A Random Walk from
Async to Sync

Paul Cunningham & Steev Wilcox

In the Beginning...

March 2002

Azuro Day 1

» Some money in the bank from Angel Investors

» 2 employees

» Small Office rented from Cambridge University Computer Lab

Vision to automatically compile mainstream synchronous designs
into low power asynchronous equivalents

...50 why is Asynchronous design low power!?

Azuro Day 100

...after several meetings with chip companies, VCs and lots of whiteboard time

Level Sensitive Device

LEVEL SENSITIVE AND GATE EDGE SENSITIVE AND GATE

vdd

>

A
B

A #f 4f
A —4[::::]}:— B B 4+ F |
|z —
AL ﬁ— ¢
al B 1
4 A 4; I[‘
BN

Vss

3X

4 transistors ‘ 12 transistors

ctrl

D

ﬁ Costs power to implement

request

ctrl

€

!

LATCH

acknowledge

Level
Sensitive
Logic

Gmax <D
S~ process corner, voltage, temperature

!

¥
LATCH

Hard to “sign-off” across different

ctrl

> requesty

ctrl

request

ctrl

request

acknowledge

LATCH

Level
Sensitive
Logic

LATCH

acknowledge

Level
Sensitive
Logic

LATCH

acknowledge

Level
Sensitive
Logic

ctrl

LATCH

ctrl

e

LATCH

Level
Sensitive
Logic

ctrl

LATCH

Level
Sensitive

Hold Check: Gmin > W

Setup Check: Gmax <P

ctrl

e

LATCH

Level
Sensitive
Logic

ctrl

e

LATCH

Off-chip crystal J_

o N

ctrl

e

LATCH

oscillator _|:_' |
«—
e B e W
) w

o N —>

| ctrl ctrl ctrl
I
Gmax

Level T Level T Level T
Sensitive » 2 » Sensitive = Sensitive =
< S Logic <

Logic

Pulse-flopped Synchronous Design

Hold Check: Gmin > W

Setup Check: Gmax <P

How do make sure the pulse width
is predictable across multiple

Off-chip crystal J_
oscillator -

:

o N

process corner, temperaturne and voltages?

) w
- Y —> 4—
| ctrl P
[o-m"
'7
1
\
Level o
Sensitive » g
Logic X
]
1
/
/
’
- -7

o ——— -

How do you shift values in
and out during chip test
without violating the hold

check?

Hold Check: Gmin > W

Setup Check: Gmax <P

ctrl

e

= ==ATCH .’

Level
Sensitive
Logic

-
i

N

\
1
i

v

Soo_LATCH—==J<{ & k—

LATCH

“clock”

LATCH

Level
Sensitive
Logic

LATCH

LATCH

Level
Sensitive
Logic

Hold Check: Gmin > W

Setup Check: Gmax <P \

LATCH

LATCH

Level
Sensitive
Logic

Small W

LATCH

LATCH

“clock”

“D-type flip-flop”

Sensitive

Logic

Sensitive
Logic

Sensitive
Logic

(DFF)
& =
0 (e N N T U e (N R N e

Hold Check: Gmin > W

Setup Check: Gmax <P \

Small local circuit which can be Very small and predictable W

carefully crafted and characterized
across multiple process corners, voltages, temperatures

Azuro Day 1

» Some money in the bank from Angel Investors

» 2 employees

» Small Office rented from Cambridge University Computer Lab

Vision to auto mpile mainstream synchronous designs
into low power asynchronous equiv

4

Vision to bring the low power benefits of asynchronous design to
the mainstream synchronous community

These delays don’t all have to be the same

request

© request > request
ctrl ctrl

ctrl ctrl

acknowledge \l/ acknowledge \l/ acknowledge \l/

Level
Sensitive
Logic

Level
Sensitive
Logic

Level
Sensitive
Logic

LATCH

LATCH
LATCH
LATCH

No data no latching
(consume power only when needed)

These delays don’t all have to be the same

ctrl

O request >

N request

Y

ctrl ctrl

request

acknowledge

LATCH

Level
Sensitive
Logic

\J/ acknowledge \l/

Level
Sensitive
Logic

LATCH
LATCH

No data no latching

acknowledge

Level
Sensitive
Logic

(consume power only when needed)

ctrl

LATCH

Power Saving Ideas

= Power in the clock
- |Is wasted if the register did not capture new data
— -> Clock gating

= Power in the datapath

— |Is wasted if the result of computation is not captured

— = Quarding
if(..)b=a+ ...
If will not g
accept data oo@@

S — — Don’t clock
reqgister

Don’t send data

First “Real” Idea: Guard Flops

= Saw that flop can be decomposed

\"4

1
[
_|
_l
I

= So create “Guard Flop”

Control accepting data Control routing of data

FP——-

First “Real” Idea: Guard Flops

= Gained two US patents

= Reception was that it was still too disruptive
— Needed to create new standard cells
- New Methodologies ...
— Still too Async?

