
Performance Optimization and Analysis of
Blade Designs under Delay Variability

Dylan Hand∗, Hsin-Ho Huang∗, Benmao Chang‡ ,
Yang Zhang*, Matheus Trevisan Moreira∗†, Melvin Breuer∗,

Ney Laert Vilar Calazans†, and Peter A. Beerel∗

May 5th, 2015

* University of Southern California, Los Angeles, CA
† Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
‡ Dept. of Automation, Tsinghua University, Beijing, China

The Context: Delay Overheads

Traditional synchronous design suffers from increased margins
• Worse at low and near-threshold regions

MOTIVATION | 2

PVT margin

Clock margin

Flip-flop alignment

Cycle time of
clocked logic

Logic gates

Logic Time

[Dreslinksi et al., IEEE Proc. 2010]

Data delay in Plasma CPU

Potential of Average-Case Data

Delay

N
um

be
r

of
 O

pe
ra

tio
ns

Slower

Logic gates

Logic Time

Worst-Case
Data

Cycle time of
clocked logic

MOTIVATION | 3

Delay variation due to data is rarely exploited in synchronous designs

Data delay in Plasma CPU

Potential of Average-Case Data

Delay

N
um

be
r

of
 O

pe
ra

tio
ns

Slower

Logic gates

Logic Time

Worst-Case
Data

Worst-Case DelayCycle time of
clocked logic

MOTIVATION | 3

Delay variation due to data is rarely exploited in synchronous designs

Data delay in Plasma CPU

Potential of Average-Case Data

Delay

N
um

be
r

of
 O

pe
ra

tio
ns

Slower

Logic gates

Logic Time

Worst-Case
Data

Worst-Case DelayAverage DelayCycle time of
clocked logic

MOTIVATION | 3

Delay variation due to data is rarely exploited in synchronous designs

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK Err

Sa
m

p
le

C
LK Err

Sa
m

p
le

Asynchronous
Controller

Error Detecting
Latch

Single Rail Datapath

Reconfigurable Delay Lines

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK Err

Sa
m

p
le

C
LK Err

Sa
m

p
le

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK Err

Sa
m

p
le

C
LK Err

Sa
m

p
le

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK Err

Sa
m

p
le

C
LK Err

Sa
m

p
le

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK Err

Sa
m

p
le

C
LK Err

Sa
m

p
le

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK

Sa
m

p
le

C
LK Err

Sa
m

p
leErr = 1

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK

Sa
m

p
le

C
LK Err

Sa
m

p
leErr = 1

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK Err

Sa
m

p
le

C
LK Err

Sa
m

p
le

EDL
Combinational

Logic

δ

Error Detection Logic

Controller
B

Δ

Error Detection Logic

Controller
A

Δ

EDL

One Solution: Resiliency

Timing errors delay handshaking by the resiliency window Δ

RESILIENCY | 4

C
LK Err

Sa
m

p
le

C
LK Err

Sa
m

p
le

Resiliency Performance Benefit

RESILIENCY | 5

Data delay in Plasma CPU

Delay

N
um

be
r

of
 O

pe
ra

tio
ns

Worst-Case DelayNominal Delay

Key Question: How do we set δ to optimize performance

δ Δ

Outline

Performance Optimization
• Delay models

• Impact of delay line quantization

• Impact of metastability

• Comparison to Bubble Razor

Case Study
• Analyze and optimize a 3-stage Blade CPU

Conclusions and Future Work

OUTLINE | 6

Delay Models

Our approach

• Analyze the performance of Blade for a variety of delay models

Normal
Distribution

Logic Delay

P
ro

ba
bi

lit
y

Logic Delay

P
ro

ba
bi

lit
y

Log-Normal
Distribution

Logic Delay

F
re

qu
en

cy Real World
Distribution

DELAY MODELS | 7

Optimal Average-Case Performance

DELAY MODELS | 8

P
ro

ba
bi

lit
y

δ δ + Δ

σ

μ

: Average delay of Blade stage

Definitions
• C : Clock Period / Cycle Time
• EC : Effective Clock Period
• p : Probability of error
• 𝑑 : Average delay of Blade

stage

Optimal performance
achieved by minimizing 𝑑

Optimal Average-Case Performance

DELAY MODELS | 8

P
ro

ba
bi

lit
y

δ δ + Δ

PR(d ≤ δ)

P
ro

ba
bi

lit
y

δ δ + Δ

1-PR(d ≤ δ)

Probability of
error (p)

𝐶 = 𝛿 + Δ

 𝑑 = 𝛿 + p ∗ Δ

Assumes backward latency is hidden via latch retiming

popt observations

• Varies between 20%
and 35% for log-
normal distributions

• Significantly higher
than in sync resiliency

• Constant for normal
distributions!

