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Introduction

0 Asynchronous Gate Selection Problem:

Selecting gates of different sizes and Vth from a
standard cell library to minimize leakage power and
performance



Previous Works (1/2)

Gate selection algorithm for synchronous circuits:

Convex programming, sensitivity based algorithms,
dynamic programming based algorithms, Lagrangian
relaxation (LR) based algorithms

Most of the leading gate selection algorithms are
applying the LR based approach:

G. Flach et al., Effective Method for Simultaneous

Gate Sizing and Vth Assignment Using Lagrangian
Relaxation, TCAD 2014

M. M. Ozdal et al., Algorithms for Gate Sizing and

Device Parameter Selection for High-performance
Designs, TCAD 2012



Previous Works (2/2)

Asynchronous gate selection can be more critical
Higher gate counts

Most works try to leverage synchronous EDA tools:
P. A. Beerel et al., Proteus: An ASIC Flow for GHz
Asynchronous Designs, Design Test of Computers 2011

Y. Thonnart et al., A Pseudo-synchronous
Implementation Flow for WCHB QDI Asynchronous

Circuits, ASYNC 2012

Gate selection algorithm specific for asynchronous

circuits:
B. Ghavami et al.,, Low Power Asynchronous Circuit
Back- End Design Flow, Microelectronics Journal 2011
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Backgrounds (2/2)

0 Performance Analysis

A linear program approach [J. Magott IPL ‘84]
Minimize 7
Subject to a; + Dij — My T < a; V(Z,])

0 Timing Constraints
Minimum and maximum bounded delay

Relative timing constraints



Problem Formulation

0 Minimizing both total leakage power consumption
and cycle time subject to timing constraints:

Minimize leakage(g)/leakage(go) + a7 /79
Subject to  a; + D;; — m;7 < a; Vp(,7) e P (1)
Li; <a; —a; < U Vp(i,7) € P (2)
(a; —ar) — (aj —ar)| < 1;; Vp(i,j) € Pt (3)
0 Transform all constraints into the same form:

(a; + Lij < aj) A (a; — Uiy < ay)
(a; — Iij < a;) A (a; — Ii; < ay)



Problem Formulation

0 Minimizing both total leakage power consumption
and cycle time subject to timing constraints:

Minimize leakage(g)/leakage(go) + a7 /7
Subject to  a; + D;j — m;; 7 < a; Vp(i,5) e P (1)
Li; <a;—a; < U Vp(i,j) € P, (2)
(ai —ak) — (a5 —ax)| < 1;; Y p(i,j) € Pt (3)

0 A more concise representation of the primal
problem:
PP : Minimize leakage(g)/leakage(go) + a7 /70
Subject to  a; + l/jz‘j — T < a; V(i,J)



Outline — Gate Selection Algorithm

O Primal Problem(PP)

Minimizing both total leakage and cycle time subject to
timing constraints

0 Lagrangian Relaxation Subproblem (LRS)

Obtained by relaxing constraints of PP
Provide a lower bound of PP

0 Simplified LRS (LRS™)
Obtained by applying KKT condition to LRS
Solved using greedy sizing technique

0 Lagrangian Dual Problem (LDP)

lteratively solve LRS* to improve the lower bound



Outline — Gate Selection Algorithm
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0 Primal Problem(PP)

O Minimizing both total leakage and cycle time subject to
timing constraints

0 Lagrangian Relaxation Subproblem (LRS)

o1 Obtained by relaxing constraints of PP
o1 Provide a lower bound of PP

0 Simplified LRS (LRS*)
O Obtained by applying KKT condition to LRS
O Solved using greedy sizing technique

0 Lagrangian Dual Problem (LDP)

O lteratively solve LRS* to improve the lower bound



Lagrangian Relaxation Subproblem
S

0 Relax all the constraints into objective function

PP : Minimize leakage(g)/leakage(go) + a1/709
Subject to  a; + lAlL-j — T <a; V(i,Jj)

LRS: Mimimize leakage(g)/leakage(go) + a7/79
+ Z Nij(a; + ﬁij — M T — a;)
V(,5)

0 Solving LRS will provide a lower bound to the
optimal solution of PP



Outline — Gate Selection Algorithm

0 Primal Problem(PP)

O Minimizing both total leakage and cycle time subject to
timing constraints

O Lagrangian Relaxation Subproblem (LRS)
O Obtained by relaxing constraints of PP
O Provide a lower bound of PP

