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The Context: Delay Overheads
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Traditional synchronous design suffers from increased margins
« Worse at low and near-threshold regions
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Potential of Average-Case Data
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Delay variation due to data is rarely exploited in synchronous designs
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Potential of Average-Case Data

Worst-Case Delay
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Delay variation due to data is rarely exploited in synchronous designs
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Potential of Average-Case Data
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Delay variation due to data is rarely exploited in synchronous designs
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One Solution: Resiliency

Asynchronous
Controller

Controller <

Combinational
Logic

o

r Detecting

Latch
.. Single Rail Datapath I , o
Timing errors delay handsMaRmMg oy e resiliency window A

USC\[].tCI'bl RESILIENCY | 4

School of Engineering Univer Sity of Southern California




One Solution: Resiliency

Controller < Controller

| 4

\
>
v
o)

Combinational
Logic

Timing errors delay handshaking by the resiliency window A
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One Solution: Resiliency
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One Solution: Resiliency

Controller < Controller
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One Solution: Resiliency
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One Solution: Resiliency

Controller < Controller
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Resiliency Performance Benefit

Data delay |n Plasma CPU
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Key Question: How do we set 6 to optimize performance
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Outline

Performance Optimization
* Delay models
« Impact of delay line quantization
* Impact of metastability
« Comparison to Bubble Razor

Case Study
* Analyze and optimize a 3-stage Blade CPU

Conclusions and Future Work
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Delay Models
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* Analyze the performance of Blade for a variety of delay models
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Optimal Average-Case Performance

Probability
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Optimal Average-Case Performance

Probability of . Average delay of Blade stage
error (p) Definitions

C : Clock Period / Cycle Time
EC : Effective Clock Period

p : Probability of error

d :Average delay of Blade
stage ¢ =85+ A

Probability

(@]
O
+

>

2 Pe(d=0) d=6+p*A

= 1-Pr(d=0) Optimal performance

- T» achieved by minimizing d
6 S+A

Assumes backward latency is hidden via latch retiming
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Optimal Probability of Error - p,

40 | | | Popt OPSErVations
~A-normal ~-log—normal * Varies between 20%
% 0l De. —— and 35% for log-
B | : normal distributions
A AAAALRBAS . Significantly higher

than in sync resiliency

o) « Constant for normal
> distributions!

Higher Variance
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Proof of constant p,,

Assume worst case delay per stageisconstant K = § + A

Worst case delay is set by mean, variance,and SER K =u+m=+o

Systematic Error Rate (£)

sets the worst-case delay

per stage, K
E=1-[Pr{d < C}"

m = f($)
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Proof of constant p,,

Assume worst case delay per stageisconstant K = § + A

Worst case delay is set by mean, variance,and SER K =u+m=+o

Recall d=8+p*A=(1—-p)*x5+p=*K

For Normal distribution:
_1 8-

1—-p) = - [1+ erf(ﬁa)]

(1-2p) = erf (ﬂ)

20

Taking inverse error function of both sides:
0 —u
erf71(1 — 2p) =
YT g

8 =V2olerf 1(1 —2p)] + 1
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Proof of constant p,,

Assume worst case delay per stageisconstant K = § + A

Worst case delay is set by mean, variance,and SER K =u+m=+o
Recal: d=8+p*A=(1—-p)*S+p=*K

Rewrite: d = (1 — p)[V20o[erf ™1 (1 —2p)] + u] + p*K

Minimize d by taking derivative and setting it equal to zero :

1
%—(1+y)[\/_aerf (y)] V2erf"ly+m =0

y=1-2p
Note y and p are independent of o and u! m depends only on ¢

Implication: Tuning of delay line may target fixed probability!
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Optimal Size of Resiliency Window - A
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Blade supports maximum A of 50% of clock cycle
Optimal A is larger for designs with high-variance!
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Delay Line Quantification Effects
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Quantification effects reduced due to inherent
tradeoff between nominal delay ¢ and error penalty p * A
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Delay Line Quantification in BD

;5‘ 8 — - Bundled Data: d = 6
= —H0M=010 -©-0/u=020 X ou=030
= : -
@ | s
: 2 _________________________ 33 ]
= N X -
0 i_ s 5 d
= 0 5 10

Change in 0 (%)

Linear relationship between delay line quantization
and average stage delay in Bundled Data
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Metastablility Effects

P . probability of timing violation E[delay]
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Metastablility Effects

P . probability of timing violation
tys - time for metastability to resolve
tmsg - MS in error-detecting latch
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Metastability resolution times most often hidden!
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Metastablility Effects

Performance Impact of Metastability
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Metastablility Effects

Performance Impact of Metastability
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Comparison to Sync Resiliency
N-Stage Rings

Synchronous
» EC set by systematic CEEj

error rate

Bubble Razor [zhang,2014] LB VR
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'EC — 6+p0pt*A
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Comparison to Sync Resiliency

EC versus C
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Comparison to Sync Resiliency

Blade vs. Bubble Razor & Synchronous

Synchronous 0
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Application to 3-Stage CPU
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Application to 3-Stage CPU

Distribution A Distribution A
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Application to 3-Stage CPU

Distribution A Distribution B Distribution C
\Y[eYe[=] | Sim \Y[eYe[=] | Sim \Y[eYe[=) Sim

Model estimated optimal A within 5.4%
« Optimal EC within 99%
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Application to 3-Stage CPU

Distribution A Distribution B Distribution C
Model | Sim Model | Sim Model Sim

Ideal A,,,
Ideal EC

opt

Model estimated optimal A within 5.4%
« Optimal EC within 99%

Model allows estimation of optimal A w/o limitations of simulated design
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Summary and Conclusions

Performance model
« Use either analytical and real world delay distributions

« Predicts performance within 99% accuracy

Comparison to sync N-stage rings
« 23% better than Bubble Razor

+ 35% better than traditional designs

Several interesting conclusions
« Optimal error rate is relatively high and may be constant
 Programmable delay line need not be fine-grained
» Metastability impact is negligible

« Supporting larger resiliency windows may be useful
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