

ASYNC 2015 - Fresh Ideas

Asynchronous Design for Harsh Environments

Jeremy Lopes¹²⁴, Gregory Di Pendina¹, Edith Beigne³ and Lionel Torres⁴

¹Univ. Grenoble Alpes, CNRS, CEA INAC-SPINTEC, Grenoble, France ²CNES, Service Environnement et Composants nouveaux DCT/AQ/EC ³CEA LETI, Minatec, Grenoble, France ⁴LIRMM, UMR CNRS 5506, University of Montpellier, France

CONFIDENTIAL

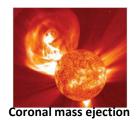
Introduction

Simulation methodology

Simulation results

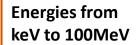
Introduction

- Simulation methodology
- **Simulation results**
- **Conclusion and Perspectives**


Radiation induced particles

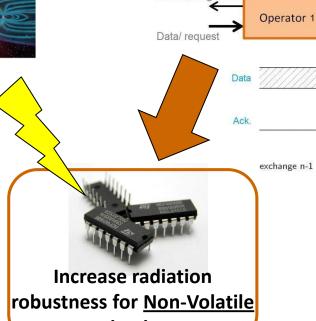
Solar Flare

Energies from keV to 100MeV



exchange n+1

Radiation induced particles



Solar wind

Coronal mass ejection

Asynchronous Communication

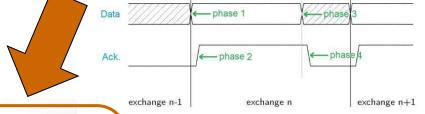
exchange n

Acknowledgement

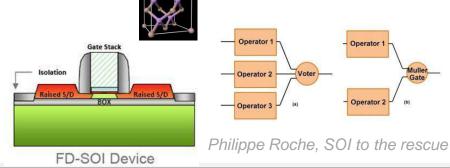
circuits

Radiation induced particles

Energies from keV to 100MeV



Solar wind

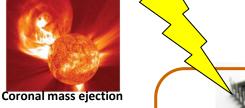

Asynchronous Communication

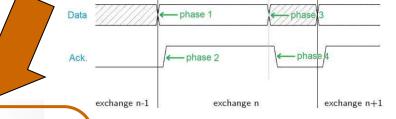
Increase radiation robustness for Non-Volatile circuits

Radiation Hardening Techniques/Process

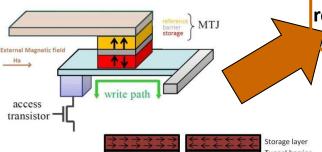
Radiation induced particles

Solar wind

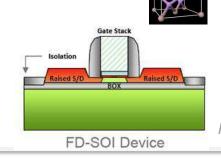

Asynchronous Communication

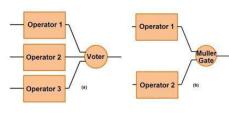

Energies from keV to 100MeV

Solar Flare



Reference laver




Non-Volatile Memory

Increase radiation robustness for Non-Volatile circuits

Radiation Hardening Techniques/Process

Philippe Roche, SOI to the rescue

Harold Hughes, Radiation studies of spin-transfer torque materials and devices

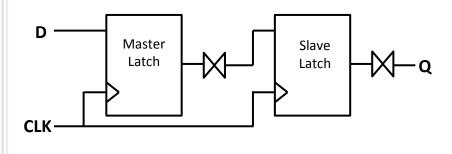
Parallel (R_p)

Anti-parallel (Rap)

