
AVLSI

Analyzing Isochronic Forks with
Potential Causality

Rajit Manohar1 Yoram Moses2

1Cornell Tech, New York, NY 10011, USA

2Technion-Israel Institute of Technology, Haifa 32000, Israel

May 6, 2015

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 1 / 31

AVLSI

Isochronic forks

Difference between purely delay-insensitive circuits and
quasi delay-insensitive (QDI) circuits

Some informal descriptions:

“we have to assume that the difference beween the delays
in the branches of the fork is negligible compared to the
delays in the gates.”
“we assume that, when transition x1↑ has been
acknowledged by transition y↑, transition x2↑ is also
completed.”

x

x1

x2

y

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 2 / 31

AVLSI

Isochronic forks

Most recent approach notes the impact of an adversarial path

x

x1

x2

y

Intuition:

If x to x2 is an isochronic branch, then an error due to a
slow transition on x2 must manifest itself because some
other path from x eventually causes a mis-firing of the
gate that has x2 as input.

A complex proof sketch in Keller et al. (ASYNC 2009).

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 3 / 31

AVLSI

Distributed systems

“Asynchronous” processes

Message-passing for communication

Many classic results

Connecting this theory to circuits:

Processes 7→ gates

Messages 7→ signals

Foundational techniques:

“Happened-before” causality relation (Lamport 1978)

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 4 / 31

AVLSI

Contributions

Connecting asynchronous design with the distributed
systems literature

Formalization of asynchronous computations
The notion of potential causality adapted
The past theorem

Using this formalism, rigorous proofs of:

Firing loop theorem
Aversarial firing chain theorem
A rigorous proof of the nature of the isochronic fork timing
assumption

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 5 / 31

AVLSI

The model

V : a set of variables

Production rules:

B 7→ z↑ or B 7→ z↓
where z ∈ V , B is a formula over the variables in V

A gate is a pair Bu 7→ z↑, Bd 7→ z↓

Circuit: a collection of |V | gates, one per z ∈ V

A configuration of a circuit is an assignment c : V → {0, 1}

A PR is enabled in a configuration if its guard is true.

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 6 / 31

AVLSI

Computations

A computation is an infinite sequence s : N→ C

time

0 or more firings
to move forward in time

t0 1 2
s : a computation

s(t): a configuration

s(t + 1) is obtained from s(t) by firing zero or more PRs
enabled at s(t)

sx(t): the value of variable x at time t

“x changes at time t in s”
def
= sx(t + 1) 6= sx(t)

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 7 / 31

AVLSI

Nodes

We use the notation
〈x ,m〉

to represent a node.

Node: represents the state of a variable at different times
(Note that the value of x at time m in a computation s is sx(m))

We will reason about the relation between nodes in a
computation

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 8 / 31

AVLSI

Potential causality

We write:
〈y ,m〉 ↪→s 〈z ,m + 1〉

iff

a PR with output z performs an effective firing at s(m);

y is in the support of the guard of the PR that fired

a
b

c

If in a computation s, c↓ fires at time 100, then

〈a, 100〉 ↪→s 〈c , 101〉 ∧ 〈b, 100〉 ↪→s 〈c , 101〉

Not the same as true causality

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 9 / 31

AVLSI

Potential causality

For a computation s, we define �s as the unique minimal
relation that satisfies:

Locality: 〈y , t〉 �s 〈y , t ′〉 if t ≤ t ′;

Successor: 〈y , t〉 �s 〈z , t + 1〉 if 〈y , t〉 ↪→s 〈z , t + 1〉;

Transitivity: 〈y , t〉 �s 〈z , t ′〉 if, for some 〈x ,m〉, both
〈y , t〉 �s 〈x ,m〉 and
〈x ,m〉 �s 〈z , t ′〉.

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 10 / 31

AVLSI

Firing chains

Definition

There is a chain of firings from 〈y , t〉 to 〈z , t ′〉 in the
computation s if there is a sequence of variables x1, . . . , xk = z
and a sequence of monotonically increasing times t1, . . . , tk
with t ≤ t1 and tk < t ′, such that 〈y , t1〉 ↪→s 〈x1, t1 + 1〉 and
such that 〈xi−1, ti 〉 ↪→s 〈xi , ti + 1〉 holds for all 2 ≤ i ≤ k .

time

x1 firesy

t1 t2 tk

x2 fires z = xk fires

t t'

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 11 / 31

AVLSI

Firing chains

Lemma

Let y 6= z . Then 〈y , t〉 �s 〈z , t ′〉 iff both t < t ′ and there is a
chain of firings from 〈y , t〉 to 〈z , t ′〉 in s.

Why?

The only way to move to a different variable in �s is
through the successor clause, i.e., a firing

Related nodes are ordered in time

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 12 / 31

AVLSI

The past

Definition

Given a computation s and a set T of variable-time nodes, we
define:

pasts(T) =
⋃

〈y ′,m′〉∈T

{〈x ,m〉 : 〈x ,m〉 �s 〈y ′,m′〉} .

