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Introduction

Side Channel Attacks - Exploit Correlation
Processed Internal Data
Measured Parameter(s)

Why power Consistency is needed?
Against Power Attacks
Widely utilised: Differential Power Analysis (DPA)

Why Montgomery Multiplier (MM)?
(One of the) Most Modular Multiplication for Elliptic
Curve Cryptography (ECC), RSA.
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Attack on Cryptographic System

Why Power is not Consistent?

Highly data dependent, glitches, hazards, etc.
to Diffirential Power Analysis.

Existing techniques, approaches?

Data independent power consumption CMOS logic
(no glitch occurrence)

Only circuits implemented, i.e., s-box, XOR
gates, ...
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Latch-less Asynchronous Charge

Sharing Logic (LACSL)

Predecessor -- ACSL:

Low (dynamic, static) power.
Dual-rail: robust against variations.

But, latch still involved, data dependant.
Also, power can still be reduced.
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ACSL generic structure, block diagram

and waveforms
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LACSL- How to spare latches?

We use interleaved charge sharing (at least one isolation
stage). — No dedicated storage elements required yet signal
validity preserved.

However, the handshaking transition diagram remains the
same as for ACSL. — no conflicts
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LACSL Montgomery Multiplier

Carry Save Adder Array Based
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LACSL Montgomery Multiplier Reform

How we change the formation?
Split CSA and mix with AND gates into a layer of Half adder

HA & AND and a layer of HA & OR.
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LACSL Montgomery Multiplier Reform

LACSL vs ACSL VPC waveforms
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LACSL MM Implementation Results

32-bit extensively invesitaged using HSPICE. Other bigger
size, up to 256-bit also simulated. 45nm, VDD=1V

For the 32-bit MM:

1) fixed X, fixed M, Y with different Hamming
weights ranging from 10 to 22 -- Energy/lteration

2) 100 sets of random X, fixed M, random Y — Energy/Operand

For the 64-bit, 128-bit, and 256-bit LACSL MMs, 10 iterations
of random input vectors with corresponding bit-width are
generated and simulated.
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32-bit LACSL MM vs ACSL MM

Power, Delay per Cycle
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32-bit LACSL MM vs ACSL MM

Energy Cycle
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32-bit MMs Data Comparison

Comparison Metrics

Maximum Energy Consumption [fJ]
Minimum Energy Consumption [fJ]

Normalized Energy Deviation (NED)

Maclenergy | avcle) -Min(energy | cacle)

NED =

Max(energy | cvcle)

Standard Deviation (SD) [f)]
Average Energy Consumption [fJ]
Normalized Standard Deviation
Leakage Power [uW]
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32-bit MMs Data Comparison (2)

32-bit MMs ACSL per cycle LACSL per cycle LACSLp ;fyo perand

MAX (fJ) 1288 439 14832

MIN (fJ) 450 418 14698
NED 0.048

SD (fJ) 215 4.7 23

Mean (fJ) 733 428 14752

NSD 0.29 0.011 0.0015
Leakage Power (uW) 7.1 2.05 2.05

Less than 1% Normalized Energy Deviation
reduction of average energy consumption
leakage power reduction
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64, 128, 256-bit LACSL MMs Data -- Scalability
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The highest deviation is only 0.5% !
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Conclusions

Latch-less Asynchronous Charge Sharing Logic is based on ACSL
without using the dedicated latches and thus it can achieve
power consistency.

Interleaving charge sharing is utilized to preserve data integrity.
A LACSL Montgomery Multiplier is developed by spliting and
mixing different layers of the original structure.

Various LACSL MMs are simulated. High power/energy
consistency is demonstrated.

Normalised Energy Deviation less than 1%.

45% energy savings over ACSL MMs.

3.5x less leakage power over ACSL MMs.

Good scalability is demonstrated.
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Questions?

Thank you for your attention!



