
A Random Walk from
Async to Sync

Paul Cunningham & Steev Wilcox

Thank You Ivan

In the Beginning…

March 2002

Azuro Day 1

Some money in the bank from Angel Investors

2 employees

Small Office rented from Cambridge University Computer Lab

…So why is Asynchronous design low power!?

Vision to automatically compile mainstream synchronous designs

into low power asynchronous equivalents

Level Sensitive Device

Azuro Day 100

…after several meetings with chip companies, VCs and lots of whiteboard time

A

B

Z

B A

A

B

4 transistors

LEVEL SENSITIVE AND GATE

C
A

B
Z Z

Z

A

B

B

A

12 transistors

3X

EDGE SENSITIVE AND GATE

Costs power to implement

Hard to “sign-off” across different
process corner, voltage, temperature

L
A

T
C

H

L
A

T
C

H
 Level

Sensitive

Logic

ctrl ctrl
delay

request

acknowledge

Gmax

D

Gmax < D

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

ctrl

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

ctrl

Gmax

Gmin

W

P

Hold Check: Gmin > W

Setup Check: Gmax < P

“clock”

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

ctrl

Gmax

Gmin

W

P

Hold Check: Gmin > W

Setup Check: Gmax < P

Off-chip crystal

oscillator

Pulse-flopped Synchronous Design

“clock”

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

Level

Sensitive

Logic

ctrl

L
A

T
C

H

ctrl

Gmax

Gmin

W

P

Hold Check: Gmin > W

Setup Check: Gmax < P

Off-chip crystal

oscillator

How do you shift values in
and out during chip test
without violating the hold
check?

How do make sure the pulse width
is predictable across multiple
process corner, temperature and voltages?

“clock”

Small W

Level

Sensitive

Logic

Level

Sensitive

Logic

Level

Sensitive

Logic L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

L
A

T
C

H

“clock”
L
A

T
C

H

L
A

T
C

H

Hold Check: Gmin > W

Setup Check: Gmax < P

Level

Sensitive

Logic

Level

Sensitive

Logic

Level

Sensitive

Logic

“clock”

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

L L

Hold Check: Gmin > W

Very small and predictable W

Setup Check: Gmax < P

Small local circuit which can be
carefully crafted and characterized
across multiple process corners, voltages, temperatures

“D-type flip-flop”
(DFF)

Azuro Day 1

Some money in the bank from Angel Investors

2 employees

Small Office rented from Cambridge University Computer Lab

Vision to automatically compile mainstream synchronous designs

into low power asynchronous equivalents

Vision to bring the low power benefits of asynchronous design to

the mainstream synchronous community

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

ctrl

These delays don’t all have to be the same

No data no latching
(consume power only when needed)

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

ctrl

These delays don’t all have to be the same

No data no latching
(consume power only when needed)

Power Saving Ideas

 Power in the clock

− Is wasted if the register did not capture new data

−  Clock gating

 Power in the datapath

− Is wasted if the result of computation is not captured

−  Guarding

a
b

+

If will not

accept data

Don’t clock

register

Don’t send data

if (…) b = a + …

First “Real” Idea: Guard Flops

 Saw that flop can be decomposed

 So create “Guard Flop”

T T

T T

T

T

Control accepting data Control routing of data

First “Real” Idea: Guard Flops

 Gained two US patents

 Reception was that it was still too disruptive

− Needed to create new standard cells

− New Methodologies …

− Still too Async?

 Needed to come closer to the mainstream

Focus on Clock Gating

 Clock gates are like AND gates with one rising-

edge sensitive input

T Enable

Clock in

Gated clock out

Clock in

Enable in

Clock out

Focus on Clock Gating

 Clock Gating in 2002 was primitive

− Instantiated directly from RTL expressions only
if (a)

 b <= c;

 Three ways to improve:

− Find and exploit hierarchy

− Find new register-level expressions not in netlist

− Find sub-register-level expressions

Hierarchical Gating

 Finding expressions requires BDD-based netlist traversal

− Rarely as simple as observing an AND gate in the netlist!