Intuition:

Given a node, its state can only be impacted by its past

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 13 / 31

AVLSI

The past theorem

Given a circuit A, a computation s, times m < m′

Given T , a set of nodes 〈y ,m′〉 at time m′

Theorem (past theorem)

There is a computation s ′ of A such that:

s ′(t) = s(t) for all times t ≤ m;

For all variables x and times t in the range m < t ≤ m′:

(a) s ′x(t) = sx(t) if 〈x , t〉 ∈ pasts(T), and

(b) s ′x(t) = sx(m) if 〈x ,m + 1〉 /∈ pasts(T).

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 14 / 31

AVLSI

The past theorem

Original computation:

m'm0

v1
v2
v3

vn-1
vn

T = {<x,m'>,<y,m'>}

x

y

va
ria

bl
es

time

= relation in past
set due to the

successor clause

= members of T

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 15 / 31

AVLSI

The past theorem

Nodes in the past of T :

m'm0

v1
v2
v3

vn-1

vn

x

y

va
ria

bl
es

time

= effective firings
that are not in
the past of T

= node values
from the past of T

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 16 / 31

AVLSI

The past theorem

The construction of s ′:

Upto time m, replicate firings from s;

Beyond time m, only replicate firings when the appropriate
node is in pasts(T)

Main proof obligation: enabled firings in s are enabled in s ′

(see paper)

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 17 / 31

AVLSI

Non-isochronic branches

x

y

x

y
x†

Original circuit: A (left)

Modified circuit: A† (right)

What can we say about A†?

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 18 / 31

AVLSI

The firing loop theorem

If the introduced buffer is on a non-isochronic branch, then:

Theorem (firing loop)

For every computation w † of A† where x changes at times t
and t ′ > t, there is a chain of firings from 〈x , t + 1〉 to
〈x , t ′ + 1〉 in w † that includes a change in x†.

x

y

x

y
x†

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 19 / 31

AVLSI

The firing loop theorem

Proof:

Use the past theorem with

T = {〈x , t ′ + 1〉}; m := t; m′ := t ′ + 1

The past theorem gives us u†: a new computation in A†

with only the firings from the past of T

We know that x† is stable, and x changed twice.

⇒ x† must have fired in u† at some time t ′′, t < t ′′ < t ′.

timet t'

x fires x firesx†
 fires

t''

1. 〈x†, t ′′ + 1〉 �u† 〈x , t ′ + 1〉
2. 〈x , t ′′〉 ↪→u† 〈x†, t ′′ + 1〉

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 20 / 31

AVLSI

The firing loop theorem

Proof:

Use the past theorem with

T = {〈x , t ′ + 1〉}; m := t; m′ := t ′ + 1

The past theorem gives us u†: a new computation in A†

with only the firings from the past of T

We know that x† is stable, and x changed twice.

⇒ x† must have fired in u† at some time t ′′, t < t ′′ < t ′.

timet t'

x fires x firesx†
 fires

t''

1. 〈x†, t ′′ + 1〉 �u† 〈x , t ′ + 1〉
2. 〈x , t ′′〉 ↪→u† 〈x†, t ′′ + 1〉

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 20 / 31

AVLSI

The firing loop theorem

Proof:

Use the past theorem with

T = {〈x , t ′ + 1〉}; m := t; m′ := t ′ + 1

The past theorem gives us u†: a new computation in A†

with only the firings from the past of T

We know that x† is stable, and x changed twice.

⇒ x† must have fired in u† at some time t ′′, t < t ′′ < t ′.

timet t'

x fires x firesx†
 fires

t''

1. 〈x†, t ′′ + 1〉 �u† 〈x , t ′ + 1〉
2. 〈x , t ′′〉 ↪→u† 〈x†, t ′′ + 1〉

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 20 / 31

AVLSI

The firing loop theorem

Proof:

Use the past theorem with

T = {〈x , t ′ + 1〉}; m := t; m′ := t ′ + 1

The past theorem gives us u†: a new computation in A†

with only the firings from the past of T

We know that x† is stable, and x changed twice.

⇒ x† must have fired in u† at some time t ′′, t < t ′′ < t ′.

timet t'

x fires x firesx†
 fires

t''

1. 〈x†, t ′′ + 1〉 �u† 〈x , t ′ + 1〉
2. 〈x , t ′′〉 ↪→u† 〈x†, t ′′ + 1〉

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 20 / 31

AVLSI

Isochronic branches

x

y

x

y
x†

Original circuit: A (left)

Modified circuit: A† (right)

When are they “the same”?

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 21 / 31

AVLSI

Stuttering free computations

Given a computation s, we define s as the stuttering-free
variant of s.

Lemma

If s is a computation of a circuit A, then s is also a
computation of A.

