Analyzing Isochronic Forks with Potential Causality

Rajit Manohar¹ Yoram Moses²

¹Cornell Tech, New York, NY 10011, USA

²Technion-Israel Institute of Technology, Haifa 32000, Israel

May 6, 2015

Isochronic forks

- Difference between purely delay-insensitive circuits and *quasi* delay-insensitive (QDI) circuits
- Some informal descriptions:
 - "we have to assume that the difference between the delays in the branches of the fork is negligible compared to the delays in the gates."
 - "we assume that, when transition x₁↑ has been acknowledged by transition y↑, transition x₂↑ is also completed."

Most recent approach notes the impact of an adversarial path

Intuition:

 If x to x₂ is an isochronic branch, then an error due to a slow transition on x₂ must manifest itself because some other path from x eventually causes a mis-firing of the gate that has x₂ as input.

A complex proof sketch in Keller et al. (ASYNC 2009).

Distributed systems

- "Asynchronous" processes
- Message-passing for communication
- Many classic results

Connecting this theory to circuits:

- Processes → gates
- Messages \mapsto signals

Foundational techniques:

• "Happened-before" causality relation (Lamport 1978)

- Connecting asynchronous design with the distributed systems literature
 - Formalization of asynchronous computations
 - The notion of potential causality adapted
 - The past theorem
- Using this formalism, rigorous proofs of:
 - Firing loop theorem
 - Aversarial firing chain theorem

A rigorous proof of the nature of the isochronic fork timing assumption

CORNELL

ACOBS

CORNELL

JACOBS

V: a set of variables

Production rules:

B → z↑ or B → z↓
 where z ∈ V, B is a formula over the variables in V

• A gate is a pair $B_u \mapsto z\uparrow$, $B_d \mapsto z\downarrow$

Circuit: a collection of |V| gates, one per $z \in V$

A configuration of a circuit is an assignment $c \colon V \to \{0, 1\}$

A PR is *enabled* in a configuration if its guard is true.

A computation is an infinite sequence $s \colon \mathbb{N} \to \mathcal{C}$

- s(t + 1) is obtained from s(t) by firing zero or more PRs enabled at s(t)
- $s_{x}(t)$: the value of variable x at time t
 - "x changes at time t in s" $\stackrel{\text{def}}{=} s_x(t+1) \neq s_x(t)$

CORNELL

ACOBS

We use the notation

 $\langle x, m \rangle$

to represent a node.

- Node: represents the state of a variable at different times (Note that the value of x at time m in a computation s is s_x(m))
- We will reason about the relation between nodes in a computation

AVLSI

We write:

$$\langle y, m \rangle \hookrightarrow_{\mathbf{s}} \langle z, m+1 \rangle$$

iff

- a PR with output z performs an effective firing at s(m);
- y is in the support of the guard of the PR that fired

If in a computation s, $c\downarrow$ fires at time 100, then

$$\langle a, 100
angle \hookrightarrow_{s} \langle c, 101
angle \quad \wedge \quad \langle b, 100
angle \hookrightarrow_{s} \langle c, 101
angle$$

Not the same as true causality

For a computation s, we define \leq_s as the unique minimal relation that satisfies:

Locality: $\langle y, t \rangle \preceq_s \langle y, t' \rangle$ if $t \leq t'$;Successor: $\langle y, t \rangle \preceq_s \langle z, t+1 \rangle$ if $\langle y, t \rangle \hookrightarrow_s \langle z, t+1 \rangle$;Transitivity: $\langle y, t \rangle \preceq_s \langle z, t' \rangle$ if, for some $\langle x, m \rangle$, both
 $\langle y, t \rangle \preceq_s \langle x, m \rangle$ and
 $\langle x, m \rangle \preceq_s \langle z, t' \rangle$.

CORNELL

ACOBS

Definition

There is a **chain of firings from** $\langle y, t \rangle$ **to** $\langle z, t' \rangle$ **in the computation** *s* if there is a sequence of variables $x_1, \ldots, x_k = z$ and a sequence of monotonically increasing times t_1, \ldots, t_k with $t \leq t_1$ and $t_k < t'$, such that $\langle y, t_1 \rangle \hookrightarrow_s \langle x_1, t_1 + 1 \rangle$ and such that $\langle x_{i-1}, t_i \rangle \hookrightarrow_s \langle x_i, t_i + 1 \rangle$ holds for all $2 \leq i \leq k$.

