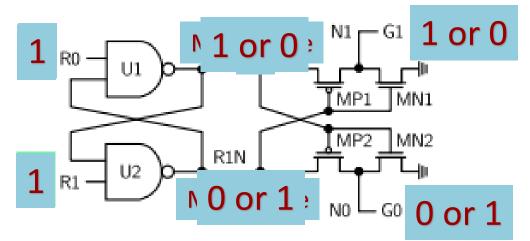


Design and Analysis of Testable Mutual Exclusion Elements

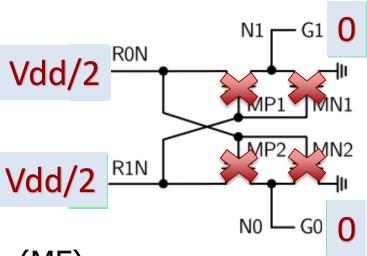
05/06/2015

Yang Zhang, Leandro S. Heck, Matheus T. Moreira, David Zar, Mel Breuer, Ney L. V. Calazans and Peter A. Beerel



Introduction

- ✤ MUTEX and Its Operation
- Motivation
- Proposed Testable MUTEX (Full-Custom)
 - ✤ Structure
 - ✤ Fault Coverage
 - ✤ Testable Metastability Filter
- Proposed Testable MUTEX (Standard-Cell)
 - Structure
 - ✤ Fault Coverage
 - Testable Metastability Filter
- Experimental Results and MetaACE Analysis of Settling Times



Operation

- Mutually exclusively raise grant (G0 or G1) in response to requests (R0 and R1)
- Metastability (MS)
 - Outputs of NAND gates may stay close to Vdd/2 for an unbounded amount of time

Metastability Filter

- Metastability Filter (MF)
 - Guarantee grant outputs (G0 and G1) remain stable 0 until MS is resolved
 - ✤G0 to 1 only when R0N and R1N differ by more than V_t of PMOS transistors MP1/MP2

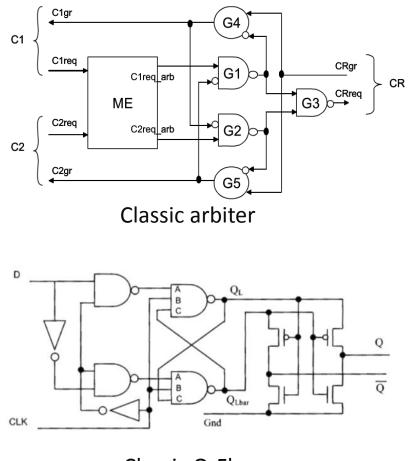
USC Viterbi

School of Engineering

MUTEX Applications

✤ Pausible Clocking Circuits

Arbitrate b/w clock and pause signals


✤ Asynchronous Crossbar / NoC routers

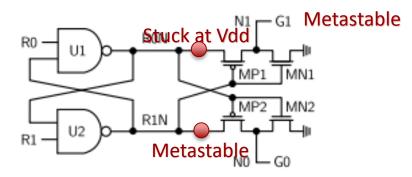
Typically contains arbiters to decide

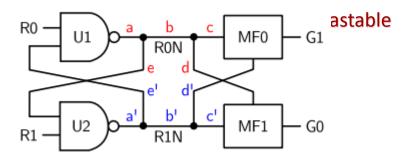
the access to output ports

Arbiters contains MUTEXes

- Asynchronous Resilient Computing (Blade)
 - ✤ Relies on Q-Flop to sample error signal
 - ✤ Q-Flop contains a MUTEX
 - ✤ Async control waits for MS to resolve

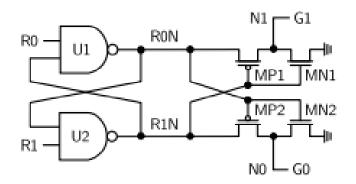
Classic Q-Flop


Motivation

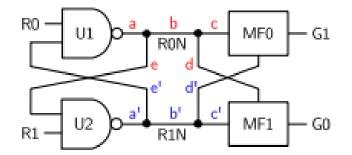

- Possible outcomes of metastability
 - Metastability can delay outputs significantly
 - Failure in Metastability Filter may allow metastability to propagate
- Functional testing is not sufficient
 - Hard to guarantee testing metastability due to fs-timing required
 - Miss testing key behavior of control circuits driven by MUTEXes