 Multiple levels of hierarchy usually available

 Heuristics to limit levels to 2 or 3 to avoid clock impact

CG CG
A & C A & B

CG CG
C B

CG
A

Symbolic Gating

 Use BDDs to decompose existing D-side function

− Gating function for whole register

− Next-state function assuming gating function pulled out

 May need to avoid decomposition

− If timing is tight, might need to pull out CG late in the

day, and put back in old (green) function

CG Gating

function

Next-state

function

Structural Gating

 Generalization of previously-published work:

 On it’s own, this is useless

− Clock cap of CG as much or larger than flop!

 But can be combined with NAND, OR, and across

subsets of registers

CG

Structural Gating

CG

…

…

CG

Register split into

number of clusters,

depending on simulation

information (SAIF, VCD)

Some parts of register

may stay at logic 0

more than logic 1

Use OR gate
for comparison

Key is to make

the whole thing

activity-driven

First Product: PowerCentric

VICTORY!

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

2007 2008 2009 2010

NASDAQ stock price

Azuro ready

to launch!

First Product: PowerCentric

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

2007 2008 2009 2010

NASDAQ stock price

Houston, we

have a problem …

Launch abort! Hunker down for phase 2

First Product: PowerCentric

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

Level

Sensitive

Logic

ctrl

request

acknowledge

L
A

T
C

H

ctrl

These delays don’t all have to be the same

No data no latching
(consume power only when needed)

These delays don’t all have to be the same

2004, In Azuro R&D

 Could now gate clock far more efficiently than any

competitor

 However, we couldn’t estimate effect on the clock tree

 Needed to generate our own clock tree synthesis algorithm

− Naturally, we used our Async experience …

Azuro CTS

 Bottom-up clustering approach

− Cluster lower drivers together first

− More flexible, less “synchronous” in a way

 Ideally suited to deep clock gating

− Also ~10% lower power

− But has other benefits

Azuro CTS

Azuro CTS
allowed

us to

Tame clock complexity

Manage on-chip

variation

Productize

useful skew

Clock Complexity

Innovated LP-based
scheduling algorithm

to solve complex
clock tree constraints

Do these
flops need to
be balanced?

On-Chip Variation

OCV derates hidden until CTS

OCV + Clock Complexity = Clock Timing Gap

Useful Skew

 Why does the clock need to arrive at every point at

the same time?

 Cycle time: 1200ps

 Think Async: What would we do?

Short
stage

Short
stage

Long
stage

600ps 600ps 1200ps

CLK

Useful Skew

Short
stage

Short
stage

Long
stage

600 + 200ps 600 + 200ps 1200ps – 400ps

CLK

Advance this

signal 200ps

Delay this

signal 200ps

 Cycle time now: 800ps

− 50% frequency improvement!

Useful Skew

 Has been tried before

− EDA vendors had useful skew engines

− Numerous academic papers on this

 Focus was either too lowbrow or too highbrow

− Tradtional approach was adding individual buffers.

No ability to decrease delay. Buffers cost power.

− Academic approach was solving chip-wide LP-style

problems. Too hard for “real” chips (1M+ instances).
− No consideration of complex clocks

− No consideration of on-chip variation

?

Azuro CTS

Tame clock complexity

Manage on-chip

variation

Productize

useful skew

D D1 D3

Traditional
Design

Worst Path Closure
Speed limited by max D

Chain

Path

Clock Concurrent
Design

Worst Chain Closure
Speed limited by avg D

2

D1 D3

slack1 slack2

slack3

slack1 = slack2 = slack3

Need to be propagated clocks
slacks not ideal clocks slacks!

?

D 2

Clock Concurrent Optimization (CCOpt)

Logic

D3

Clock

Skew clocks and optimize logic concurrently

Always using propagated clocks slacks

Azuro
Rubix
(CCOpt)

Azuro CTS

Tame clock complexity

Manage on-chip

variation

Productize

useful skew

Thank You

