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Isochronic forks

Difference between purely delay-insensitive circuits and
quasi delay-insensitive (QDI) circuits

Some informal descriptions:

“we have to assume that the difference beween the delays
in the branches of the fork is negligible compared to the
delays in the gates.”
“we assume that, when transition x1↑ has been
acknowledged by transition y↑, transition x2↑ is also
completed.”
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Isochronic forks

Most recent approach notes the impact of an adversarial path
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Intuition:

If x to x2 is an isochronic branch, then an error due to a
slow transition on x2 must manifest itself because some
other path from x eventually causes a mis-firing of the
gate that has x2 as input.

A complex proof sketch in Keller et al. (ASYNC 2009).
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Distributed systems

“Asynchronous” processes

Message-passing for communication

Many classic results

Connecting this theory to circuits:

Processes 7→ gates

Messages 7→ signals

Foundational techniques:

“Happened-before” causality relation (Lamport 1978)
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Contributions

Connecting asynchronous design with the distributed
systems literature

Formalization of asynchronous computations
The notion of potential causality adapted
The past theorem

Using this formalism, rigorous proofs of:

Firing loop theorem
Aversarial firing chain theorem
A rigorous proof of the nature of the isochronic fork timing
assumption
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The model

V : a set of variables

Production rules:

B 7→ z↑ or B 7→ z↓
where z ∈ V , B is a formula over the variables in V

A gate is a pair Bu 7→ z↑, Bd 7→ z↓

Circuit: a collection of |V | gates, one per z ∈ V

A configuration of a circuit is an assignment c : V → {0, 1}

A PR is enabled in a configuration if its guard is true.
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Computations

A computation is an infinite sequence s : N→ C

time

0 or more firings
to move forward in time

t0 1 2
s : a computation

s(t): a configuration

s(t + 1) is obtained from s(t) by firing zero or more PRs
enabled at s(t)

sx(t): the value of variable x at time t

“x changes at time t in s”
def
= sx(t + 1) 6= sx(t)

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 7 / 31



AVLSI

Nodes

We use the notation
〈x ,m〉

to represent a node.

Node: represents the state of a variable at different times
(Note that the value of x at time m in a computation s is sx(m))

We will reason about the relation between nodes in a
computation
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Potential causality

We write:
〈y ,m〉 ↪→s 〈z ,m + 1〉

iff

a PR with output z performs an effective firing at s(m);

y is in the support of the guard of the PR that fired

a
b

c

If in a computation s, c↓ fires at time 100, then

〈a, 100〉 ↪→s 〈c , 101〉 ∧ 〈b, 100〉 ↪→s 〈c , 101〉

Not the same as true causality
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Potential causality

For a computation s, we define �s as the unique minimal
relation that satisfies:

Locality: 〈y , t〉 �s 〈y , t ′〉 if t ≤ t ′;

Successor: 〈y , t〉 �s 〈z , t + 1〉 if 〈y , t〉 ↪→s 〈z , t + 1〉;

Transitivity: 〈y , t〉 �s 〈z , t ′〉 if, for some 〈x ,m〉, both
〈y , t〉 �s 〈x ,m〉 and
〈x ,m〉 �s 〈z , t ′〉.
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Firing chains

Definition

There is a chain of firings from 〈y , t〉 to 〈z , t ′〉 in the
computation s if there is a sequence of variables x1, . . . , xk = z
and a sequence of monotonically increasing times t1, . . . , tk
with t ≤ t1 and tk < t ′, such that 〈y , t1〉 ↪→s 〈x1, t1 + 1〉 and
such that 〈xi−1, ti 〉 ↪→s 〈xi , ti + 1〉 holds for all 2 ≤ i ≤ k .

time

x1 firesy

t1 t2 tk

x2 fires z = xk fires

t t'
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Firing chains

Lemma

Let y 6= z. Then 〈y , t〉 �s 〈z , t ′〉 iff both t < t ′ and there is a
chain of firings from 〈y , t〉 to 〈z , t ′〉 in s.

