only thing that should he taken care of is stabilization 
of the position of the electrohydraulic servovalve. 

On the other hand, we could have chosen 'stabilizing 
function' of the form ( d 2  := mz(q)  = -kozz, h > 0. 
This particular choice of 'virtual control' yields 

which is clearly positive definite Vq E D. 
The above choices of 'stabilizing functions' are not, by 
any means, the only ones that would lead to negative 
definiteness of VI along the solutions of (12a). However, 
they are very suitable since they avoid cancellation of 
nonlinearities in the first step of backstepping. 

Since is not actually a control but, rather, a state 
variable, we introduce the change of variables 

c, := < - a*(q), i =  1,2, U 9 )  

which adds an additional term on the right-hand side 
of (15) 

VI = -Wt(q) + <&V1(q). (20) 

The second term <&Vi(q) in VI would be taken care 
of in the second step of backstepping. 

W o t e  that we are not interested in a global result since 
state variable of the system under consideration are not al- 
lowed to take all values in the state space due to physical lim- 
itations. Since we consider the case 2 1  > 0 (i.e. 28 > o), the 
values that the state space variables can assume are given 
by {zi,zz.=3) E IO, zimarl x IO, Ps) x 10, Z Q ~ . . ] ,  where 
zlm.= = 404rod/s, Ps = lO'P0, qamor = 4 x 10-4m. 
From this, it is straightforward to see that the domain D 
can be defined as D := [ - = I N ,  =]mor - Z E N ]  X [ - Z Z N ,  Ps - 
Z Z N ) .  
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Step 2 Coordinate transformation (19) renders (12b) 
into a form suitable for the remainder of our design 

the output y = 11 experiences lengthy transients be- 
fore achieving an eventual steady state4. This slug- 
gishnas of the output variable seems to  be caused by 
the long transient response of the servovalve displace- 
ment and/or the absence of terms that would penalize 
the output emor in the control laws. 

C; = 6 - & = ua - (21) 

Augmentation of the CLF from Step 1 by a term which 
penalizes the error between E and ai(q) yields a func- 

a,, 

is determined by 

ir, = v, + c < t  - ~. ~. aa Figure 3: Simulation results of system (3) obtained 
using control law (25),  for kl = ls-', 
ZIN = 200rad/s. and do) = 0. 

= -W.(ll)+C{..+L,V1(q)- +fh)+g(s)EH. 
I .  ... 

With a control law of the form 

3 ;v y 3 r 1  
where kl is a positive design pFrameter, V z  bec0ms.a *- 50 *-1.25 

00 Im Z M  '-20 100 200 negative definite function, i.e. Vz = -W+(q)-klC? <'O. 
By combining (lo), (13), (17), and (24) the control laws 
that correspond to stabilizing functions a, and az,:in 
original coordinates, are obtained BS I. 

*" 0.5 0.5 

V P  

and 

respectively, where fi is defined in 83.1. 

Simulation results of system (3) obtained using con- 
trol laws (25) and (26), for z(0) = 0, ZIN = ZOOradjs, 
kl = 1 s-', and ko = lo-' m fPa, are shown in Figure 3 
and Figure 4, respectively. It can be seen that, the o b  
tained results are very similar to  each other, except for 
a presence of high frequency harmonics in the evolu- 
tion of uz. The former observation can be attributed 
to the fact that a very small value has been assigned 
to a design parameter ko in order to avoid saturation 
of control3. Since u1 represents a special case of u2 ob 
tained hy setting ko to  zero, the closeness of state space 
variables in Figure 3 and Figure 4 is reasonable. 

Furthermore, both control laws attain asymptotic sta- 
bility of the equilibrium points determined by (2) and 
do not saturate. However, one notices that, in both 
cases, the second state variable comes very close to  
the desired equilibrium level almost immediately, while 

3We assume that the magnitude of the control signal at 
our disposal has to he hetween 0 and 5V. 

Figure 4 Simulation results of system (3) o b  
tained using control law (26), for ko = 
10-'m/Pa, kl = l s - ' ,  ZIN = ZOOradfs, 
and z(0) = 0. 