Optimal Probability of Error - popt

DELAY MODELS | 9

Higher Variance

Proof of constant popt

DELAY MODELS | 10

𝐾 = 𝜇 +𝑚 ∗ 𝜎

𝐾 = 𝛿 + ΔAssume worst case delay per stage is constant

Worst case delay is set by mean, variance, and SER

Systematic Error Rate (ξ)
sets the worst-case delay
per stage, K

𝑚 = 𝑓(𝜉)

𝜉 = 1 − 𝑃𝑅 𝑑 ≤ 𝐶 𝑁

Proof of constant popt

DELAY MODELS | 10

𝐾 = 𝜇 +𝑚 ∗ 𝜎

𝐾 = 𝛿 + ΔAssume worst case delay per stage is constant

Worst case delay is set by mean, variance, and SER

Recall: 𝑑 = 𝛿 + 𝑝 ∗ Δ = 1 − 𝑝 ∗ 𝛿 + 𝑝 ∗ 𝐾

For Normal distribution:

Taking inverse error function of both sides:

1 − 𝑝 =
1

2
[1 + erf

𝛿−𝜇

2𝜎
]

1 − 2𝑝 = erf
𝛿−𝜇

2𝜎

erf−1 1 − 2𝑝 =
𝛿 − 𝜇

2𝜎
𝛿 = 2𝜎[erf−1 1 − 2𝑝] + 𝜇

Proof of constant popt

DELAY MODELS | 10

Implication: Tuning of delay line may target fixed probability!

𝐾 = 𝜇 +𝑚 ∗ 𝜎

𝐾 = 𝛿 + ΔAssume worst case delay per stage is constant

Worst case delay is set by mean, variance, and SER

Recall: 𝑑 = 𝛿 + 𝑝 ∗ Δ = 1 − 𝑝 ∗ 𝛿 + 𝑝 ∗ 𝐾

Rewrite: 𝑑 = 1 − 𝑝 [2𝜎[erf−1 1 − 2𝑝] + 𝜇] + p ∗ K

𝜕 𝑑

𝜕𝑝
= 1 + 𝑦 2

𝜕erf−1 𝑦

𝜕𝑦
− 2 erf−1 𝑦 +𝑚 = 0

𝑦 = 1 − 2𝑝

Minimize 𝑑 by taking derivative and setting it equal to zero :

Note y and p are independent of σ and μ! m depends only on 𝜉

Optimal Size of Resiliency Window - Δ

Blade supports maximum Δ of 50% of clock cycle
Optimal Δ is larger for designs with high-variance!

DELAY LINE QUANTIZATION | 11

(%
)

Delay Line Quantification Effects

Quantification effects reduced due to inherent
tradeoff between nominal delayδ and error penalty p * Δ

D
el

ay

δ p * Δ

 𝑑 = 𝛿 + p ∗ ΔRecall:

DELAY LINE QUANTIZATION | 12

Delay Line Quantification in BD

Linear relationship between delay line quantization
and average stage delay in Bundled Data

D
el

ay

δ 𝑑

 𝑑 = 𝛿Bundled Data:

DELAY LINE QUANTIZATION | 13

Metastability Effects
p : probability of timing violation

tMS : time for metastability to resolve

tMSE : MS in error-detecting latch

tMSL : MS in detection logic

E[delay]

δ + Δ + tMSL

δ + tMSL

δ + Δ

δ

δ + Δ

δ + Δ

δ

δ + Δ

δ N
o

 M
S

M
S

in
 E

D
L

(o
nl

y)

M
S

in
 D

e
te

ct
io

n
Lo

gi
c

METASTABILITY | 14

Metastability Effects
p : probability of timing violation

tMS : time for metastability to resolve

tMSE : MS in error-detecting latch

tMSL : MS in detection logic

E[delay]

δ + Δ + tMSL

δ + tMSL

δ + Δ

δ

δ + Δ

δ + Δ

δ

δ + Δ

δ N
o

 M
S

M
S

in
 E

D
L

(o
nl

y)

M
S

in
 D

e
te

ct
io

n
Lo

gi
c

METASTABILITY | 14

Metastability resolution times most often hidden!