Why?

The only way to move to a different variable in �s is
through the successor clause, i.e., a firing

Related nodes are ordered in time
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The past

Definition

Given a computation s and a set T of variable-time nodes, we
define:

pasts(T ) =
⋃

〈y ′,m′〉∈T

{〈x ,m〉 : 〈x ,m〉 �s 〈y ′,m′〉} .

Intuition:

Given a node, its state can only be impacted by its past
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The past theorem

Given a circuit A, a computation s, times m < m′

Given T , a set of nodes 〈y ,m′〉 at time m′

Theorem (past theorem)

There is a computation s ′ of A such that:

s ′(t) = s(t) for all times t ≤ m;

For all variables x and times t in the range m < t ≤ m′:

(a) s ′x(t) = sx(t) if 〈x , t〉 ∈ pasts(T ), and

(b) s ′x(t) = sx(m) if 〈x ,m + 1〉 /∈ pasts(T ).

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 14 / 31



AVLSI

The past theorem

Original computation:

m'm0

v1
v2
v3

vn-1
vn

T = {<x,m'>,<y,m'>} 
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= relation in past 
set due to the 

successor clause

= members of T
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The past theorem

Nodes in the past of T :

m'm0

v1
v2
v3

vn-1

vn

x
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time

= effective firings 
that are not in 
the past of T

= node values 
from the past of T
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The past theorem

The construction of s ′:

Upto time m, replicate firings from s;

Beyond time m, only replicate firings when the appropriate
node is in pasts(T )

Main proof obligation: enabled firings in s are enabled in s ′

(see paper)
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Non-isochronic branches

x

y

x

y
x†

Original circuit: A (left)

Modified circuit: A† (right)

What can we say about A†?

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 18 / 31



AVLSI

The firing loop theorem

If the introduced buffer is on a non-isochronic branch, then:

Theorem (firing loop)

For every computation w † of A† where x changes at times t
and t ′ > t, there is a chain of firings from 〈x , t + 1〉 to
〈x , t ′ + 1〉 in w † that includes a change in x†.

x

y

x

y
x†
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The firing loop theorem

Proof:

Use the past theorem with

T = {〈x , t ′ + 1〉}; m := t; m′ := t ′ + 1

The past theorem gives us u†: a new computation in A†

with only the firings from the past of T

We know that x† is stable, and x changed twice.

⇒ x† must have fired in u† at some time t ′′, t < t ′′ < t ′.

timet t'

x fires x firesx†
 fires

t''

1. 〈x†, t ′′ + 1〉 �u† 〈x , t ′ + 1〉
2. 〈x , t ′′〉 ↪→u† 〈x†, t ′′ + 1〉
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Isochronic branches

x

y

x

y
x†

Original circuit: A (left)

Modified circuit: A† (right)

When are they “the same”?
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Stuttering free computations

Given a computation s, we define s as the stuttering-free
variant of s.

Lemma

If s is a computation of a circuit A, then s is also a
computation of A.
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Consistent computations

Given two circuits:

A with variables V and a computation s

A′ with variables added to V , modified production rules,
and a computation w

w |V : the restriction of w to the variables in V

Definition

s is consistent with w , denoted s ≈ w , if s = w |V

Idea: hiding the new variables in w gives back s
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Isochronic branches

x

y

x

y
x†

Lemma

For every computation s of A, there exists a computation w †

of A† where s ≈ w †.
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Compatible for m rounds

An even stronger requirement:

Definition

Given computation s of A and w † of A†, we write s ∼m w †

(s and w † are compatible for m rounds) if s(t) = w †|V (t) for
t = 0, . . . ,m.