Drawback 1: Undetectable Stuck-At Faults

Node	Test	Detectable	Test Vector {R0, R1}	Fault-free Output {G0, G1}	Faulty Output {G0, G1}
R0	SA0	Yes	{1, 0}	{1, 0}	{0, 0}
R0	SA1	Yes	{0, 0}	{0, 0}	{1, 0}
с	SA0	Yes	{0, 1}	{0, 1}	{0, 0}
С	SA1	No	-	-	-
c'	SA0	Yes	{1, 0}	{1, 0}	{0, 0}
C'	SA1	No	-	-	-


Gate-level model

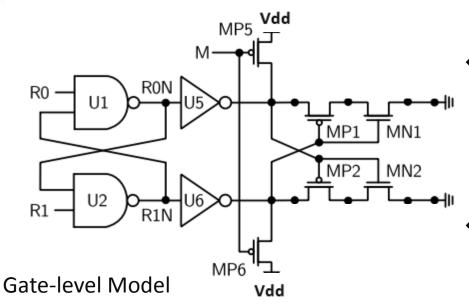
- Two SAFs not detected
- Nodes c and c'

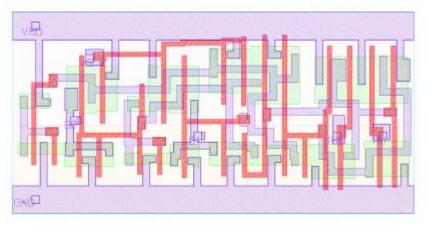

stuck-at-1

Stuck-At Fault Analysis for FC-MUTEX

Drawback 2: Non-testable MS Filter

Full-custom MUTEX design

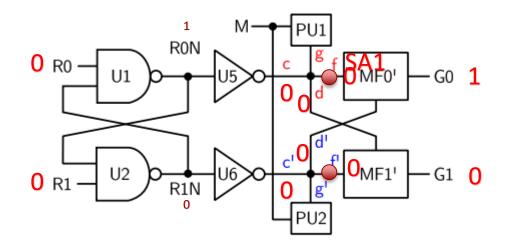

Gate-level Model


- No single test vector generates prolonged metastablility
- ✤Test vector pair (R0, R1) = (0,0) → (1,1)

May generate MS but depends on exact input timing
May be short-lived

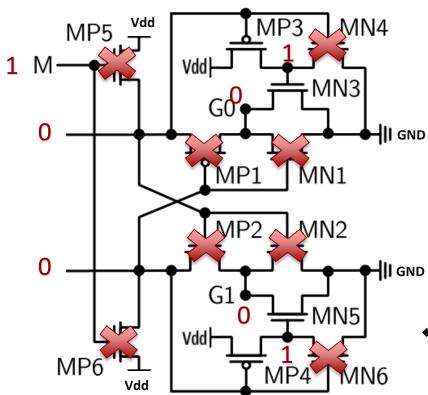
Proposed Testable MUTEX (Full-Custom)

- Two inverters U5 and U6 added
 - Isolates MS nodes
- Two PMOS MP5 and MP6 added
 Helps test metastability filter


Forces MS when R0=R1=M=0

Layout (STM 65nm)

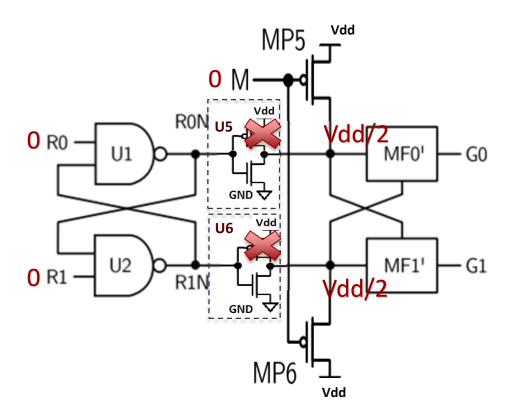
Fault Coverage



- The marked SA1 faults are undetectable in classic MUTEX
- Now they become testable!