Introduction

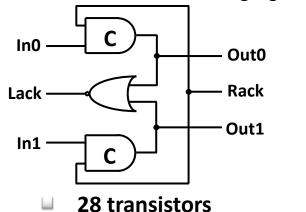
Simulation methodology

Simulation results



Simulation methodology: Simulated circuits

Synchronous


Flip-Flop = Master latch & Slave latch

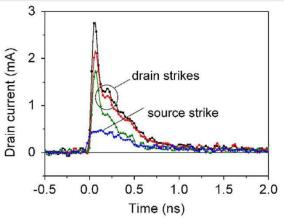
- 26 transistors
- 15 sensitive nodes

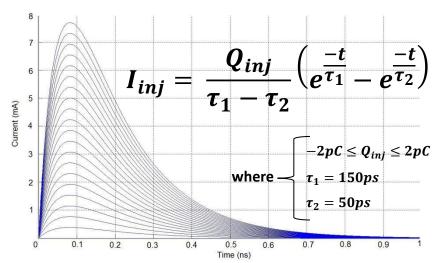
Asynchronous

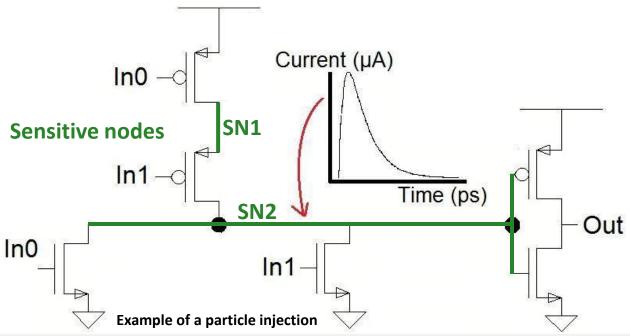
Half-Buffer = 2 Muller cells & 1 logic gate

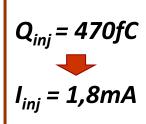
- 14 sensitive nodes
- Identical timing through transistor sizing

Circuit type	Number of Errors
Flip-Flop	0.41
NV STT Flip-Flop	0.47
NV SOT Flip-Flop	0.43
Half-Buffer	0.35
NV STT Half-Buffer	0.82
NV SOT Half-Buffer	0.66






Simulation methodology: Particle injection



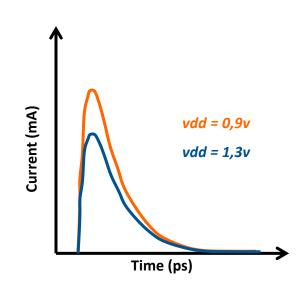
Ferlet-Cavrois, V and Paillet, P and Gaillardin, and others, Statistical analysis of the charge collected in SOI and bulk devices under heavy lon and proton irradiation implications for digital SETs, Nuclear Science, IEEE Transactions on, 2006, vol. 53, no 6, pp. 3242-3252.

CONFIDENTIAL

Introduction

Simulation methodology

Simulation results



Simulation results: Influence of the supply voltage

Observations:

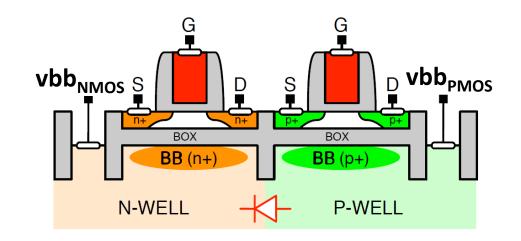
As the supply voltage increases, the amplitude of the induced pulse decreases.

Explanation:

As the supply voltage increases the conductance of the transistors increases also.

Conclusion:

Use the highest supply voltage permitted by the technology for increasing the robustness toward radiation.



Simulation results: Impact of the threshold voltage

Observations:

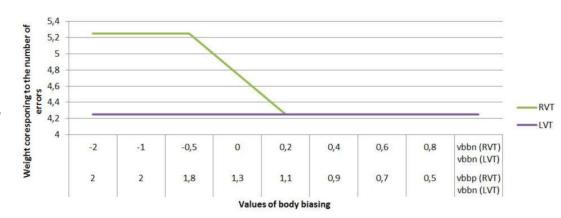
LVT transistors are more robust than RVT transistors.

Explanation:

LVT transistors have a higher leakage than RVT, so the induced current pulses are evacuated quicker due to the lower resistance.

Conclusion:

Use LVT transistors for space applications.


Simulation results: Influence of body biasing

Observations:

RVT transistors: The number of errors decreased as vbb increased.

LVT transistors: vbb has no effect on the number of errors.

Explanation:

As vbb increases in RVT transistors, there response is boosted and the accumulated charges caused by particle strikes can be evacuated quicker.

LVT already have a low vt so the accumulated vt can be evacuated quicker.

Conclusion:

Body biasing has no effect on hardening when using LVT transistors.

Introduction

Simulation methodology

Simulation results

Conclusion and Perspectives

Total Number of simulations ≈ 2000

(Number of input combinations \times Number of Sensitive Nodes \times 2 = Number of simulations)

The simulation results have demonstrated that using the highest supply voltage permitted by the technology, in conjunction with LVT transistors is the best option to harden systems at transistor level.

Next Steps:

- Comparison of Synchronous and Asynchronous architectures in a pipeline
- **Integration of MTJs in both Synchronous and Asynchronous**
- Hardening by design (TMR, DMR)
- **Architecture level studies**

Thank you for your attention!

jeremy.lopes@cea.fr