This problem is circumvented by a different choice of 
control, where, we propose a controller corresponding 
to  stabilizing function ai of the form 

U0 = -kzE ,  (27) 

or equivalently, in ahsblute coordinates, 

where kz > 0 is a design parameter. One notices that 
the only difference between control law (25) and its 
counterpart (28) is the fact that the latter does not con- 
tain the term -LgV1(q). This means that the derivative 
of the proposed Lyapunov function along the solutions 
of (12b) is given by 

V 2  = -Wi(q) - kzE2 + LgVi(q)E. (29) 

'It has been noticed, through intensive numerical simu- 
lations, that this pitfall cannot be avoided even hy assigning 
different values for the design parameters ki and ko. 
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We now invoke the boundedness of L,Vl(q). Namely, 
it is readily shown that LPVl(q) achieves its maximum 

at z; = -(Ps - ZZN).  That is, 
2 
3 

zc, w 
.I 3 f i  

M := max L9K(q)  = - (Ps - Z Z N ) ~ .  (30) 

Combining (29) and (30) and exploiting the fact that 
(27) accomplishes the exponential convergence of E to 
zero, 

Based on (31), one concludes that VZ is negative def- 
inite outside a compact set, which in turn guarantees 
uniform boundedness of the solutions of (12). Further- 
more, since the 'disturbance' in (31) converges to zero 
in addition to being bounded, control law (28) achieves 
convergence of all state variables to  their equilibrium 
values as t - m (see 82.5.1 in 171 for the proof). A 
particular choice of design parameter k2 = 1/T, re- 
veals that the solutions of unforced system (11) are uni- 
formly bounded and that they asymptotically converge 
to  zero. Hence, when all parameters in (3) assume their 
nominal values, regulation control objective is achieved 
with U = UN! This is a somewhat surprising discovery 
considering the overall complexity of the mathematical 
model of our system. 

Figure 5 illustratrs simulation results obtained using 
controller (28) with kz =  OS-', for the same values of 
XIN and z(0) as were used for controllers (25) and (26). 
Desired control objective is accomplished with very fast 
convergence of the control signal to  its nominal value. 
Also much better output transient responses are o b  
tained comparing to the results shown in Figure 3 and 
Figure 4. However, one cannot neglect the fact that 
simulation results were obtained for the case when all 
parameters are exactly known. Since controllers (25) 
and (26) provide a higher 'degree of stability' than their 
counterpart (28), they can be expected to work better 
in the presence of parametric uncertainties and/or un- 
modeled dynamics. 

1 

Figure 5: Simulation results of system (3) obtained 
using control law (28), for k~ =  OS-', 
XIN = 200rad/s, and z(0) = 0. 

5 Concluding Remarks 
This paper has dealt with the nonlinear control of a 
velocity EHSS consisting of an electrohydraulic sews 
valve and an axial-piston hydraulic motor. The ques  
tions of relative degree and zero dynamics have been 
addressed and it has been shown that the system has a 
well defined relative degree, r = 3, and that it is mini- 
mum phase. These facts allow the design of a stabiliz- 
ing control law based on feedback linearization. Due to 
the potentially harmful influence of cancellations in the 
presence of m o d e l e d  dynamics and/or parametric un- 
certainties, several controllers have also been designed 
using the backstepping design procedure. By careful 
analysis of the dynamical properties of the system, the 
problem of unnecessary cancellations has been circum- 
vented and controllers that guarantee a higher 'degree 
of stability' have been obtained. The Lyapunov func- 
tion has been found to have a very simple quadratic 
form despite the complexity of the mathematical r e p  
resentation of the EHSS. Additionally, invaluable new 
insights have been gained about the dynamics of the 
system under consideration. This illustrates that the 
true potential of constructive nonlinear design lies far 
beyond the mere task of achieving a desired control o b  
jective. 

Our current efforts are directed towards development of 
controllers that would provide desired robustness p rop  
erties in the presence of inevitable modeling uncertain- 
ties. 
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