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In the Beginning...

March 2002



Azuro Day 1

» Some money in the bank from Angel Investors

» 2 employees

» Small Office rented from Cambridge University Computer Lab

Vision to automatically compile mainstream synchronous designs
into low power asynchronous equivalents

...50 why is Asynchronous design low power!?



Azuro Day 100

...after several meetings with chip companies, VCs and lots of whiteboard time
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Off-chip crystal J_
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How do make sure the pulse width
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Small local circuit which can be Very small and predictable W

carefully crafted and characterized
across multiple process corners, voltages, temperatures






Azuro Day 1

» Some money in the bank from Angel Investors

» 2 employees

» Small Office rented from Cambridge University Computer Lab

Vision to auto mpile mainstream synchronous designs
into low power asynchronous equiv

4

Vision to bring the low power benefits of asynchronous design to
the mainstream synchronous community



These delays don’t all have to be the same
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Power Saving Ideas

= Power in the clock
- |Is wasted if the register did not capture new data
— -> Clock gating

= Power in the datapath

— |Is wasted if the result of computation is not captured

— = Quarding
if(..)b=a+ ...
If will not g
accept data oo@@

S — — Don’t clock
reqgister

Don’t send data



First “Real” Idea: Guard Flops

= Saw that flop can be decomposed
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= So create “Guard Flop”

Control accepting data Control routing of data
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First “Real” Idea: Guard Flops

= Gained two US patents

= Reception was that it was still too disruptive
— Needed to create new standard cells
- New Methodologies ...
— Still too Async?

= Needed to come closer to the mainstream



Focus on Clock Gating

= Clock gates are like AND gates with one rising-
edge sensitive input
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Focus on Clock Gating

= Clock Gating in 2002 was primitive

— Instantiated directly from RTL expressions only
if (a)
b <= c;

= Three ways to improve:
- Find and exploit hierarchy
- Find new register-level expressions not in netlist
— Find sub-register-level expressions



Hierarchical Gating

J

= Finding expressions requires BDD-based netlist traversal
— Rarely as simple as observing an AND gate in the netlist!

= Multiple levels of hierarchy usually available
= Heuristics to limit levels to 2 or 3 to avoid clock impact
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Symbolic Gating

e e

= Use BDDs to decompose existing D-side function

CG

7 Next-state
function

— Gating function for whole register

— Next-state function assuming gating function pulled out

= May need to avoid decomposition

— If timing is tight, might need to pull out CG late in the

day, and put back in old (green) function




Structural Gating

= Generalization of previously-published work:

|
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= On it’'s own, this is useless
— Clock cap of CG as much or larger than flop!

= But can be combined with NAND, OR, and across
subsets of registers




Structural Gating

CG

Some parts of register

— may stay at logic O
\4 _ more than logic 1
= Use OR gate
for comparison
]
Register split into v |
number of clusters, —]
depending on simulation CG
information (SAIF, VCD)
1
\"4
: Key is to make
— the whole thing

activity-driven




First Product: PowerCentric
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Rapidly Adopt Azuro's CTS Tool

VICTORY!



First Product: PowerCentric

NASDAQ stock price
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First Product: PowerCentric

NASDAQ stock price
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Launch abort! Hunker down for phase 2



These delays don’t all have to be the same
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2004, In Azuro R&D

= Could now gate clock far more efficiently than any
competitor

= However, we couldn’t estimate effect on the clock tree

= Needed to generate our own clock tree synthesis algorithm
— Naturally, we used our Async experience ...



Azuro CTS

= Bottom-up clustering approach
— Cluster lower drivers together first
— More flexible, less “synchronous” in a way

= |deally suited to deep clock gating
— Also ~10% lower power
— But has other benefits



Azuro CTS

Productize Manage on-chip

useful skew ‘ ' variation

Azuro CTS
allowed
us to

!

Tame clock complexity



Clock Complexity

Clk-A™

T = A | L5

Clk-B

1,000 FFs

Do these
flops need to
be balanced?

10,000 FFs

to solve complex

Innovated LP-based
:3% < scheduling algorithm
c clock tree constraints
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On-Chip Variation

OCV derates hidden until CTS

clock (T)

Clock Timing
Gap

“Skew” does not include
OCV effects

clock (T)

——
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- 2Xto5X
clock period

D = clock period



OCV + Clock Complexity = Clock Timing Gap

Pre-CTS Timing Report Post-CTS Timing Report

Propagated clocks timing and ideal clocks timing are diverging
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~ Theclock timinggapis

Number of Paths
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65nm,c=27%of T
// / """""" K"““ """""""" 45nm, g = 50% of T
€<= —>

Difference in Pre- to Post-CTS Timing (% of period T)




Useful Skew

= Why does the clock need to arrive at every point at
the same time?

| CLK
600ps 1200ps 600ps
"'-_il Short "'-_il Long "'-_il Short "'-il-l
stage stage stage

= Cycle time: 1200ps

= Think Async: What would we do?



Useful Skew

|CLK
Advance this Delay this
signal 200ps signal 200ps
; N/ -
600 + 200ps v 1200ps — 400ps v 600 + 200ps
"'-_il Short "'-_il Long "'-_il Short "'-il-l
stage stage stage

= Cycle time now: 800ps
- 50% frequency improvement!



Useful Skew

= Has been tried before
— EDA vendors had useful skew engines
— Numerous academic papers on this

= Focus was either too lowbrow or too highbrow

— Tradtional approach was adding individual buffers.
No ability to decrease delay. Buffers cost power.

— Academic approach was solving chip-wide LP-style
problems. Too hard for “real” chips (1M+ instances).

— No consideration of complex clocks
— No consideration of on-chip variation



Azuro CTS

Productize Manage on-chip

useful skew. - ’ variation
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Tame clock complexity



Traditional
Design

Worst Path Closure

Speed limited by max D
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< H Chain § —

Clock Concurrent Worst Chain Closure
Design Speed limited by avg D




Need to be propagated clocks

slacks not ideal clocks slacks!
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slack1 = slack2 = slack3



Clock Concurrent Optimization (CCOpt)

Clock

Skew clocks and optimize logic concurrently

Always using propagated clocks slacks




Azuro CTS

Productize Manage on-chip

useful skew . ’ variation

Tame clock CompIeX|ty
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Cadence Acquires Azuro

Disruptive Technology Strengthens Cadence Digital Implementation Flow, Brings QoS in Power,
Performance and Area to Next-gen SoC Designs

SAN JOSE, Calif. , 12 Jul 2011

Cadence Design Systems, Inc. (MNASDAL: COMS), a leaderin global electronic design innaovation, today
announced it has acquired Azuro, Inc., a company that has pioneered a paradigm shift in the digital
implementation and optimization of next-generation SoCs. Azuro offers unigue clock concurrent optimization
technology, also known as ccopt, which delivers superior capahilities for designers faced with increasing
performance, power and area challenges. Specifically, ccopt technolagy has delivered significant quality of
silicon (Qo3) on high-speed processar designs in the areas of:

« Power (clock free power reduction up to 30 percent and total power improvements of up to 10 percent),
» Performance (improvements of up to 100 MHz for a GHz design), and
« Area (clock free area reduction up to 30 percent)
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