Lemma

Let $y \neq z$. Then $\langle y, t \rangle \preceq_s \langle z, t' \rangle$ iff both t < t' and there is a chain of firings from $\langle y, t \rangle$ to $\langle z, t' \rangle$ in s.

Why?

- The only way to move to a different variable in ≤s is through the successor clause, i.e., a firing
- Related nodes are ordered in time

Definition

Given a computation s and a set T of variable-time nodes, we define:

$$ext{past}_{s}(T) = \bigcup_{\langle y', m' \rangle \in T} \{ \langle x, m \rangle : \langle x, m \rangle \preceq_{s} \langle y', m' \rangle \} .$$

Intuition:

• Given a node, its state can only be impacted by its past

AVLSI

- Given a circuit A, a computation s, times m < m'
- Given T, a set of nodes $\langle y, m'
 angle$ at time m'

Theorem (past theorem)

There is a computation s' of A such that:

- s'(t) = s(t) for all times $t \le m$;
- For all variables x and times t in the range $m < t \le m'$:

(a)
$$s_x'(t) = s_x(t)$$
 if $\langle x, t
angle \in extsf{past}_s(\mathcal{T})$, and

(b) $s'_x(t) = s_x(m)$ if $\langle x, m+1 \rangle \notin \text{past}_s(T)$.

CORNELL

ACOB

Original computation:

Nodes in the past of T:

The construction of s':

- Upto time *m*, replicate firings from *s*;
- Beyond time m, only replicate firings when the appropriate node is in past_s(T)

Main proof obligation: enabled firings in s are enabled in s^\prime (see <code>paper</code>)

Non-isochronic branches

Original circuit: A (left) Modified circuit: A^{\dagger} (right) What can we say about A^{\dagger} ?

ORNELL ECH

JACOBS

If the introduced buffer is on a non-isochronic branch, then:

Theorem (firing loop)

For every computation w^{\dagger} of A^{\dagger} where x changes at times t and t' > t, there is a chain of firings from $\langle x, t + 1 \rangle$ to $\langle x, t' + 1 \rangle$ in w^{\dagger} that includes a change in x^{\dagger} .

Proof:

• Use the past theorem with

$$T = \{ \langle x, t' + 1 \rangle \}; \quad m := t; \quad m' := t' + 1$$

- The past theorem gives us u[†]: a new computation in A[†] with only the firings from the past of T
- We know that x^{\dagger} is stable, and x changed twice.
- $\Rightarrow x^{\dagger}$ must have fired in u^{\dagger} at some time t'', t < t'' < t'.

Proof:

• Use the past theorem with

$$T = \{ \langle x, t'+1 \rangle \}; \quad m := t; \quad m' := t'+1$$

- The past theorem gives us u[†]: a new computation in A[†] with only the firings from the past of T
- We know that x^{\dagger} is stable, and x changed twice.
- $\Rightarrow x^{\dagger}$ must have fired in u^{\dagger} at some time t'', t < t'' < t'.

Proof:

• Use the past theorem with

$$T = \{ \langle x, t'+1 \rangle \}; \quad m := t; \quad m' := t'+1$$

- The past theorem gives us u[†]: a new computation in A[†] with only the firings from the past of T
- We know that x^{\dagger} is stable, and x changed twice.
- $\Rightarrow x^{\dagger}$ must have fired in u^{\dagger} at some time t'', t < t'' < t'.

CORNELL

ACOB

Proof:

• Use the past theorem with

$$T = \{ \langle x, t'+1 \rangle \}; \quad m := t; \quad m' := t'+1$$

- The past theorem gives us u[†]: a new computation in A[†] with only the firings from the past of T
- We know that x^{\dagger} is stable, and x changed twice.
- $\Rightarrow x^{\dagger}$ must have fired in u^{\dagger} at some time t'', t < t'' < t'.

CORNELL

ACOB

Isochronic branches

Original circuit: A (left) Modified circuit: A^{\dagger} (right) When are they "the same"?

ORNELL ECH

JACOBS

Given a computation s, we define \underline{s} as the **stuttering-free** variant of s.

