
A Random Walk from 
Async to Sync 

 

Paul Cunningham & Steev Wilcox 



Thank You Ivan 



In the Beginning… 

March 2002 



Azuro Day 1 

Some money in the bank from Angel Investors 

2 employees 

Small Office rented from Cambridge University Computer Lab 

…So why is Asynchronous design low power!? 

Vision to automatically compile mainstream synchronous designs 

into low power asynchronous equivalents 



Level Sensitive Device 

Azuro Day 100 

…after several meetings with chip companies, VCs and lots of whiteboard time 
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Costs power to implement 

Hard to “sign-off” across different 
process corner, voltage, temperature 
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Hold Check: Gmin > W 

Setup Check: Gmax < P 

“clock” 
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Off-chip crystal 

oscillator 

Pulse-flopped Synchronous Design 

“clock” 
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Hold Check: Gmin > W 

Setup Check: Gmax < P 

Off-chip crystal 

oscillator 

How do you shift values in 
and out during chip test 
without violating the hold 
check? 

How do make sure the pulse width 
is predictable across multiple 
process corner, temperature and voltages? 

“clock” 
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Hold Check: Gmin > W 

Setup Check: Gmax < P 
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Hold Check: Gmin > W 

Very small and predictable W 

Setup Check: Gmax < P 

Small local circuit which can be 
carefully crafted and characterized 
across multiple process corners, voltages, temperatures 

“D-type flip-flop” 
(DFF) 





Azuro Day 1 

Some money in the bank from Angel Investors 

2 employees 

Small Office rented from Cambridge University Computer Lab 

Vision to automatically compile mainstream synchronous designs 

into low power asynchronous equivalents 

Vision to bring the low power benefits of asynchronous design to 

the mainstream synchronous community 
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These delays don’t all have to be the same 

No data no latching 
(consume power only when needed) 
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No data no latching 
(consume power only when needed) 



Power Saving Ideas 

 Power in the clock 

− Is wasted if the register did not capture new data 

−  Clock gating 
 

 Power in the datapath 

− Is wasted if the result of computation is not captured 

−  Guarding 

a 
b 

+ 

If will not 

accept data 

Don’t clock 

register 

Don’t send data 

if (…) b = a + … 



First “Real” Idea: Guard Flops 

 Saw that flop can be decomposed 

 

 

 

 So create “Guard Flop” 

T T 

T T 

T 

T 

Control accepting data Control routing of data 



First “Real” Idea: Guard Flops 

 Gained two US patents 

 

 Reception was that it was still too disruptive 

− Needed to create new standard cells  

− New Methodologies … 

− Still too Async? 

 

 Needed to come closer to the mainstream 



Focus on Clock Gating 

 Clock gates are like AND gates with one rising-

edge sensitive input 

T Enable 

Clock in 

Gated clock out 

Clock in 

Enable in 

Clock out 



Focus on Clock Gating 

 Clock Gating in 2002 was primitive 

− Instantiated directly from RTL expressions only 
if (a) 

  b <= c; 

 

 Three ways to improve: 

− Find and exploit hierarchy 

− Find new register-level expressions not in netlist 

− Find sub-register-level expressions 



Hierarchical Gating 

 Finding expressions requires BDD-based netlist traversal 

− Rarely as simple as observing an AND gate in the netlist! 

 Multiple levels of hierarchy usually available 

 Heuristics to limit levels to 2 or 3 to avoid clock impact 

CG CG 
A & C A & B 

CG CG 
C B 

CG 
A 



Symbolic Gating 

 Use BDDs to decompose existing D-side function 

− Gating function for whole register 

− Next-state function assuming gating function pulled out 

 May need to avoid decomposition 

− If timing is tight, might need to pull out CG late in the 

day, and put back in old (green) function  

CG Gating 

function 

Next-state 

function 



Structural Gating 

 Generalization of previously-published work: 

 

 

 

 

 On it’s own, this is useless 

− Clock cap of CG as much or larger than flop! 

 But can be combined with NAND, OR, and across 

subsets of registers 

 

CG 



Structural Gating 

CG 

…
 

…
 

CG 

Register split into 

number of clusters, 

depending on simulation 

information (SAIF, VCD) 

Some parts of register 

may stay at logic 0 

more than logic 1 

Use OR gate 
for comparison 

Key is to make 

the whole thing 

activity-driven 



First Product: PowerCentric 

VICTORY! 
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to launch! 

First Product: PowerCentric 
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Houston, we  

have a problem … 

Launch abort! Hunker down for phase 2 

First Product: PowerCentric 
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These delays don’t all have to be the same 

No data no latching 
(consume power only when needed) 

These delays don’t all have to be the same 



2004, In Azuro R&D 

 Could now gate clock far more efficiently than any 

competitor 

 

 However, we couldn’t estimate effect on the clock tree 

 

 Needed to generate our own clock tree synthesis algorithm 

− Naturally, we used our Async experience … 

 



Azuro CTS 

 Bottom-up clustering approach 

− Cluster lower drivers together first 

− More flexible, less “synchronous” in a way 

 

 

 

 

 

 Ideally suited to deep clock gating 

− Also ~10% lower power 

− But has other benefits 



Azuro CTS 

Azuro CTS 
allowed  

us to 

Tame clock complexity 

Manage on-chip 

variation 

Productize 

useful skew 



Clock Complexity 

Innovated LP-based 
scheduling algorithm 

to solve complex 
clock tree constraints  

Do these 
flops need to 
be balanced? 



On-Chip Variation 

OCV derates hidden until CTS 



OCV + Clock Complexity = Clock Timing Gap 



Useful Skew 

 Why does the clock need to arrive at every point at 

the same time? 

 

 

 

 

 Cycle time: 1200ps 

 

 Think Async: What would we do? 

Short 
stage 

Short 
stage 

Long 
stage 

600ps 600ps 1200ps 

CLK 



Useful Skew 

Short 
stage 

Short 
stage 

Long 
stage 

600 + 200ps 600 + 200ps 1200ps – 400ps 

CLK 

Advance this 

signal 200ps 

Delay this 

signal 200ps 

 

 

 

 

 

 

 Cycle time now: 800ps 

− 50% frequency improvement! 



Useful Skew 

 Has been tried before 

− EDA vendors had useful skew engines 

− Numerous academic papers on this 

 

 Focus was either too lowbrow or too highbrow 

− Tradtional approach was adding individual buffers. 

No ability to decrease delay. Buffers cost power. 

− Academic approach was solving chip-wide LP-style 

problems. Too hard for “real” chips (1M+ instances). 
− No consideration of complex clocks 

− No consideration of on-chip variation 
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Azuro CTS 

Tame clock complexity 

Manage on-chip 

variation 

Productize 

useful skew 



D D1 D3 

Traditional 
Design 

Worst Path Closure 
Speed limited by max D 

Chain 

Path 

Clock Concurrent 
Design 

Worst  Chain Closure 
Speed limited by avg D 

2 



D1 D3 

slack1 slack2 

slack3 

slack1 = slack2 = slack3 

Need to be propagated clocks  
slacks not ideal clocks slacks! 

? 

D 2 



Clock Concurrent Optimization (CCOpt) 

Logic 

D3 

Clock 

Skew clocks and optimize logic concurrently 

Always using propagated clocks slacks 



Azuro 
Rubix 
(CCOpt) 

Azuro CTS 

Tame clock complexity 

Manage on-chip 

variation 

Productize 

useful skew 





Thank You 