0 Simplified LRS (LRS*)
o1 Obtained by applying KKT condition to LRS

o1 Solved using greedy sizing technique

0 Lagrangian Dual Problem (LDP)

O lteratively solve LRS* to improve the lower bound



Simplified LRS (1/2)
==

0 Rearrange LRS

LRS: Mimimize leakage(g)/leakage(go) + a7 /79

-+ Z )\ij(az- —+ lA)z'j — ’I?A%;jT — aj)
V(i,7)

Group all the coefficients associated with T, a,

Mimimize leakage(g)/leakage(go) + (o — Z NijMii )T/ To

V(2,5)
— S:( S: Akj — Z ik ) Qi

k€T V(k,j) V(i,k)

+ Z \ijDij

v(i,5)




Simplified LRS (2/2)

0 Rearranged LRS:
Mimimize leakage(g)/leakage(go) + (o — Z NijMii )T/ To

v(%,5)
+ S:( S: )\kj — Z )\ik)ak

keT Y(k,j) V(i,k)

+ Z \ijDi;

v(i,j)

0 Use KKT condition to simplify LRS:

KKT Stationarity Condition: KET Q= Z i1
oL oL v ()

V(k,j) V(z,k)



Simplified LRS (2/2)
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0 Rearranged LRS:

Mimimize leakage(g)/leakage(go) + (v — Niiii )T/ To
3 Mg

v(%,7)
+) (Y g — Z Aik ) Ok

keT Y(k,j) V(i,k)

+ Z )‘z’jﬁij

v(i,5)

0 Use KKT condition to simplify LRS:

LRS*: Minimize leakage(g)/leakage(go) + Z )\z'jf)z'j
V(2,5)



— >  Pick a gate g, from G

Solve Simplified LRS

Assign an initial version Select a new version for g
for all gates
v lterate through all possible
Insert all gates into set G options of current gate
v Calculate the cost for all

timing arcs:

v
Select a new version for g i fqnm(gi)' fanUf(gi)l Slde(gi)
v A
) = leak : Ao D
If new version # old version Costlgs) = leakage(gi) + Z wv Y
(u,v)EArc;
Insert fanout gates of g
into G Pick option with lowest cost

No Yes

G#Empty



Outline — Gate Selection Algorithm

e P
0 Primal Problem(PP)

O Minimizing both total leakage and cycle time subject to
timing constraints

0 Lagrangian Relaxation Subproblem (LRS)
O Obtained by relaxing constraints of PP
O Provide a lower bound of PP

0 Simplified LRS (LRS*)
O Obtained by applying KKT condition to LRS
O Solved using greedy sizing technique

0 Lagrangian Dual Problem (LDP)

o1 lteratively solve LRS* to improve the lower bound



Lagrangian Dual Problem

19
0 Find the specific A to get the tightest lower bound:

LDP : Maximize LRS
Subjectto A >0

0 Use the equivalent yet simpler problem LRS*

Maximize LRS”*
Subjectto A >0, A € KT



Solve Lagrangian Dual Problem (1/2)

0 We apply a direction finding approach™ instead of the
subgradiant optimization approach

Easier to redistribute A
Better convergence

0 An improving feasible direction is found by solving:
DF . Maximize Z A)\@-jf?z-j
V(4.4)
Subjectto A >0, A € KKT
max(—u, —Ai;) < AN\ <u
0 A step size [ is found by line search

0 At each iteration, improve obj:  q(A 4+ BAX) > q(A)

* ). Wang et al., Gate Sizing by Lagrangian Relaxation Revisited, TCAD 2009



Solve Lagrangian Dual Problem (2/2)

Initial non-negative A
satisfy KKT condition

v

—> Solve DF to obtain AA

v

Line search to obtain [3

< improve? >

Yes

Update A:
AN =A+BAA

Yes No
lter<limit




STA for Asynchronous Circuits (1/2)

0 In order to use library based timing model, we need
to update the slew value

Difficult than synchronous circuits due to its internal loops
Algorithm 4 Iterative Slew Update

Ensure: A tight upper bound of the output slew for all the gates;
1: Initialize the output slew to O for all the gates;
2: Insert all the gates into a set G;
3: while G # () do

4. Pick one gate g; from G. Let its current output slew be s,;4;
5: Compute new output slew s, 0f g; based on its input slew;
6: if Snew > Soiqd then

7 Update the output slew of g; t0 Spew;

8: Insert all gates ¢ G and directly driven by g; into G;

9: end if
10: Remove ¢g; from set G;

11: end while




STA for Asynchronous Circuits (2/2)

0 The proposed algorithm always converge and
provide a tight upper bound of the output slew value

o1 Proved using induction technique
0 Update delay by look up table interpolation
0 Obtain cycle time by solving LP
Minimize T
Subject to  a; + D;; — my;m < a; V(i,])



Asynchronous Gate Selection Flow

Netlist Cell Library
N rd
Static timing analysis
v

Initialize non-negative A which
satisfies optimality conditions

v

Solve LP to obtain feasible

A

increasing direction

Update A

v

?