Lemma

If s is a computation of a circuit A, then \underline{s} is also a computation of A.

Given two circuits:

- A with variables V and a computation s
- A' with variables added to V, modified production rules, and a computation w
- $w|_V$: the **restriction** of w to the variables in V

Isochronic branches

Lemma

CORNELL

JACOBS

For every computation s of A, there exists a computation w^{\dagger} of A^{\dagger} where $s \approx w^{\dagger}$.

An even stronger requirement:

Definition Given computation s of A and w^{\dagger} of A^{\dagger} , we write $s \sim_m w^{\dagger}$ (s and w^{\dagger} are **compatible for** m **rounds**) if $s(t) = w^{\dagger}|_V(t)$ for t = 0, ..., m.

Lemma

 For all w^{\dagger} of A^{\dagger} , there exists s of A such that $s \approx w^{\dagger}$ iff there is an s' of A such that $s' \sim_m w^{\dagger}$ for all m.

- Suppose w^{\dagger} is a computation of A^{\dagger} , and
- $s \approx w^{\dagger}$ holds for *no computation s* of A

Then:

ORNELI

Theorem (adversarial firing chain)

There is a firing chain in w^{\dagger} from $\langle x, t \rangle$ to $\langle y, t' \rangle$ for some times t < t' that does not include a firing of x^{\dagger} ; in particular, x^{\dagger} is unchanged between t and t' in w^{\dagger} .

Let m' > 0 be the largest time where there is some s of A where

 $s\sim_{m'}w^\dagger$

- ullet \Rightarrow an effective firing at m' in w^{\dagger} that cannot occur in s
- the only choice is $y \Rightarrow s_x(m') \neq w^{\dagger}_{x^{\dagger}}(m')$, hence $w^{\dagger}_x(m') \neq w^{\dagger}_{x^{\dagger}}(m')$
- $w_x^{\dagger}(0) = w_{x^{\dagger}}^{\dagger}(0)$ implies a firing of x in w^{\dagger} before m'

Let m' > 0 be the largest time where there is some s of A where

 $s\sim_{m'}w^\dagger$

- ullet \Rightarrow an effective firing at m' in w^{\dagger} that cannot occur in s
- the only choice is $y \Rightarrow s_x(m') \neq w_{x^{\dagger}}^{\dagger}(m')$, hence $w_x^{\dagger}(m') \neq w_{x^{\dagger}}^{\dagger}(m')$
- $w_x^{\dagger}(0) = w_{x^{\dagger}}^{\dagger}(0)$ implies a firing of x in w^{\dagger} before m'

Let m' > 0 be the largest time where there is some s of A where

 $s\sim_{m'}w^\dagger$

- ullet \Rightarrow an effective firing at m' in w^\dagger that cannot occur in s
- the only choice is y $\Rightarrow s_x(m') \neq w^{\dagger}_{x^{\dagger}}(m')$, hence $w^{\dagger}_x(m') \neq w^{\dagger}_{x^{\dagger}}(m')$
- $w_x^{\dagger}(0) = w_{x^{\dagger}}^{\dagger}(0)$ implies a firing of x in w^{\dagger} before m'

Assume that $\langle x, m+1 \rangle \not\preceq_{w^{\dagger}} \langle y, m'+1 \rangle$.

Let B_y^{\dagger} be the guard of y in question in A^{\dagger} . We apply the **past theorem** with times m and m' to:

 $T = \{ \langle h, m' \rangle : h \text{ is an input to } B_{y}^{\dagger} \text{ in } A^{\dagger} \}$

Corollary

Let x^{\dagger} be an input to y. If the fastest adversarial firing chain from a change in x to y is slower than the delay of the buffer x^{\dagger} , then for every computation w^{\dagger} of A^{\dagger} , there exists a computation s of A such that $s \approx w^{\dagger}$.

AVLSI

- The notion of **potential causality** adapted from distributed systems
- The **past** theorem
- Using this formalism, rigorous proofs of:
 - Firing loop theorem
 - Adversarial firing chain theorem
- If delays on isochronic branches are smaller than their corresponding adversarial firing chains, then the set of possible computations is the same as the set in a zero-delay fork model.

Support: ISF grant 1520/11; Ruch grant, Jacobs Institute.