= Needed to come closer to the mainstream

Focus on Clock Gating

= Clock gates are like AND gates with one rising-
edge sensitive input

Clock in

(rl_

Enable T

\V

Gated clock out

Clock in

Enable in

Clock out I\

Focus on Clock Gating

= Clock Gating in 2002 was primitive

— Instantiated directly from RTL expressions only
if (a)
b <= c;

= Three ways to improve:
- Find and exploit hierarchy
- Find new register-level expressions not in netlist
— Find sub-register-level expressions

Hierarchical Gating

J

= Finding expressions requires BDD-based netlist traversal
— Rarely as simple as observing an AND gate in the netlist!

= Multiple levels of hierarchy usually available
= Heuristics to limit levels to 2 or 3 to avoid clock impact

| 0o

Symbolic Gating

e e

= Use BDDs to decompose existing D-side function

CG

7 Next-state
function

— Gating function for whole register

— Next-state function assuming gating function pulled out

= May need to avoid decomposition

— If timing is tight, might need to pull out CG late in the

day, and put back in old (green) function

Structural Gating

= Generalization of previously-published work:

|
—1CG

A
B S

= On it’'s own, this is useless
— Clock cap of CG as much or larger than flop!

= But can be combined with NAND, OR, and across
subsets of registers

Structural Gating

CG

Some parts of register

— may stay at logic O
\4 _ more than logic 1
= Use OR gate
for comparison
]
Register split into v |
number of clusters, —]
depending on simulation CG
information (SAIF, VCD)
1
\"4
: Key is to make
— the whole thing

activity-driven

First Product: PowerCentric

(3\ HOME SERVICES NEWS EDUCATION ABOUT US
BusmmessWire

A Berkshire Hathaway Company

Solution
News & Analysis

synthesis
Peter Clarke

Hewport Media Adopts Azuro’s Clock Tree Solution

Ao .

Azuro’s PowerCentric™ Adopted by NVIDIA

NEWS & ANALYSIS: Chip Incubator Debuts 5t

Starc adopts Azuro's clock-t

aw Save . Export == Print 4 Cite

—

Ikanos Adopts Azuro PowerCentric CTS Solution

CERRD ' B v
- Cable Technology Feature Article

PowerCentric Reduces Power and increases Design Team Productivity for NVIDIA do September 04, 2008

=

arup] NX P Adopts Azuro PowerCentric
Clock Tree Synthesis

A8

i Save . Export = Print B Cite

—

Toshiba Selects Azuro's PowerCentric Clock Tree
Synthesis and Optimization Solution
Wireless News

B May 31, 2007 | Copyright

Newspaper

TSMC Selects Azuro's Low Power CTS Tool for
Integrated Sign-Off Flow

kd | = | Rate | Review | More EDA News

EEE] e CEEER s

New fully scripted RTL to GDSII Design Flow Enables Designers to
Rapidly Adopt Azuro's CTS Tool

VICTORY!

First Product: PowerCentric

NASDAQ stock price

3000
2800
2600
2400

2200

2000 Azuro ready
1800 to launch!

1600
1400
1200

1000
2007 2008 2009 2010

First Product: PowerCentric

NASDAQ stock price

3000
2800
2600

2400

2200
2000
1800

1600

1400 Houston, we
have a problem ...

1200

1000
2007 2008 2009 2010

Launch abort! Hunker down for phase 2

These delays don’t all have to be the same

ctrl

© request >

request

request

ctrl

ctrl

acknowledge

LATCH

Level
Sensitive
Logic

\l/ acknowledge

Level
Sensitive
Logic

LATCH

LATCH

No data no latching
(consume power only when needed)

acknowledge

Level
Sensitive
Logic

ctrl

LATCH

2004, In Azuro R&D

= Could now gate clock far more efficiently than any
competitor

= However, we couldn’t estimate effect on the clock tree

= Needed to generate our own clock tree synthesis algorithm
— Naturally, we used our Async experience ...