Metastability Effects

METASTABILITY | 15

Metastability Effects

METASTABILITY | 15

Comparison to Sync Resiliency

Synchronous
• EC set by systematic

error rate

Bubble Razor [Zhang,2014]

• 𝐸𝐶 = 𝐶 2 − 1 − 𝑝 2𝑁

Blade
• 𝐸𝐶 = 𝛿 + 𝑝𝑜𝑝𝑡 ∗ 𝛥

COMPARISON | 16

F
F

F
F

M S M S

E
D

L

E
D

L

E
D

L

E
D

L

N-Stage Rings

Comparison to Sync Resiliency

Synchronous
• EC set by systematic

error rate

Bubble Razor [Zhang,2014]

• 𝐸𝐶 = 𝐶 2 − 1 − 𝑝 2𝑁

Blade
• 𝐸𝐶 = 𝛿 + 𝑝𝑜𝑝𝑡 ∗ 𝛥

COMPARISON | 16

Normal Distribution

Synchronous BR

Blade

35% 23%

Comparison to Sync Resiliency

Synchronous
• EC set by systematic

error rate

Bubble Razor [Zhang,2014]

• 𝐸𝐶 = 𝐶 2 − 1 − 𝑝 2𝑁

Blade
• 𝐸𝐶 = 𝛿 + 𝑝𝑜𝑝𝑡 ∗ 𝛥

COMPARISON | 16

Normal Distribution

Plasma MIPS OpenCore

28nm FDSOI

Compare mathematical
model of optimal
resiliency window (Δ) with
simulation results

Application to 3-Stage CPU

[1] http://opencores.org/project,plasma

CASE STUDY | 17

Application to 3-Stage CPU

20 40 60 80
0

5

10

15

20

Distribution A

Delay (%)

C
y

c
le

s
(%

)

20 40 60 80
0

5

10

15

20

Distribution C

Delay (%)

C
y
c
le

s
(%

)

CASE STUDY | 18

Δ

Δ

Application to 3-Stage CPU

Model estimated optimal Δ within 5.4%

• Optimal EC within 99%

CASE STUDY | 19

Distribution A Distribution B Distribution C

Model Sim Model Sim Model Sim

Δmax 27% 35% 43%

Δopt 26% 27% 34% 35% 39% 37%

ECopt 74.8% 75.1% 71.3% 71.9% 75.1% 74.8%

Application to 3-Stage CPU

Model estimated optimal Δ within 5.4%

• Optimal EC within 99%

Model allows estimation of optimal Δ w/o limitations of simulated design

CASE STUDY | 19

Distribution A Distribution B Distribution C

Model Sim Model Sim Model Sim

Δmax 27% 35% 43%

Δopt 26% 27% 34% 35% 39% 37%

ECopt 74.8% 75.1% 71.3% 71.9% 75.1% 74.8%

Distribution A Distribution B Distribution C

Model Sim Model Sim Model Sim

Δmax 27% 35% 43%

Δopt 26% 27% 34% 35% 39% 37%

ECopt 74.8% 75.1% 71.3% 71.9% 75.1% 74.8%

Ideal Δopt 48% 53% 46%

Ideal ECopt 63.2% 67.8% 74.5%

Summary and Conclusions

Performance model

• Use either analytical and real world delay distributions

• Predicts performance within 99% accuracy

Comparison to sync N-stage rings

• 23% better than Bubble Razor

• 35% better than traditional designs

Several interesting conclusions

• Optimal error rate is relatively high and may be constant

• Programmable delay line need not be fine-grained

• Metastability impact is negligible

• Supporting larger resiliency windows may be useful

CONCLUSIONS | 20

Questions?

