

Hunting Asynchronous CDC Violations in the Wild

Chris Kwok Principal Engineer

May 4, 2015

CDC is the #2 Verification Problem

Why CDC is a Big Problem: 10 or More Clock Domains are Common

Even FPGA Users Are Suffering

The Scope of SoC Designs

Typical

- 100M gates total
- 10 distinct IP blocks
- 5-10 independent clock domains
- 3-5 reset domains
- 3-5 power domains (UPF)

Largest

- Over 1 billion gates
- Over 100 distinct IPs
- Over 150 independent clock domains
- Over 10 reset domains
- Over 10 power domains & voltage domains (UPF)

Types of Asynchronous Crossings

- Clock domain crossing (CDC) paths
 Crossings between registers on payrochrometers of the second se
 - Crossings between registers on asynchronous clock domains
- Reset domain crossing (RDC) paths
 Crossings between registers on asynchronous reset domains
- Voltage domain crossing (VDC) paths
 - Crossings between registers on different voltage scaling domains

Common CDC Challenges

Design-related

- There are more than just asynchronous clocks
 - Mesosynchronous, Plesiosynchronous, Ratio-synchronous clocks
- Impact of place-n-route on physical proximity
- Power logic
- Synthesis

Methodology

- Hierarchical vs. flat
- Gate level CDC analysis
- RTL to Silicon

User Errors

- Miscommunication: designer did not know there was a CDC path
- Incorrect structure: designer made a mistake on the sync
 Integration problem: 3rd party IP instantiated incorrectly
- Misunderstanding / incorrect assumptions: violation incorrectly waived
- Constraint setup errors: incorrect setup leads to incorrect results

Focus On: Hierarchical CDC

- Why do Hierarchical CDC analysis?
 - Capacity limitation
 - Runtime
 - Methodology
 - Productivity
- Non-technical challenges
 - Blocks are implemented by different IP teams in different business units, geographies, or even different companies
 - Handling encrypted IPs
 - Data transfer from block to integration team (RTL vs. CDC model)

Productivity

- IP blocks developed and verified in parallel
- The SoC integration team often does not want to verify the blocks
- Block constraints may be extracted from top-level constraints

Hierarchical CDC Analysis Flow

Graphics

Gate-Level CDC – RTL CDC is Inadequate

- Synthesis may introduce CDC errors
 - Glitchy logic
 - Retiming
 - Logic duplication
- Checks required for DFT & Power logic
 - UPF+RTL describe power-aware design
 - Checks for Clock & Power gating logic
 - Checks for BIST/Scan chains
- Place-and-route
 - Clocks that are synchronous still have skew due to propagation delay
 - Registers can be far apart in the chip long delays
 - Clocks of different branches can have different propagation delays
 - Clocks may become asynchronous
 - MUX select signal may come in late

Technical Challenges

- Handle large SOCs, ASICs & FPGA-based designs
 Today's ASIC is next year's IP
- Designs translate into huge directed graphs
 - Many million nodes, billion edges
 - Large sparse, with some strongly connected components
- Challenge: Solution should be close to linear
 - Standard graph algorithms apply : levelization, loop detection, min-cut, coloring, etc..
 - Large problem size requires careful implementation to be close to linear

The Future is Now: Asynchronous Crossing is more than CDC

Formal-based analysis is not just for CDC paths any more!

Power-Aware CDC

- Voltage domain crossing (VDC)
- Power domains includes isolation & retention cells
- Reset Domain Crossings
 - Crossings between asynchronous resets
- Simultaneous multi-domain analysis
 Interacting CDC, RDC, VDC crossings

Summary

- CDC remains a big, unavoidable problem for customers
- Successful CDC verification of the chip is more than just technology – sound methodology is required too
- Numerous innovations in CDC technology & methodology will be needed to stay ahead of ASIC & FPGA trends

Come Join Us!

- We are looking for software engineers to join the Mentor Graphics team to address the challenges posed by large, complex Systems on Chip.
- Current Job openings
 R&D Software Engineers
 - Interns

www.mentor.com