Azuro CTS

= Bottom-up clustering approach
— Cluster lower drivers together first
— More flexible, less “synchronous” in a way

= |deally suited to deep clock gating
— Also ~10% lower power
— But has other benefits

Azuro CTS

Productize Manage on-chip

useful skew ‘ ' variation

Azuro CTS
allowed
us to

!

Tame clock complexity

Clock Complexity

Clk-A™

T = A | L5

Clk-B

1,000 FFs

Do these
flops need to
be balanced?

10,000 FFs

to solve complex

Innovated LP-based
:3% < scheduling algorithm
c clock tree constraints

(-]

1,000 FFs [~
.{ "_\I AQI2

2,000 FFs

Clock Complexity é

On-Chip Variation

OCV derates hidden until CTS

clock (T)

Clock Timing
Gap

“Skew” does not include
OCV effects

clock (T)

——
-

- 2Xto5X
clock period

D = clock period

OCV + Clock Complexity = Clock Timing Gap

Pre-CTS Timing Report Post-CTS Timing Report

Propagated clocks timing and ideal clocks timing are diverging

A e AN b
~ Theclock timinggapis

Number of Paths

_~ growingexponentially

180nm,c=7%of T

65nm,c=27%of T
// / """""" K"““ """""""" 45nm, g = 50% of T
€<= —>

Difference in Pre- to Post-CTS Timing (% of period T)

Useful Skew

= Why does the clock need to arrive at every point at
the same time?

| CLK
600ps 1200ps 600ps
"'-_il Short "'-_il Long "'-_il Short "'-il-l
stage stage stage

= Cycle time: 1200ps

= Think Async: What would we do?

Useful Skew

|CLK
Advance this Delay this
signal 200ps signal 200ps
; N/ -
600 + 200ps v 1200ps — 400ps v 600 + 200ps
"'-_il Short "'-_il Long "'-_il Short "'-il-l
stage stage stage

= Cycle time now: 800ps
- 50% frequency improvement!

Useful Skew

= Has been tried before
— EDA vendors had useful skew engines
— Numerous academic papers on this

= Focus was either too lowbrow or too highbrow

— Tradtional approach was adding individual buffers.
No ability to decrease delay. Buffers cost power.

— Academic approach was solving chip-wide LP-style
problems. Too hard for “real” chips (1M+ instances).

— No consideration of complex clocks
— No consideration of on-chip variation

Azuro CTS

Productize Manage on-chip

useful skew. - ’ variation

?

1

Tame clock complexity

Traditional
Design

Worst Path Closure

Speed limited by max D

‘>

< H Chain § —

Clock Concurrent Worst Chain Closure
Design Speed limited by avg D

Need to be propagated clocks

slacks not ideal clocks slacks!

N

[

©
(..

slack1 = slack2 = slack3

Clock Concurrent Optimization (CCOpt)

Clock

Skew clocks and optimize logic concurrently

Always using propagated clocks slacks

Azuro CTS

Productize Manage on-chip

useful skew . ’ variation

Tame clock CompIeX|ty

Email [Share Subscribe Contact Print

Cadence Acquires Azuro

Disruptive Technology Strengthens Cadence Digital Implementation Flow, Brings QoS in Power,
Performance and Area to Next-gen SoC Designs

SAN JOSE, Calif. , 12 Jul 2011

Cadence Design Systems, Inc. (MNASDAL: COMS), a leaderin global electronic design innaovation, today
announced it has acquired Azuro, Inc., a company that has pioneered a paradigm shift in the digital
implementation and optimization of next-generation SoCs. Azuro offers unigue clock concurrent optimization
technology, also known as ccopt, which delivers superior capahilities for designers faced with increasing
performance, power and area challenges. Specifically, ccopt technolagy has delivered significant quality of
silicon (Qo3) on high-speed processar designs in the areas of:

« Power (clock free power reduction up to 30 percent and total power improvements of up to 10 percent),
» Performance (improvements of up to 100 MHz for a GHz design), and
« Area (clock free area reduction up to 30 percent)

Vtank You