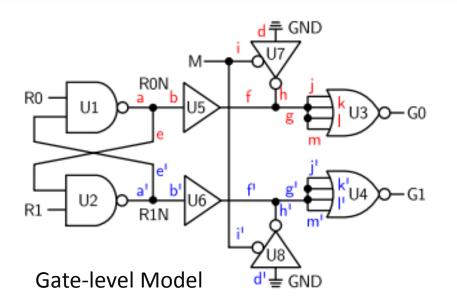
Node	Test	Detectable	Test Vector {R0, R1, M}	Fault-free Output {G0, G1}	Faulty Output {G0, G1}
R0	SA0	Yes	$\{1, 0, 1\}$	{1, 0}	{0, 0}
R0	SA1	Yes	{0, 0, 1}	$\{0, 0\}$	<i>{</i> 1 <i>,</i> 0 <i>}</i>
f	SA0	Yes	$\{1, 0, 1\}$	<i>{</i> 1 <i>,</i> 0 <i>}</i>	{0, 0}
f	SA1	Yes	$\{0, 0, 1\}$	{0, 0}	$\{1, 0\}$
f'	SA0	Yes	$\{0, 1, 1\}$	$\{0, 1\}$	{0, 0}
f'	SA1	Yes	$\{0, 0, 1\}$	{0, 0}	{0, 1}

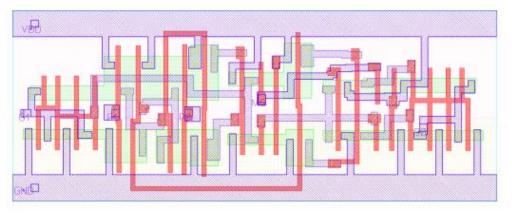
Floating Output Problem and Solution


- The Problem: G0 and G1 may float
 - ♣ {R0, R1, M} = {0, 0, 1}
 - ✤MF inputs are 0
 - MP1, MN1, MP2, MN2 are in cut-off state
 - ✤G0 and G1 float
- The Solution for floating GO
 - ✤Add MP3, MN3 and MN4

Forces a strong 0 on G0

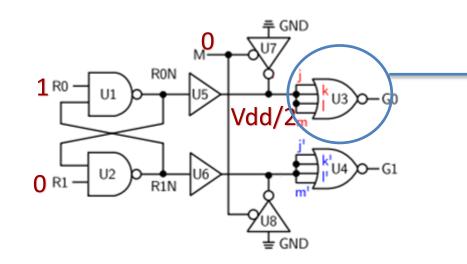
Same solution for node G1 Page 10

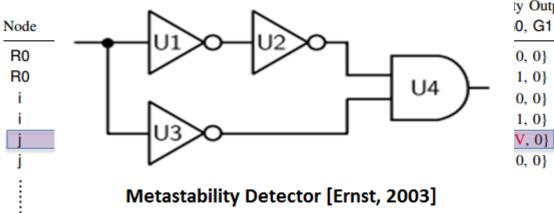

Testable Metastability Filter

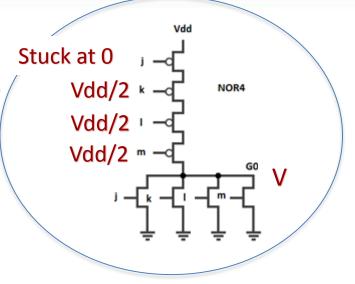


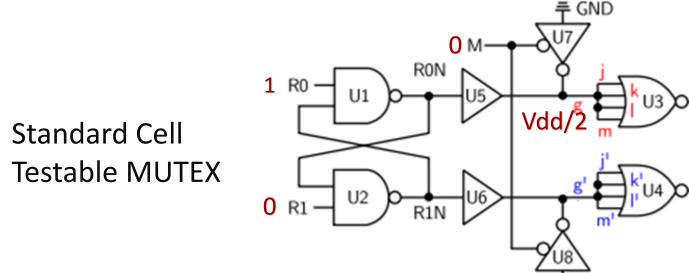
The input of MS filter is ~Vdd/2 when M = 0 and input of U5 = 1

Proposed Testable MUTEX (Standard-Cell)


- Two tri-state inverters U7 and U8 added
 - Help test metastability filter
- Two buffers U5 and U6 added
 - Isolate metastable nodes
 - Help test metastability filter


Layout (STM 65nm)


Fault Coverage



- ty Output 0, G1} GO=
 - G0=0 when NOR4 inputs are Vdd/2
 - If one of inputs is SAO,
 - voltage of G0 will increase
 - May be detected by a metastability detector

G0

The input of MS filter (NOR4) is ~Vdd/2 when M=0 and input of U5=0

GND

Experimental Results - Overheads

ENERGY, LEAKAGE POWER, DELAY AND AREA TRADE-OFFS FOR MUTEXES.

