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The Context: Delay Overheads

Traditional synchronous design suffers from increased margins
• Worse at low and near-threshold regions
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Delay variation due to data is rarely exploited in synchronous designs
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Delay variation due to data is rarely exploited in synchronous designs
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Delay variation due to data is rarely exploited in synchronous designs
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One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ
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Resiliency Performance Benefit
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Outline

Performance Optimization
• Delay models

• Impact of delay line quantization 

• Impact of metastability

• Comparison to Bubble Razor

Case Study
• Analyze and optimize a 3-stage Blade CPU

Conclusions and Future Work

OUTLINE | 6



Delay Models

Our approach

• Analyze the performance of Blade for a variety of delay models
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Optimal Average-Case Performance
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: Average delay of Blade stage

Definitions
• C : Clock Period / Cycle Time
• EC : Effective Clock Period
• p : Probability of error
• 𝑑 : Average delay of Blade 

stage

Optimal performance 
achieved by minimizing 𝑑

Optimal Average-Case Performance
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𝐶 = 𝛿 + Δ

 𝑑 = 𝛿 + p ∗ Δ

Assumes backward latency is hidden via latch retiming



popt observations

• Varies between 20% 
and 35% for log-
normal distributions

• Significantly higher 
than in sync resiliency

• Constant for normal 
distributions!

Optimal Probability of Error - popt
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Higher Variance



Proof of constant popt
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𝐾 = 𝜇 +𝑚 ∗ 𝜎

𝐾 = 𝛿 + ΔAssume worst case delay per stage is constant  

Worst case delay is set by mean, variance, and SER

Systematic Error Rate (ξ) 
sets the worst-case delay 
per stage, K

𝑚 = 𝑓(𝜉)

𝜉 = 1 − 𝑃𝑅 𝑑 ≤ 𝐶 𝑁



Proof of constant popt

DELAY MODELS | 10

𝐾 = 𝜇 +𝑚 ∗ 𝜎

𝐾 = 𝛿 + ΔAssume worst case delay per stage is constant  

Worst case delay is set by mean, variance, and SER

Recall:  𝑑 = 𝛿 + 𝑝 ∗ Δ = 1 − 𝑝 ∗ 𝛿 + 𝑝 ∗ 𝐾

For Normal distribution:

Taking inverse error function of both sides:

1 − 𝑝 =
1

2
[1 + erf

𝛿−𝜇

2𝜎
]

1 − 2𝑝 = erf
𝛿−𝜇

2𝜎

erf−1 1 − 2𝑝 =
𝛿 − 𝜇

2𝜎
𝛿 = 2𝜎[erf−1 1 − 2𝑝 ] + 𝜇



Proof of constant popt
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Implication: Tuning of delay line may target fixed probability!

𝐾 = 𝜇 +𝑚 ∗ 𝜎

𝐾 = 𝛿 + ΔAssume worst case delay per stage is constant  

Worst case delay is set by mean, variance, and SER

Recall:  𝑑 = 𝛿 + 𝑝 ∗ Δ = 1 − 𝑝 ∗ 𝛿 + 𝑝 ∗ 𝐾

Rewrite:  𝑑 = 1 − 𝑝 [ 2𝜎[erf−1 1 − 2𝑝 ] + 𝜇] + p ∗ K

𝜕  𝑑

𝜕𝑝
= 1 + 𝑦 2

𝜕erf−1 𝑦

𝜕𝑦
− 2 erf−1 𝑦 +𝑚 = 0

𝑦 = 1 − 2𝑝

Minimize  𝑑 by taking derivative and setting it equal to zero :

Note y and p are independent of σ and μ! m depends only on 𝜉



Optimal Size of Resiliency Window - Δ

Blade supports maximum Δ of 50% of clock cycle
Optimal Δ is larger for designs with high-variance!
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Delay Line Quantification Effects

Quantification effects reduced due to inherent
tradeoff between nominal delayδ and error penalty p * Δ

D
el

ay

δ p * Δ

 𝑑 = 𝛿 + p ∗ ΔRecall:
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Delay Line Quantification in BD

Linear relationship between delay line quantization
and average stage delay in Bundled Data

D
el

ay

δ  𝑑

 𝑑 = 𝛿Bundled Data:
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Metastability Effects
p : probability of timing violation

tMS : time for metastability to resolve

tMSE : MS in error-detecting latch

tMSL : MS in detection logic
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Metastability resolution times most often hidden!



Metastability Effects
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Comparison to Sync Resiliency

Synchronous
• EC set by systematic 

error rate

Bubble Razor [Zhang,2014]

• 𝐸𝐶 = 𝐶 2 − 1 − 𝑝 2𝑁

Blade
• 𝐸𝐶 = 𝛿 + 𝑝𝑜𝑝𝑡 ∗ 𝛥
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Plasma MIPS OpenCore

28nm FDSOI

Compare mathematical 
model of optimal 
resiliency window (Δ) with 
simulation results

Application to 3-Stage CPU

[1] http://opencores.org/project,plasma
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Application to 3-Stage CPU
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Application to 3-Stage CPU

Model estimated optimal Δ within 5.4%

• Optimal EC within 99%
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Distribution A Distribution B Distribution C

Model Sim Model Sim Model Sim

Δmax 27% 35% 43%

Δopt 26% 27% 34% 35% 39% 37%

ECopt 74.8% 75.1% 71.3% 71.9% 75.1% 74.8%



Application to 3-Stage CPU

Model estimated optimal Δ within 5.4%

• Optimal EC within 99%

Model allows estimation of optimal Δ w/o limitations of simulated design
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Distribution A Distribution B Distribution C

Model Sim Model Sim Model Sim

Δmax 27% 35% 43%

Δopt 26% 27% 34% 35% 39% 37%

ECopt 74.8% 75.1% 71.3% 71.9% 75.1% 74.8%

Distribution A Distribution B Distribution C

Model Sim Model Sim Model Sim

Δmax 27% 35% 43%

Δopt 26% 27% 34% 35% 39% 37%

ECopt 74.8% 75.1% 71.3% 71.9% 75.1% 74.8%

Ideal Δopt 48% 53% 46%

Ideal ECopt 63.2% 67.8% 74.5%



Summary and Conclusions

Performance model

• Use either analytical and real world delay distributions

• Predicts performance within 99% accuracy

Comparison to sync N-stage rings

• 23% better than Bubble Razor 

• 35% better than traditional designs

Several interesting conclusions

• Optimal error rate is relatively high and may be constant

• Programmable delay line need not be fine-grained

• Metastability impact is negligible

• Supporting larger resiliency windows may be useful
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Questions?