Line search to find a step size

Static timing analysis

n < limit and Yes

A

/ Selected Gates /




Experiments Setup

Two standard cell libraries:

Proteus standard cell library (single-Vth)
Extended library (multi-Vth)

Two sets of benchmarks:

Asynchronous designs transformed from ISCAS89
benchmarks

Specific asynchronous designs

All the designs are generated using Proteus flow based
on the PCHB pipeline template

No parameter tuning:

& =2, iteration limit = 50 for all the benchmarks



The Convergence Sequence of s38417
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Cycle time /Leakage power of s38417
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Comparison on Transformed ISCAS89 Benchmarks

Design

Total Itr.

Cycle Time (ns)

Leakage (uW)

Init Proteus Ours Init Proteus Ours
Single-Vt | Multi-Vt Single-Vt | Multi-Vt
as1196 20 0.78 0.45 0.37 0.39 |21147.30(26729.40|22739.80| 6596.47
as1488 31 1.96 0.92 0.77 0.81 |[21038.70(27106.10(22678.30| 6611.33
as1238 18 0.77 0.44 0.36 0.39 |21815.70|26416.30(23438.60| 6483.97
as1423 44 1.94 1.04 0.95 0.95 18684.50(22470.90|19514.60| 5901.81
as5378 42 1.19 0.57 0.54 0.55 ]40032.20|52317.60(42443.10| 12548.60
as9234 39 1.69 0.82 0.71 0.70 |32586.60(40344.70(33821.10| 9963.48
as13207 44 1.68 0.83 0.68 0.70 | 86949.50(99875.60(90722.80|26414.00
as15850 50 2.44 1.29 0.99 0.96 [105889.00[{123374.00[{107923.00| 31622.60
as38417 50 2.32 2.04 1.02 1.01 |267671.00|267062.00|273556.00] 80887.90
2.192 1.213 1.000 1.024 0.963 1.095 1.000 0.295




Comparison on Asynchronous Benchmarks

Design

Total Itr.

Cycle Time (ns)

Leakage (uW)

Init Proteus Ours Init Proteus Ours

Single-Vt | Multi-Vt Single-Vt | Multi-Vt

ALUS 38 0.68 0.40 0.35 0.38 |14849.70|20252.20|15668.10 | 4223.92
ALU16 16 0.84 0.78 0.39 0.40 |41103.60|41017.2043402.50|12194.50
ALU32 17 1.26 1.18 0.45 0.50 [118062.00|118125.00123546.00] 34077.00
ALUG4 19 1.38 1.25 0.55 0.59 [493119.00/494252.00520688.00144837.00
ACC16 27 0.99 0.65 0.50 0.55 | 7198.16 | 8565.35 | 7945.34 | 2216.16
ACC32 50 1.30 0.73 0.67 0.67 |16291.6022786.80|17217.10| 5046.62
ACC64 37 1.13 0.59 0.56 0.57 |48672.90|63712.1051894.60 | 15904.20
ACC128 | 50 1.35 0.89 0.69 0.69 [125107.00/144956.00[131821.00] 39325.50
GCD 35 1.77 1.59 0.82 0.84 | 7017.06 | 6967.30 | 7359.21 | 2139.78
Fetffi”g 40 1.77 0.80 0.74 0.76 |75562.70 [106374.00| 80706.60 | 24465.00
2180 | 1.550 | 1.000 | 1041 | 0947 | 1.027 | 1000 | 0.284




Conclusions

0 Proposed an effective gate selection algorithm
specific for asynchronous circuits

Number of constraints is polynomial in circuit size
No explicit cycle constraints

Simplified LRS is solved effectively using a greedy
approach

0 Proposed an effective slew update approach for
the STA of asynchronous circuits

Guarantees convergence and provide a tight bound

0 Achieved promising experimental results



Questions?