Designs	Avg EPT	Avg Leak. Power	Avg t_{pd}	Avg Tran. Delay	Area
FC-MUTEX DFT-FC-MUTEX	4.81 fJ 5.99 fJ	117.83 nW 231.59 nW	48.77 ps 44.53 ps	16.64 ps 32.64 ps	9.36 μm ² 13.52 μm ²
Overhead	25%	97%	-9%	96%	44%
SC-MUTEX DFT-SC-MUTEX	3.02 fJ 5.76 fJ	71.45 nW 163.81 nW	61.09 ps 86.33 ps	70.96 ps 72.80 ps	9.88 μm ² 17.16 μm ²
Overhead	91%	130%	41%	2%	74%

- Proposed design introduces overheads because of added transistors
- DFT-FC-MUTEX has a smaller propagation delay than original

DFT-SC-MUTEX has a larger propagation delay than original

Experimental Results and MTBF Analysis

Mean Time Between Failure (MTBF) Analysis

$$MTBF = \frac{e^{t_s/\tau}}{t_w f_c f_d}$$

- τ is the resolution time constant
- t_s is the settling time in which metastability should resolve to a valid logic value
- t_w is the time window during which the MUTEX is vulnerable to metastability
- f_c and f_d are respectively the clock and data rates

Async circuits with MUTEXes typically <u>do not "fail"</u> but do instantaneously <u>slow down</u>

Experimental Results - MTBF

VARIATION OF MTBF FOR SEVERAL VALUES OF t_s (TT CORNER, 1.0V AND 25°C, $f_c = 200$ MHz and $f_d = 133$ MHz).

		MTBF (years) when $t_s = N \times t_{pd}$					
Designs	t_w	N = 1.5	N=2	N = 3	N = 5	N = 10	
FC-MUTEX	60.0e-12	2.2e-11	1.8e-10	1.2e-08	5.2e-05	6.7e+04	
DFT-FC-MUTEX	61.2e-12	1.7e-11	1.3e-10	7.3e-09	2.4e-05	1.5e+04	
SC-MUTEX	54.5e-12	1.0e-10	1.3e-09	2.4e-07	7.3e-03	1.2e+09	
DFT-SC-MUTEX	40.0e-12	3.1e-09	1.2e-07	1.7e-04	3.4e+02	2.0e+18	

- Mean Time Between Failures (MTBF) analyzed using Blendics's MetaAce
- Consider t_s values of 1.5, 2, 3, 5 and 10 times t_{pd}, where t_{pd} is the nominal delay of the MUTEX under analysis

Metastability resolves close to as fast as original MUTEXes

Experimental Results – PVT Analysis

Analysis of the changes in τ (ps) due to P, V, and T variations.

	τ (ps) for 1.0V, 25°C varying process (P)			τ (ps) for TT, 25°C varying voltage (V)			τ (<i>ps</i>) for TT, 1.0V varying temperature (T)		
Designs	SS	TT	FF	0.9V	1.0V	1.1V	-55°C	25°C	120°C
FC-MUTEX	14.3	11.6	9.64	13.9	11.6	10.3	9.81	11.6	13.7
DFT-FC-MUTEX	13.9	10.9	9.12	13.5	10.9	9.78	9.48	10.9	13.0
SC-MUTEX	14.7	11.8	9.83	14.1	11.8	10.4	9.94	11.8	13.9
DFT-SC-MUTEX	14.6	11.8	9.84	14.1	11.8	10.5	10.0	11.8	13.9

The proposed MUTEXes have similar τ values to classic ones, even under PVT variation

- New structures for testable MUTEXes proposed
 - Both full-custom and standard-cell versions
 - Layout created and analyzed
- Key Features
 - Improve fault coverage to 100%
 - Enable testing of Metastability Filters
 - Metastability resolution times not adversely effected
- Performance and power overheads analyzed

Future Work

- Scrutinize impact of local PVT variations on MTBF of new MUTEXes
- Tri-state buffers may not be available in all standard-cell libraries
 - Explore alternatives for semi-custom testable MUTEXes
- Test proposed MUTEXes in silicon

Thank You!