Lemma

For all w † of A†, there exists s of A such that s ≈ w † iff there
is an s ′ of A such that s ′ ∼m w † for all m.
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The adversarial firing chain theorem

Suppose w † is a computation of A†, and

s ≈ w † holds for no computation s of A

Then:

Theorem (adversarial firing chain)

There is a firing chain in w † from 〈x , t〉 to 〈y , t ′〉 for some
times t < t ′ that does not include a firing of x†; in particular,
x† is unchanged between t and t ′ in w †.

x

y
x1
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The adversarial firing chain theorem

Let m′ > 0 be the largest time where there is some s of A where

s ∼m′ w †

⇒ an effective firing at m′ in w † that cannot occur in s

the only choice is y
⇒ sx(m′) 6= w †

x†
(m′), hence w †x (m′) 6= w †

x†
(m′)

w †x (0) = w †
x†

(0) implies a firing of x in w † before m′

m'

y fires

w†  : a computation of A†
0 equal (ignoring x†) m

last firing of x

m'

y cannot fire

s  : a computation of A
0

no firings of x†

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 27 / 31



AVLSI

The adversarial firing chain theorem

Let m′ > 0 be the largest time where there is some s of A where

s ∼m′ w †

⇒ an effective firing at m′ in w † that cannot occur in s

the only choice is y
⇒ sx(m′) 6= w †

x†
(m′), hence w †x (m′) 6= w †

x†
(m′)

w †x (0) = w †
x†

(0) implies a firing of x in w † before m′

m'

y fires

w†  : a computation of A†
0 equal (ignoring x†) m

last firing of x

m'

y cannot fire

s  : a computation of A
0

no firings of x†

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 27 / 31



AVLSI

The adversarial firing chain theorem

Let m′ > 0 be the largest time where there is some s of A where

s ∼m′ w †

⇒ an effective firing at m′ in w † that cannot occur in s

the only choice is y
⇒ sx(m′) 6= w †

x†
(m′), hence w †x (m′) 6= w †

x†
(m′)

w †x (0) = w †
x†

(0) implies a firing of x in w † before m′

m'

y fires

w†  : a computation of A†
0 equal (ignoring x†) m

last firing of x

m'

y cannot fire

s  : a computation of A
0

no firings of x†

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 27 / 31



AVLSI

The adversarial firing chain theorem

Assume that 〈x ,m + 1〉 6�w† 〈y ,m′ + 1〉.

Let B†y be the guard of y in question in A†. We apply the past
theorem with times m and m′ to:

T = {〈h,m′〉 : h is an input to B†y in A†}

and obtain u†.

m'

y fires

w†  : a computation of A†
0

equal (ignoring x†)
m

last firing of x

m'

y cannot fire

s  : a computation of A
0

no firings of x†

m'

y fires

u†  : a computation of A†
0

equal

x does not fire
only firings in past(T)

m
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The adversarial firing chain theorem

m'

y fires

w†  : a computation of A†
0

equal (ignoring x†)
m

last firing of x

m'

y cannot fire

s  : a computation of A
0

no firings of x†

m'

y fires

u†  : a computation of A†
0

equal

x does not fire
only firings in past(T)

m

m'

y fires

u  : a computation of A
0

x does not fire (pending) only firings in past(T)

mequal  
(ignoring x†)

unstable!

∴ 〈x ,m + 1︸ ︷︷ ︸
t

〉 �w† 〈y ,m′ + 1︸ ︷︷ ︸
t′

〉
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The adversarial firing chain theorem

Corollary

Let x† be an input to y. If the fastest adversarial firing chain
from a change in x to y is slower than the delay of the buffer
x†, then for every computation w † of A†, there exists a
computation s of A such that s ≈ w †.
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Summary

The notion of potential causality adapted from
distributed systems

The past theorem

Using this formalism, rigorous proofs of:

Firing loop theorem
Adversarial firing chain theorem

If delays on isochronic branches are smaller than their
corresponding adversarial firing chains, then the set of
possible computations is the same as the set in a
zero-delay fork model.
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