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 22 / 31

AVLSI

Consistent computations

Given two circuits:

A with variables V and a computation s

A′ with variables added to V , modified production rules,
and a computation w

w |V : the restriction of w to the variables in V

Definition

s is consistent with w , denoted s ≈ w , if s = w |V

Idea: hiding the new variables in w gives back s

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 23 / 31

AVLSI

Isochronic branches

x

y

x

y
x†

Lemma

For every computation s of A, there exists a computation w †

of A† where s ≈ w †.

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 24 / 31

AVLSI

Compatible for m rounds

An even stronger requirement:

Definition

Given computation s of A and w † of A†, we write s ∼m w †

(s and w † are compatible for m rounds) if s(t) = w †|V (t) for
t = 0, . . . ,m.

Lemma

For all w † of A†, there exists s of A such that s ≈ w † iff there
is an s ′ of A such that s ′ ∼m w † for all m.

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 25 / 31

AVLSI

The adversarial firing chain theorem

Suppose w † is a computation of A†, and

s ≈ w † holds for no computation s of A

Then:

Theorem (adversarial firing chain)

There is a firing chain in w † from 〈x , t〉 to 〈y , t ′〉 for some
times t < t ′ that does not include a firing of x†; in particular,
x† is unchanged between t and t ′ in w †.

x

y
x1

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 26 / 31

AVLSI

The adversarial firing chain theorem

Let m′ > 0 be the largest time where there is some s of A where

s ∼m′ w †

⇒ an effective firing at m′ in w † that cannot occur in s

the only choice is y
⇒ sx(m′) 6= w †

x†
(m′), hence w †x (m′) 6= w †

x†
(m′)

w †x (0) = w †
x†

(0) implies a firing of x in w † before m′

m'

y fires

w† : a computation of A†
0 equal (ignoring x†) m

last firing of x

m'

y cannot fire

s : a computation of A
0

no firings of x†

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 27 / 31

AVLSI

The adversarial firing chain theorem

Let m′ > 0 be the largest time where there is some s of A where

s ∼m′ w †

⇒ an effective firing at m′ in w † that cannot occur in s

the only choice is y
⇒ sx(m′) 6= w †

x†
(m′), hence w †x (m′) 6= w †

x†
(m′)

w †x (0) = w †
x†

(0) implies a firing of x in w † before m′

m'

y fires

w† : a computation of A†
0 equal (ignoring x†) m

last firing of x

m'

y cannot fire

s : a computation of A
0

no firings of x†

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 27 / 31

AVLSI

The adversarial firing chain theorem

Let m′ > 0 be the largest time where there is some s of A where

s ∼m′ w †

⇒ an effective firing at m′ in w † that cannot occur in s

the only choice is y
⇒ sx(m′) 6= w †

x†
(m′), hence w †x (m′) 6= w †

x†
(m′)

w †x (0) = w †
x†

(0) implies a firing of x in w † before m′

m'

y fires

w† : a computation of A†
0 equal (ignoring x†) m

last firing of x

m'

y cannot fire

s : a computation of A
0

no firings of x†

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 27 / 31

AVLSI

The adversarial firing chain theorem

Assume that 〈x ,m + 1〉 6�w† 〈y ,m′ + 1〉.

Let B†y be the guard of y in question in A†. We apply the past
theorem with times m and m′ to:

T = {〈h,m′〉 : h is an input to B†y in A†}

and obtain u†.

m'

y fires

w† : a computation of A†
0

equal (ignoring x†)
m

last firing of x

m'

y cannot fire

s : a computation of A
0

no firings of x†

m'

y fires

u† : a computation of A†
0

equal

x does not fire
only firings in past(T)

m

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 28 / 31

AVLSI

The adversarial firing chain theorem

m'

y fires

w† : a computation of A†
0

equal (ignoring x†)
m

last firing of x

m'

y cannot fire

s : a computation of A
0

no firings of x†

m'

y fires

u† : a computation of A†
0

equal

x does not fire
only firings in past(T)

m

m'

y fires

u : a computation of A
0

x does not fire (pending) only firings in past(T)

mequal
(ignoring x†)

unstable!

∴ 〈x ,m + 1︸ ︷︷ ︸
t

〉 �w† 〈y ,m′ + 1︸ ︷︷ ︸
t′

〉

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 29 / 31

AVLSI

The adversarial firing chain theorem

Corollary

Let x† be an input to y . If the fastest adversarial firing chain
from a change in x to y is slower than the delay of the buffer
x†, then for every computation w † of A†, there exists a
computation s of A such that s ≈ w †.

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 30 / 31

AVLSI

Summary

The notion of potential causality adapted from
distributed systems

The past theorem

Using this formalism, rigorous proofs of:

Firing loop theorem
Adversarial firing chain theorem

If delays on isochronic branches are smaller than their
corresponding adversarial firing chains, then the set of
possible computations is the same as the set in a
zero-delay fork model.

Support: ISF grant 1520/11; Ruch grant, Jacobs Institute.

Manohar/Moses (Cornell/Technion) Analysis of Isochronic Forks May 6, 2015 31 / 31

